Knowledge

Polythiophene

Source 📝

593: 697: 640: 437: 25: 37: 404: 771: 655: 17: 745: 48: 425:. Although only poorly processable, "the expected high temperature stability and potentially very high electrical conductivity of PT films (if made) still make it a highly desirable material." Nonetheless, intense interest has focused on soluble polythiophenes, which usually translates to polymers derived from 3-alkylthiophenes, which give the so-called polyalkylthiophenes (PATs). 675:
with approximately 94% H–T content. Precipitation of ferric chloride in situ (in order to maximize the surface area of the catalyst) produced significantly higher yields and monomer conversions than adding monomer directly to crystalline catalyst. Higher molecular weights were reported when dry air was bubbled through the reaction mixture during polymerization. Exhaustive
475:
strong thermochromic effects, the absorbance spectra of the regioirregular polymers did not change significantly at elevated temperatures. Finally, Fluorescence absorption and emission maxima of poly(3-hexylthiophene)s occur at increasingly lower wavelengths (higher energy) with increasing HH dyad content. The difference between absorption and emission maxima, the
762:
accepted for electrochemical polymerization was more likely. Given the difficulties of studying a system with a heterogeneous, strongly oxidizing catalyst that produces difficult to characterize rigid-rod polymers, the mechanism of oxidative polymerization is by no means decided. The radical cation mechanism is generally accepted.
155:
oxidant is used to convert PTs (and other conducting polymers) into the optimally conductive state. Thus about one of every five rings is oxidized. Many different oxidants are used. Because of the redox reaction, the conductive form of polythiophene is a salt. An idealized stoichiometry is shown using the oxidant PF
674:
This method has proven to be extremely popular; antistatic coatings are prepared on a commercial scale using ferric chloride. In addition to ferric chloride, other oxidizing agents have been reported. Slow addition of ferric chloride to the monomer solution produced poly(3-(4-octylphenyl)thiophene)s
631:
Chemical synthesis offers two advantages compared with electrochemical synthesis of PTs: a greater selection of monomers, and, using the proper catalysts, the ability to synthesize perfectly regioregular substituted PTs. PTs were chemically synthesized by accident more than a century ago. Chemical
474:
formed "crystalline, flexible, and bronze-colored films with a metallic luster". On the other hand, the corresponding regiorandom polymers produced "amorphous and orange-colored films". Comparison of the thermochromic properties of the Rieke PATs showed that, while the regioregular polymers showed
154:
PT is an ordinary organic polymer, being a red solid that is poorly soluble in most solvents. Upon treatment with oxidizing agents (electron-acceptors) however, the material takes on a dark color and becomes electrically conductive. Oxidation is referred to as "doping". Around 0.2 equivalent of
761:
studied the oligomerization of 3-(alkylsulfanyl)thiophenes, and concluded from their quantum mechanical calculations, and considerations of the enhanced stability of the radical cation when delocalized over a planar conjugated oligomer, that a radical cation mechanism analogous to that generally
2696:
Zhu, Lishan; Wehmeyer, Richard M.; Rieke, Reuben D. (1991). "The direct formation of functionalized alkyl(aryl)zinc halides by oxidative addition of highly reactive zinc with organic halides and their reactions with acid chlorides, α,β-unsaturated ketones, and allylic, aryl, and vinyl halides".
374:
Shifts in PT absorption bands due to changes in temperature result from a conformational transition from a coplanar, rodlike structure at lower temperatures to a nonplanar, coiled structure at elevated temperatures. For example, poly(3-(octyloxy)-4-methylthiophene) undergoes a color change from
469:
Regioregularity affects the properties of PTs. A regiorandom copolymer of 3-methylthiophene and 3-butylthiophene possessed a conductivity of 50 S/cm, whereas a more regioregular copolymer with a 2:1 ratio of HT to HH couplings had a higher conductivity of 140 S/cm. Films of regioregular
679:
after polymerization with polar solvents was found to effectively fractionate the polymer and remove residual catalyst before NMR spectroscopy. Using a lower ratio of catalyst to monomer (2:1, rather than 4:1) may increase the regioregularity of poly(3-dodecylthiophene)s. Andreani
383:
PTs exhibit an isosbestic point: highly regioregular poly(3-alkylthiophene)s (PATs) show a continuous blue-shift with increasing temperature if the side chains are short enough so that they do not melt and interconvert between crystalline and disordered phases at low temperatures.
346:
estimated that the effective conjugation extended over 11 repeat units, while later studies increased this estimate to 20 units. Using the absorbance and emission profile of discrete conjugated oligo(3-hexylthiophene)s prepared through polymerization and separation, Lawrence
858:
of the materials, combined with their processing and material properties common to polymeric materials. Dynamic applications utilize changes in the conductive and optical properties, resulting either from application of electric potentials or from environmental stimuli.
688:
rather than chloroform, which they attributed to the stability of the radical species in carbon tetrachloride. Higher-quality catalyst, added at a slower rate and at reduced temperature, was shown to produce high molecular weight PATs with no insoluble polymer residue.
564:. Electrochemical polymerization is convenient, since the polymer does not need to be isolated and purified, but it can produce polymers with undesirable alpha-beta linkages and varying degrees of regioregularity. The stoichiometry of the electropolymerization is: 299:
The extended π-systems of conjugated PTs produce some of the most interesting properties of these materials—their optical properties. As an approximation, the conjugated backbone can be considered as a real-world example of the "electron-in-a-box" solution to the
607:
Electron-donating substituents lower the oxidation potential, whereas electron-withdrawing groups increase the oxidation potential. Thus, 3-methylthiophene polymerizes in acetonitrile and tetrabutylammonium tetrafluoroborate at a potential of about 1.5 V vs.
110:
along the polymer backbone. Conductivity however is not the only interesting property resulting from electron delocalization. The optical properties of these materials respond to environmental stimuli, with dramatic color shifts in response to changes in
1208:
McCullough, Richard D.; Tristram-Nagle, Stephanie; Williams, Shawn P.; Lowe, Renae D.; Jayaraman, Manikandan (1993). "Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers".
1950:
Elsenbaumer, R. L.; Jen, K.-Y.; Miller, G. G.; Eckhardt, H.; Shacklette, L. W.; Jow, R. "Poly (alkylthiophenes) and Poly (substituted heteroaromatic vinylenes): Versatile, Highly Conductive, Processible Polymers with Tunable Properties". In
2724:
Chen, Tian An; Rieke, Reuben D. (1992). "The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization".
1605:
Izumi, Tsuyoshi; Kobashi, Seiji; Takimiya, Kazuo; Aso, Yoshio; Otsubo, Tetsuo (2003). "Synthesis and Spectroscopic Properties of a Series of β-Blocked Long Oligothiophenes up to the 96-mer: Revaluation of Effective Conjugation Length".
2300:
Li, L.; Counts, K. E.; Kurosawa, S.; Teja, A. S.; Collard, D. M. (2004). "Tuning the Electronic Structure and Solubility of Conjugated Polymers with Perfluoroalkyl Substituents: Poly(3-perfluorooctylthiophene), the First Supercritical
933:
Arosio, Paolo; Moreno, Margherita; Famulari, Antonino; Raos, Guido; Catellani, Marinella; Valdo Meille, Stefano (2009). "Ordered Stacking of Regioregular Head-to-Tail Polyalkylthiophenes: Insights from the Crystal Structure of Form I′
806:
PEDOT also has been proposed for dynamic applications where a potential is applied to a polymer film. PEDOT-coated windows and mirrors become opaque or reflective upon the application of an electric potential, a manifestation of its
335:; or temporary, resulting from changes in the environment or binding. This twist in the backbone reduces the conjugation length, and the separation between energy levels is increased. This results in a shorter absorption wavelength. 2807:
Fraleoni-Morgera, Alessandro; Della-Casa, Carlo; Lanzi, Massimiliano; Costa-Bizzarri, Paolo (2003). "Investigation on Different Procedures in the Oxidative Copolymerization of a Dye-Functionalized Thiophene with 3-Hexylthiophene".
1534:
Lawrence, Jimmy; Goto, Eisuke; Ren, Jing M.; McDearmon, Brenden; Kim, Dong Sub; Ochiai, Yuto; Clark, Paul G.; Laitar, David; Higashihara, Tomoya (2017-10-04). "A Versatile and Efficient Strategy to Discrete Conjugated Oligomers".
3014:
Barbarella, Giovanna; Zambianchi, Massimo; Di Toro, Rosanna; Colonna, Martino; Iarossi, Dario; Goldoni, Francesca; Bongini, Alessandro (1996). "Regioselective Oligomerization of 3-(Alkylsulfanyl)thiophenes with Ferric Chloride".
2105:
Englebienne, Patrick; Weiland, Mich le (1996). "Synthesis of water-soluble carboxylic and acetic acid-substituted poly(thiophenes) and the application of their photochemical properties in homogeneous competitive immunoassays".
1880:
Barbarella, Giovanna; Bongini, Alessandro; Zambianchi, Massimo (1994). "Regiochemistry and Conformation of Poly(3-hexylthiophene) via the Synthesis and the Spectroscopic Characterization of the Model Configurational Triads".
416:
Polythiophene and its oxidized derivatives have poor processing properties. They are insoluble in ordinary solvents and do not melt readily. For example, doped unsubstituted PTs are only soluble in exotic solvents such as
351:
determined the effective conjugation length of poly(3-hexylthiophene) to be 14 units. The effective conjugation length of polythiophene derivatives depend on the chemical structure of side chains, and thiophene backbones.
3299: 2870:
Andreani, F.; Salatelli, E.; Lanzi, M. (February 1996). "Novel poly(3,3" – and 3',4'-dialkyl- 2,2':5',2" – terthiophene)s by chemical oxidative synthesis: evidence for a new step towards the optimization of this process".
2348:
Murphy, Amanda R.; Fréchet, Jean M. J.; Chang, Paul; Lee, Josephine; Subramanian, Vivek (2004). "Organic Thin Film Transistors from a Soluble Oligothiophene Derivative Containing Thermally Removable Solubilizing Groups".
218:
is formed. The bipolaron moves as a unit along the polymer chain and is responsible for the macroscopically observed conductivity of the material. Conductivity can approach 1000 S/cm. In comparison, the conductivity of
2183:
Jung, S.; Hwang, D.-H.; Zyung, T.; Kim, W. H.; Chittibabu, K. G.; Tripathy, S. K. (1998). "Temperature dependent photoluminescence and electroluminescence properties of polythiophene with hydrogen bonding side chain".
651:. This method produces approximately 100% HT–HT couplings, according to NMR spectroscopy analysis of the diads. 2,5-Dibromo-3-alkylthiophene when treated with highly reactive "Rieke zinc" is an alternative method. 123:, and binding to other molecules. Changes in both color and conductivity are induced by the same mechanism, twisting of the polymer backbone and disrupting conjugation, making conjugated polymers attractive as 2775:
Costa Bizzarri, P.; Andreani, Franco; Della Casa, Carlo; Lanzi, Massimiliano; Salatelli, Elisabetta (1995). "Ester-functionalized poly(3-alkylthienylene)s: substituent effects on the polymerization with
1977:
Andersson, M. R.; Selse, D.; Berggren, M.; Jaervinen, H.; Hjertberg, T.; Inganaes, O.; Wennerstroem, O.; Oesterholm, J.-E. (1994). "Regioselective polymerization of 3-(4-octylphenyl)thiophene with FeCl
798:
properties. The thin layer of PEDOT:PSS is virtually transparent and colorless, prevents electrostatic discharges during film rewinding, and reduces dust buildup on the negatives after processing.
1402:
Abdou, M.S.A.; Holdcroft, Steven (1993). "Oxidation of π-conjugated polymers with gold trichloride: enhanced stability of the electronically conducting state and electroless deposition of Au".
732:), and speculated that the polymerization may occur at the surface of solid ferric chloride. However, this is challenged by the fact that the reaction also proceeds in acetonitrile, which FeCl 320: 1429:
Rudge, Andy; Raistrick, Ian; Gottesfeld, Shimshon; Ferraris, John P. (1994). "A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors".
667:
In contrast to methods that require brominated monomers, the oxidative polymerization of thiophenes using ferric chloride proceeds at room temperature. The approach was reported by Sugimoto
207: 2522:
Roncali, J.; Garreau, R.; Yassar, A.; Marque, P.; Garnier, F.; Lemaire, M. (1987). "Effects of steric factors on the electrosynthesis and properties of conducting poly(3-alkylthiophenes)".
433:
Soluble polymers are derivable from 3-substituted thiophenes where the 3-substituent is butyl or longer. Copolymers also are soluble, e.g., poly(3-methylthiophene-'co'-3'-octylthiophene).
753:
Polymerization of thiophene can be effected by a solution of ferric chloride in acetonitrile. The kinetics of thiophene polymerization also seemed to contradict the predictions of the
2016:
Chen, Tian-An; Wu, Xiaoming; Rieke, Reuben D. (1995). "Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties".
878: 470:
poly(3-(4-octylphenyl)thiophene) (POPT) with greater than 94% HT content possessed conductivities of 4 S/cm, compared with 0.4 S/cm for regioirregular POPT. PATs prepared using Rieke
3133:
Martina, V; Ionescu, K.; Pigani, L; Terzi, F; Ulrici, A.; Zanardi, C.; Seeber, R (March 2007). "Development of an electronic tongue based on a PEDOT-modified voltammetric sensor".
740:
also point to a radical mechanism. The mechanism can also be inferred from the regiochemistry of the dimerization of 3-methylthiophene since C2 in has the highest spin density.
392:
The optical properties of PTs can be sensitive to many factors. PTs exhibit absorption shifts due to application of electric potentials (electrochromism), or to introduction of
223:
is approximately 5×10 S/cm. Generally, the conductivity of PTs is lower than 1000 S/cm, but high conductivity is not necessary for many applications, e.g. as an antistatic film.
379:(a point where the absorbance curves at all temperatures overlap) indicates coexistence between two phases, which may exist on the same chain or on different chains. Not all 338:
Determining the maximum effective conjugation length requires the synthesis of regioregular PTs of defined length. The absorption band in the visible region is increasingly
1333: 604:
and quality of the resulting polymer depends upon the electrode material, current density, temperature, solvent, electrolyte, presence of water, and monomer concentration.
2898:
Gallazzi, M.; Bertarelli, C.; Montoneri, E. (2002). "Critical parameters for product quality and yield in the polymerisation of 3,3"-didodecyl-2,2′:5′,2"-terthiophene".
1736:
Marsella, Michael J.; Swager, Timothy M. (1993). "Designing conducting polymer-based sensors: selective ionochromic response in crown ether-containing polythiophenes".
2434:
Groenendaal, L. B.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. (2000). "Poly(3,4-Ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future".
342:
as the conjugation length increases, and the maximum effective conjugation length is calculated as the saturation point of the red-shift. Early studies by ten Hoeve
1247:
Loponen, M.; Taka, T.; Laakso, J.; Vakiparta, K.; Suuronen, K.; Valkeinen, P.; Osterholm, J. (1991). "Doping and dedoping processes in poly (3-alkylthiophenes)".
1578:
Nakanishi, Hidetaka; Sumi, Naoto; Aso, Yoshio; Otsubo, Tetsuo (1998). "Synthesis and Properties of the Longest Oligothiophenes: the Icosamer and Heptacosamer".
512:
Oligothiophenes capped at both ends with thermally-labile alkyl esters were cast as films from solution, and then heated to remove the solublizing end groups.
270:(MALDI-MS) studies have shown that poly(3-hexylthiophene)s are also partially halogenated by the residual oxidizing agent. Poly(3-octylthiophene) dissolved in 1151:
Kobayashi, M.; Chen, J.; Chung, T.-C.; Moraes, F.; Heeger, A.J.; Wudl, F. (January 1984). "Synthesis and properties of chemically coupled poly(thiophene)".
693:
indicate that the catalyst/monomer ratio correlated with increased yield of poly(3-octylthiophene). Longer polymerization time also increased the yield.
331:, and the longer the absorption wavelength. Deviation from coplanarity may be permanent, resulting from mislinkages during synthesis or especially bulky 2843:
Qiao, X.; Wang, Xianhong; Zhao, Xiaojiang; Liu, Jian; Mo, Zhishen (2000). "Poly(3-dodecylthiophenes) polymerized with different amounts of catalyst".
1706:
H. W. Heuer; R. Wehrmann; S. Kirchmeyer (2002). "Electrochromic Window Based on Conducting Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonate)".
505:
substituents at the 3 position have been polymerized. Such chiral PTs in principle could be employed for detection or separation of chiral analytes.
1916:
Diaz-Quijada, G. A.; et al. (1996). "Regiochemical Analysis of Water Soluble Conductive Polymers: Sodium Poly(ω-(3-thienyl)alkanesulfonates)".
2585:
Yamamoto, Takakazu; Sanechika, Kenichi; Yamamoto, Akio (January 1980). "Preparation of thermostable and electric-conducting poly(2,5-thienylene)".
1641:
De Souza, J.; Pereira, Ernesto C. (2001). "Luminescence of poly(3-thiopheneacetic acid) in alcohols and aqueous solutions of poly(vinyl alcohol)".
2558: 2661:
Chen, Tian An; O'Brien, Richard A.; Rieke, Reuben D. (1993). "Use of highly reactive zinc leads to a new, facile synthesis for polyarylenes".
1178:
Mastragostino, M.; Soddu, L. (1990). "Electrochemical characterization of "n" doped polyheterocyclic conducting polymers—I. Polybithiophene".
2129:
Kim; Chen, Li; Gong; Osada, Yoshihito (1999). "Titration Behavior and Spectral Transitions of Water-Soluble Polythiophene Carboxylic Acids".
327:
The number of coplanar rings determines the conjugation length—the longer the conjugation length, the lower the separation between adjacent
264: 2455: 1108:
Mehmood, Umer; Al-Ahmed, Amir; Hussein, Ibnelwaleed A. (2016). "Review on recent advances in polythiophene based photovoltaic devices".
708:
reported that polymerization was only observed in solvents where the catalyst was either partially or completely insoluble (chloroform,
487:
Water-soluble PT's are represented by sodium poly(3-thiophenealkanesulfonate)s. In addition to conferring water solubility, the pendant
2164:
Andersson, M.; Ekeblad, P. O.; Hjertberg, T.; Wennerström, O.; Inganäs, O. (1991). "Polythiophene with a free amino-acid side-chain".
1855: 479:, also increases with HH dyad content, which they attributed to greater relief from conformational strain in the first excited state. 3176:
Bäuerle, Peter; Scheib, Stefan (1993). "Molecular recognition of alkali-ions by crown-ether-functionalized poly(alkylthiophenes)".
993:Österholm, J.-E.; Passiniemi, P.; Isotalo, H.; Stubb, H. (February 1987). "Synthesis and properties of FeCl4-doped polythiophene". 886: 463: 103: 3071: 2952:
Niemi, V. M.; Knuuttila, P.; Österholm, J. E.; Korvola, J. (1992). "Polymerization of 3-alkylthiophenes with ferric chloride".
854:. In general, two categories of applications are proposed for conducting polymers. Static applications rely upon the intrinsic 1719: 3396: 2486: 255:
produce PTs with lower conductivities than iodine, but with higher environmental stabilities. Oxidative polymerization with
28:
Polythiophenes demonstrate interesting optical properties resulting from their conjugated backbone, as demonstrated by the
639: 1507:
Meier, H.; Stalmach, U.; Kolshorn, H (September 1997). "Effective conjugation length and UV/vis spectra of oligomers".
704:
In terms of mechanism, the oxidative polymerization using ferric chloride, a radical pathway has been proposed. Niemi
444:
One undesirable feature of 3-alkylthiophenes is the variable regioregularity of the polymer. Focusing on the polymer
312:
spectra of well-defined oligo(thiophene) systems is ongoing. Conjugation relies upon overlap of the π-orbitals of the
3294: 3286: 3272: 3121: 3101: 2754:"Preparation of soluble polythiophene derivatives utilizing transition metal halides as catalysts and their property" 1960: 1464: 130:
The development of polythiophenes and related conductive organic polymers was recognized by the awarding of the 2000
786:
has been extensively used as an antistatic coating (as packaging materials for electronic components, for example).
750:
A carbocation mechanism is inferred from the structure of 3-(4-octylphenyl)thiophene prepared from ferric chloride.
95:
substituents at the 3- or 4-position(s). They are also colored solids, but tend to be soluble in organic solvents.
2925:
Laakso, J.; Jarvinen, H.; Skagerberg, B. (1993). "Recent developments in the polymerization of 3-alkylthiophenes".
2394:"Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer−Fullerene Solar Cells" 2249:
Desimone, J. M.; Guan, Z.; Elsbernd, C. S. (1992). "Synthesis of Fluoropolymers in Supercritical Carbon Dioxide".
3435: 3415: 1763:
Rughooputh, S. D. D. V.; Hotta, S.; Heeger, A. J.; Wudl, F. (May 1987). "Chromism of soluble polythienylenes".
1065:
McQuade, D. Tyler; Pullen, Anthony E.; Swager, Timothy M. (2000). "Conjugated Polymer-Based Chemical Sensors".
1020:
Nielsen, Christian B.; McCulloch, Iain (2013). "Recent advances in transistor performance of polythiophenes".
283: 3440: 509: 1477: 609: 592: 966:
Tourillon, G.; Garnier, F. (April 1982). "New electrochemically generated organic conducting polymers".
278:, and can be cast into films with conductivities reaching 1 S/cm. Other, less common p-dopants include 1668:
Roux, Claudine; Leclerc, Mario (1992). "Rod-to-coil transition in alkoxy-substituted polythiophenes".
367:
7 to 415 nm at pH 4. This is attributed to formation of a compact coil structure, which can form
3425: 3329:
Roncali, Jean (1992). "Conjugated poly(thiophenes): synthesis, functionalization, and applications".
2043:
Xu, Bai; Holdcroft, Steven (1993). "Molecular control of luminescence from poly(3-hexylthiophenes)".
309: 2508: 3050:
Rosseinsky, D. R.; Mortimer, R. J. (2001). "Electrochromic Systems and the Prospects for Devices".
823: 696: 601: 491:
groups act as counterions, producing self-doped conducting polymers. Substituted PTs with tethered
131: 2078:
Patil, A. O.; Ikenoue, Y.; Wudl, Fred; Heeger, A. J. (1987). "Water soluble conducting polymers".
239:
produce highly conductive materials, which are unstable owing to slow evaporation of the halogen.
3350:
Roncali, Jean (1997). "Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems".
905:
Strictly speaking, "polythiophene" is a misnomer, since the polymer consists of thienylene (2,5-C
855: 737: 513: 356: 305: 51: 654: 301: 940: 754: 744: 616:
resulting from branching at the α-carbon of a 3-substituted thiophene inhibits polymerization.
528: 462:
These three diads can be combined into four distinct triads. The triads are distinguishable by
203:
In principle, PT can be n-doped using reducing agents, but this approach is rarely practiced.
2393: 843: 422: 76: 252: 3185: 3059: 2817: 2670: 2633: 2594: 2443: 2314: 2258: 2138: 2052: 1990: 1925: 1890: 1843: 1772: 1677: 1349: 1117: 690: 685: 535:. Regiochemistry is not an issue in since this monomer is symmetrical. PEDOT is found in 244: 107: 1334:"MALDI-MS Evaluation of Poly(3-hexylthiophene) Synthesized by Chemical Oxidation with FeCl 8: 3420: 3267:(Eds: T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds), Marcel Dekker, New York, 1998. 827: 418: 40: 3213:"Polythiophenes Inhibit Prion Propagation by Stabilizing Prion Protein (PrP) Aggregates" 3189: 3063: 2821: 2674: 2637: 2598: 2447: 2318: 2262: 2142: 2056: 1994: 1929: 1894: 1847: 1776: 1681: 1353: 1121: 3239: 3212: 3158: 3075: 2496: 2374: 2330: 2282: 2163: 1859: 1226: 1133: 1090: 1047: 1033: 339: 279: 256: 120: 99: 24: 2911: 2856: 2197: 1654: 1375:
Heffner, G.; Pearson, D. (1991). "Solution processing of a doped conducting polymer".
1318: 3430: 3392: 3367: 3308:
Street, G. B.; Clarke, T. C. (1981). "Conducting Polymers: A Review of Recent Work".
3290: 3282: 3268: 3244: 3150: 3117: 3097: 3079: 3032: 3000: 2965: 2938: 2884: 2793: 2753: 2482: 2413: 2366: 2274: 2231: 1956: 1623: 1560: 1552: 1460: 1442: 1415: 1388: 1260: 1191: 1164: 1137: 1082: 1051: 1006: 979: 791: 676: 436: 360: 267: 3162: 2433: 2392:
Price, Samuel C.; Stuart, Andrew C.; Yang, Liqiang; Zhou, Huaxing; You, Wei (2011).
2378: 2334: 2286: 1230: 874:
functionalities exhibit properties that vary with the alkali metal. and main-chain.
91:. The rings are linked through the 2- and 5-positions. Poly(alkylthiophene)s have 3384: 3359: 3338: 3317: 3234: 3224: 3193: 3142: 3067: 3024: 2996: 2961: 2934: 2907: 2880: 2852: 2825: 2789: 2734: 2706: 2678: 2641: 2602: 2567: 2531: 2474: 2451: 2405: 2358: 2322: 2266: 2223: 2214:
Kane-Maguire, Leon A. P.; Wallace, Gordon G. (2010). "Chiral conducting polymers".
2193: 2146: 2111: 2087: 2060: 2025: 1998: 1933: 1898: 1863: 1851: 1807: 1780: 1745: 1715: 1685: 1650: 1615: 1587: 1544: 1516: 1489: 1438: 1411: 1384: 1357: 1314: 1283: 1256: 1218: 1187: 1160: 1125: 1094: 1074: 1037: 1029: 1002: 975: 948: 839: 816: 448:
at the dyad level, 3-substituted thiophenes can couple to give any of three dyads:
376: 143: 1107: 647:
Regioregular PTs have been prepared by lithiation 2-bromo-3-alkylthiophenes using
396:(ionochromism). Soluble PATs exhibit both thermochromism and solvatochromism (see 36: 2983:
Olinga, T.; François, B. (1995). "Kinetics of polymerization of thiophene by FeCl
2270: 808: 648: 633: 536: 492: 139: 1784: 1520: 700:
Proposed mechanisms for ferric chloride oxidative polymerizations of thiophenes.
519:
Fluorinated polythiophene yield 7% efficiency in polymer-fullerene solar cells.
124: 2646: 2621: 2606: 1129: 867: 812: 613: 445: 248: 135: 3146: 2571: 1478:"Substituted .. – undecithiophenes, the longest characterized oligothiophenes" 1287: 516:(AFM) images showed a significant increase in long-range order after heating. 3409: 3197: 2806: 1834:
McCullough, Richard D. (1998). "The Chemistry of Conducting Polythiophenes".
1556: 721: 556:
In an electrochemical polymerization, a solution containing thiophene and an
440:
The four possible triads resulting from coupling of 3-substituted thiophenes.
403: 380: 368: 319: 55: 3388: 3229: 866:, PTs can also be functionalized with receptors for detecting metal ions or 623:, which then couple with another monomer to produce a radical cation dimer. 16: 3371: 3248: 3154: 3036: 2549: 2456:
10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
2417: 2370: 2326: 2278: 2235: 1627: 1564: 1086: 1042: 787: 540: 476: 328: 275: 240: 206: 29: 2213: 1332:
McCarley, Tracy Donovan; Noble; Dubois, C. J.; McCarley, Robin L. (2001).
770: 671:
in 1986. The stoichiometry is analogous to that of electropolymerization.
3092:
Garnier, F. "Field-Effect Transistors Based on Conjugated Materials". In
2115: 1856:
10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F
1548: 871: 835: 729: 620: 557: 313: 210:
Removal of two electrons (p-doping) from a PT chain produces a bipolaron.
116: 3342: 3321: 2738: 2710: 2682: 2535: 2091: 2064: 2029: 2002: 1937: 1902: 1811: 1749: 1689: 1493: 1222: 2478: 968:
Journal of Electroanalytical Chemistry and Interfacial Electrochemistry
831: 795: 332: 3363: 3211:
Margalith, Ilan; Suter, Carlo; Ballmer, Boris; Schwarz, Petra (2012).
3072:
10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D
3028: 2829: 2409: 2362: 2150: 1619: 1591: 1361: 1078: 952: 877: 274:
can be doped by solutions of ferric chloride hexahydrate dissolved in
2774: 2227: 1720:
10.1002/1616-3028(20020201)12:2<89::AID-ADFM89>3.0.CO;2-1
779: 619:
In terms of mechanism, oxidation of the thiophene monomer produces a
496: 488: 260: 215: 69: 2553: 1459:; Müllen, K.; Wegner, G., Eds.; Wiley-VCH: Weinheim, Germany, 1998, 1207: 1019: 780:
poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS)
1955:(Eds: Kuzmany, H.; Mehring, M.; Roth, S.), Springer, Berlin, 1987, 1705: 304:; however, the development of refined models to accurately predict 3013: 1476:
Ten Hoeve, W.; Wynberg, H.; Havinga, E. E.; Meijer, E. W. (1991).
1274:
Bartuš, Ján (1991). "Electrically Conducting Thiophene Polymers".
596:
Proposed initial steps in the electropolymerization of thiophenes.
783: 713: 709: 323:
Conjugated π-orbitals of a coplanar and a twisted substituted PT.
271: 236: 112: 79:. The parent PT is an insoluble colored solid with the formula (C 66: 1428: 913:
S) repeat units. Similarly, thiophene is not a monomer as such.
684:
reported higher yields of soluble poly(dialkylterthiophene)s in
612:, whereas unsubstituted thiophene requires an additional 0.2 V. 407:
Ionoselective PTs reported by Bäuerle (left) and Swager (right).
3383:. Advances in Polymer Science. Vol. 145. pp. 57–122. 1976: 992: 863: 851: 725: 717: 502: 393: 316:, which, in turn, requires the thiophene rings to be coplanar. 232: 220: 73: 2951: 2473:. Advances in Polymer Science. Vol. 129. pp. 1–166. 371:
with PVA upon partial deprotonation of the acetic acid group.
127:
that can provide a range of optical and electronic responses.
1475: 847: 561: 532: 92: 32:
of a substituted polythiophene solution under UV irradiation.
3210: 543:, electroluminescent displays, printed wiring, and sensors. 146:"for the discovery and development of conductive polymers". 47: 2897: 1879: 1731: 1729: 1331: 471: 375:
red–violet at 25 °C to pale yellow at 150 °C. An
3116:(Eds: Müllen, K.; Wegner, G.), Wiley-VCH, Weinheim, 1998, 3112:
Harrison, M. G.; Friend, R. H. "Optical Applications". In
3096:(Eds: Müllen, K.; Wegner, G.), Wiley-VCH, Weinheim, 1998, 2521: 1246: 3132: 2584: 1798:
Frommer, Jane E. (1986). "Conducting polymer solutions".
1762: 2924: 2752:
Sugimoto, R.; Taketa, S.; Gu, H. B.; Yoshino, K (1986).
2462: 2429: 2427: 1726: 1533: 1150: 932: 862:
PTs have been touted as sensor elements. In addition to
2751: 1875: 1873: 1604: 1301:
Qiao, X.; Wang, Xianhong; Mo, Zhishen (2001). "The FeCl
1203: 1201: 364: 149: 20:
The monomer repeat unit of unsubstituted polythiophene.
2869: 2077: 1972: 1970: 1968: 1577: 54:
image of poly(3-decylthiophene-2,5-diyl) on hexagonal
2556:[On the companion of benzene in stone coal]. 2554:"Ueber den Begleiter des Benzols im Steinkohlentheer" 2424: 2347: 1506: 662: 397: 43:
of poly(3-butylthiophene) from the crystal structure.
2660: 2299: 2248: 1870: 1242: 1240: 1198: 2978: 2976: 2620:Lin, John W-P.; Dudek, Lesley P. (September 1980). 2587:
Journal of Polymer Science: Polymer Letters Edition
2391: 2157: 1965: 1915: 1064: 289: 3049: 2745: 2622:"Synthesis and properties of poly(2,5-thienylene)" 2104: 1701: 1699: 1177: 885:Polythiophenes show potential in the treatment of 231:A variety of reagents have been used to dope PTs. 3378: 2182: 1237: 508:Poly(3-(perfluorooctyl)thiophene)s is soluble in 400:) in chloroform and 2,5-dimethyltetrahydrofuran. 3407: 3279:Polythiophenes: Electrically Conductive Polymers 2973: 2695: 2128: 1305:-doped poly(3-alkyithiophenes) in solid state". 965: 2842: 2471:Polythiophenes—Electrically Conducting Polymers 1696: 1640: 1598: 3381:Molecular Engineering of p-Conjugated Polymers 2982: 2559:Berichte der deutschen chemischen Gesellschaft 1735: 1401: 1374: 3175: 2468: 411: 3307: 1953:Electronic Properties of Conjugated Polymers 551: 3114:Electronic Materials: The Oligomer Approach 3094:Electronic Materials: The Oligomer Approach 2042: 2015: 1667: 1457:Electronic Materials: The Oligomer Approach 265:matrix-assisted laser desorption/ionization 3379:Reddinger, J. L.; Reynolds, J. R. (1999). 1833: 1300: 1110:Renewable & Sustainable Energy Reviews 881:Chiral PT synthesized by Yashima and Goto. 3238: 3228: 2723: 2645: 1276:Journal of Macromolecular Science, Part A 1041: 2727:Journal of the American Chemical Society 2619: 2398:Journal of the American Chemical Society 2351:Journal of the American Chemical Society 2209: 2207: 2080:Journal of the American Chemical Society 2018:Journal of the American Chemical Society 1829: 1827: 1825: 1823: 1821: 1738:Journal of the American Chemical Society 1608:Journal of the American Chemical Society 1537:Journal of the American Chemical Society 1482:Journal of the American Chemical Society 1455:Bässler, H. "Electronic Excitation". In 1211:Journal of the American Chemical Society 876: 801: 769: 695: 632:syntheses from 2,5-dibromothiophene use 591: 435: 402: 318: 205: 46: 35: 23: 15: 3349: 3328: 1797: 815:windows promise significant savings in 794:per year with PEDOT:PSS because of its 778:As an example of a static application, 626: 531:(EDOT) is the precursor to the polymer 527:The 3,4-disubstituted thiophene called 482: 214:Upon "p-doping", charged unit called a 3408: 3135:Analytical and Bioanalytical Chemistry 1273: 822:Another potential application include 2548: 2204: 1818: 560:produces a conductive PT film on the 294: 428: 150:Mechanism of conductivity and doping 3217:The Journal of Biological Chemistry 495:also exhibit water solubility. and 13: 3258: 2987:in choloroform and acetonitrile". 1034:10.1016/j.progpolymsci.2013.05.003 663:Routes employing chemical oxidants 653: 638: 387: 14: 3452: 2524:The Journal of Physical Chemistry 458:5,5', or tail–tail (TT), coupling 455:2,2', or head–head (HH), coupling 452:2,5', or head–tail (HT), coupling 363:(PVA) shifts from 480 nm at 259:can result in doping by residual 3017:The Journal of Organic Chemistry 2699:The Journal of Organic Chemistry 2469:Schopf, G.; Koßmehl, G. (1997). 1580:The Journal of Organic Chemistry 743: 290:Structure and optical properties 3265:Handbook of Conducting Polymers 3204: 3169: 3126: 3106: 3086: 3043: 3007: 2945: 2918: 2891: 2863: 2836: 2800: 2768: 2717: 2689: 2654: 2613: 2578: 2542: 2515: 2385: 2341: 2293: 2242: 2176: 2122: 2098: 2071: 2036: 2009: 1944: 1909: 1791: 1756: 1661: 1634: 1571: 1527: 1500: 1469: 1449: 1422: 1395: 1368: 1325: 1294: 1267: 765: 738:Quantum mechanical calculations 2305:-soluble Conjugated Polymer". 1171: 1144: 1101: 1058: 1013: 986: 959: 926: 899: 1: 2912:10.1016/S0379-6779(01)00665-8 2857:10.1016/S0379-6779(00)00233-2 2198:10.1016/S0379-6779(98)00161-1 1800:Accounts of Chemical Research 1708:Advanced Functional Materials 1655:10.1016/S0379-6779(00)00453-7 1319:10.1016/S0379-6779(00)00587-7 920: 355:The absorption band of poly ( 284:trifluoromethanesulfonic acid 3001:10.1016/0379-6779(94)02457-A 2966:10.1016/0032-3861(92)90138-M 2939:10.1016/0379-6779(93)90225-L 2885:10.1016/0032-3861(96)83153-3 2794:10.1016/0379-6779(95)03401-5 2626:Journal of Polymer Science A 2271:10.1126/science.257.5072.945 1765:Journal of Polymer Science B 1443:10.1016/0013-4686(94)80063-4 1416:10.1016/0379-6779(93)91226-R 1389:10.1016/0379-6779(91)91821-Q 1261:10.1016/0379-6779(91)91111-M 1192:10.1016/0013-4686(90)87029-2 1165:10.1016/0379-6779(84)90044-4 1007:10.1016/0379-6779(87)90881-2 980:10.1016/0022-0728(82)90015-8 643:Kumada coupling route to PT. 546: 510:supercritical carbon dioxide 7: 1785:10.1002/polb.1987.090250508 1521:10.1002/actp.1997.010480905 1022:Progress in Polymer Science 782:product ("Clevios P") from 226: 108:delocalization of electrons 10: 3457: 3281:, Springer, Berlin, 1997, 2647:10.1002/pol.1980.170180910 2607:10.1002/pol.1980.130180103 1130:10.1016/j.rser.2015.12.177 870:as well. PTs with pendant 828:electroluminescent devices 412:Substituted polythiophenes 359:) in aqueous solutions of 3304:(journal). ISSN 0379-6779 3147:10.1007/s00216-006-1102-1 2572:10.1002/cber.188301601324 1288:10.1080/00222339108054069 811:. Widespread adoption of 809:electrochromic properties 552:Electrochemical synthesis 3198:10.1002/adma.19930051113 2216:Chemical Society Reviews 892: 824:field-effect transistors 712:, carbon tetrachloride, 602:degree of polymerization 522: 132:Nobel Prize in Chemistry 3389:10.1007/3-540-70733-6_2 3277:G. Schopf, G. Koßmehl, 3230:10.1074/jbc.M112.355958 2108:Chemical Communications 840:nonlinear optic devices 537:electrochromic displays 514:Atomic force microscopy 357:3-thiophene acetic acid 104:electrical conductivity 3436:Organic semiconductors 2327:10.1002/adma.200305333 882: 864:biosensor applications 790:coats 200 m × 10 m of 775: 757:mechanism. Barbarella 755:radical polymerization 701: 659: 644: 636:and related reactions 597: 529:ethylenedioxythiophene 441: 408: 324: 211: 59: 44: 33: 21: 3416:Molecular electronics 2552:(January–June 1883). 880: 836:photochemical resists 802:Proposed applications 773: 699: 691:Factorial experiments 657: 649:Kumada cross-coupling 642: 595: 439: 423:arsenic pentafluoride 406: 322: 209: 50: 39: 27: 19: 2116:10.1039/cc9960001651 1549:10.1021/jacs.7b05299 686:carbon tetrachloride 658:Rieke method for PT. 627:From bromothiophenes 483:Special substituents 302:Schrödinger equation 245:trifluoroacetic acid 102:when oxidized. The 3441:Conductive polymers 3343:10.1021/cr00012a009 3322:10.1147/rd.251.0051 3190:1993AdM.....5..848B 3064:2001AdM....13..783R 2822:2003MaMol..36.8617F 2739:10.1021/ja00051a066 2711:10.1021/jo00004a021 2683:10.1021/ma00065a036 2675:1993MaMol..26.3462C 2638:1980JPoSA..18.2869L 2599:1980JPoSL..18....9Y 2536:10.1021/j100311a030 2448:2000AdM....12..481G 2319:2004AdM....16..180L 2263:1992Sci...257..945D 2143:1999MaMol..32.3964K 2092:10.1021/ja00240a044 2065:10.1021/ma00069a009 2057:1993MaMol..26.4457X 2030:10.1021/ja00106a027 2003:10.1021/ma00100a039 1995:1994MaMol..27.6503A 1930:1996MaMol..29.5416D 1903:10.1021/ma00089a022 1895:1994MaMol..27.3039B 1848:1998AdM....10...93M 1812:10.1021/ar00121a001 1777:1987JPoSB..25.1071R 1750:10.1021/ja00078a090 1690:10.1021/ma00034a012 1682:1992MaMol..25.2141R 1543:(39): 13735–13739. 1494:10.1021/ja00015a067 1431:Electrochimica Acta 1354:2001MaMol..34.7999M 1223:10.1021/ja00064a070 1180:Electrochimica Acta 1122:2016RSERv..57..550M 938:-butylthiophene)". 419:arsenic trifluoride 361:poly(vinyl alcohol) 41:Space-filling model 3178:Advanced Materials 3052:Advanced Materials 2479:10.1007/BFb0008700 2307:Advanced Materials 1836:Advanced Materials 883: 776: 702: 677:Soxhlet extraction 660: 645: 598: 442: 409: 325: 295:Conjugation length 212: 60: 58:(top-right inset). 45: 34: 22: 3398:978-3-540-65210-6 3364:10.1021/cr950257t 3029:10.1021/jo960982j 3023:(23): 8285–8292. 2830:10.1021/ma0348730 2758:Chemistry Express 2488:978-3-540-61857-7 2410:10.1021/ja1112595 2404:(12): 4625–4631. 2363:10.1021/ja039529x 2151:10.1021/ma981848z 1938:10.1021/ma960126+ 1620:10.1021/ja034333i 1592:10.1021/jo981541y 1362:10.1021/ma002140z 1079:10.1021/cr9801014 1028:(12): 2053–2069. 953:10.1021/cm802168e 792:photographic film 429:3-Alkylthiophenes 268:mass spectrometry 121:applied potential 106:results from the 3448: 3426:Organic polymers 3402: 3375: 3352:Chemical Reviews 3346: 3331:Chemical Reviews 3325: 3301:Synthetic Metals 3253: 3252: 3242: 3232: 3223:(23): 18872–87. 3208: 3202: 3201: 3173: 3167: 3166: 3141:(6): 2101–2110. 3130: 3124: 3110: 3104: 3090: 3084: 3083: 3047: 3041: 3040: 3011: 3005: 3004: 2995:(1–3): 297–298. 2989:Synthetic Metals 2980: 2971: 2969: 2960:(7): 1559–1562. 2949: 2943: 2942: 2927:Synthetic Metals 2922: 2916: 2915: 2900:Synthetic Metals 2895: 2889: 2888: 2867: 2861: 2860: 2845:Synthetic Metals 2840: 2834: 2833: 2804: 2798: 2797: 2782:Synthetic Metals 2772: 2766: 2765: 2749: 2743: 2742: 2721: 2715: 2714: 2693: 2687: 2686: 2658: 2652: 2651: 2649: 2632:(9): 2869–2873. 2617: 2611: 2610: 2582: 2576: 2575: 2566:(1): 1465–1478. 2546: 2540: 2539: 2519: 2513: 2512: 2506: 2502: 2500: 2492: 2466: 2460: 2459: 2431: 2422: 2421: 2389: 2383: 2382: 2345: 2339: 2338: 2297: 2291: 2290: 2246: 2240: 2239: 2228:10.1039/b908001p 2222:(7): 2545–2576. 2211: 2202: 2201: 2186:Synthetic Metals 2180: 2174: 2173: 2161: 2155: 2154: 2126: 2120: 2119: 2102: 2096: 2095: 2075: 2069: 2068: 2040: 2034: 2033: 2013: 2007: 2006: 1974: 1963: 1948: 1942: 1941: 1913: 1907: 1906: 1877: 1868: 1867: 1831: 1816: 1815: 1795: 1789: 1788: 1771:(5): 1071–1078. 1760: 1754: 1753: 1733: 1724: 1723: 1703: 1694: 1693: 1665: 1659: 1658: 1649:(1–3): 167–170. 1643:Synthetic Metals 1638: 1632: 1631: 1602: 1596: 1595: 1575: 1569: 1568: 1531: 1525: 1524: 1504: 1498: 1497: 1473: 1467: 1453: 1447: 1446: 1426: 1420: 1419: 1404:Synthetic Metals 1399: 1393: 1392: 1377:Synthetic Metals 1372: 1366: 1365: 1329: 1323: 1322: 1307:Synthetic Metals 1298: 1292: 1291: 1271: 1265: 1264: 1255:(1–2): 479–484. 1249:Synthetic Metals 1244: 1235: 1234: 1205: 1196: 1195: 1175: 1169: 1168: 1153:Synthetic Metals 1148: 1142: 1141: 1105: 1099: 1098: 1067:Chemical Reviews 1062: 1056: 1055: 1045: 1017: 1011: 1010: 1001:(1–3): 213–218. 995:Synthetic Metals 990: 984: 983: 963: 957: 956: 930: 914: 903: 868:chiral molecules 817:air conditioning 747: 614:Steric hindrance 588:+ 2n H + 2n e 501:Thiophenes with 493:carboxylic acids 464:NMR spectroscopy 377:isosbestic point 280:gold trichloride 144:Hideki Shirakawa 3456: 3455: 3451: 3450: 3449: 3447: 3446: 3445: 3406: 3405: 3399: 3310:IBM J. Res. Dev 3261: 3259:Further reading 3256: 3209: 3205: 3174: 3170: 3131: 3127: 3111: 3107: 3091: 3087: 3048: 3044: 3012: 3008: 2986: 2981: 2974: 2950: 2946: 2923: 2919: 2896: 2892: 2868: 2864: 2841: 2837: 2805: 2801: 2779: 2773: 2769: 2750: 2746: 2722: 2718: 2694: 2690: 2659: 2655: 2618: 2614: 2583: 2579: 2547: 2543: 2520: 2516: 2504: 2503: 2494: 2493: 2489: 2467: 2463: 2432: 2425: 2390: 2386: 2346: 2342: 2304: 2298: 2294: 2257:(5072): 945–7. 2247: 2243: 2212: 2205: 2181: 2177: 2162: 2158: 2127: 2123: 2103: 2099: 2076: 2072: 2041: 2037: 2014: 2010: 1980: 1975: 1966: 1949: 1945: 1914: 1910: 1878: 1871: 1832: 1819: 1796: 1792: 1761: 1757: 1734: 1727: 1704: 1697: 1666: 1662: 1639: 1635: 1603: 1599: 1576: 1572: 1532: 1528: 1509:Acta Polymerica 1505: 1501: 1474: 1470: 1454: 1450: 1427: 1423: 1400: 1396: 1373: 1369: 1337: 1330: 1326: 1304: 1299: 1295: 1272: 1268: 1245: 1238: 1206: 1199: 1176: 1172: 1149: 1145: 1106: 1102: 1063: 1059: 1018: 1014: 991: 987: 964: 960: 931: 927: 923: 918: 917: 912: 908: 904: 900: 895: 850:, and chemical 804: 768: 736:is soluble in. 735: 665: 634:Kumada coupling 629: 587: 583: 579: 575: 571: 554: 549: 525: 485: 431: 414: 390: 388:Optical effects 297: 292: 257:ferric chloride 229: 198: 194: 190: 186: 182: 178: 174: 170: 166: 158: 152: 140:Alan MacDiarmid 90: 86: 82: 12: 11: 5: 3454: 3444: 3443: 3438: 3433: 3428: 3423: 3418: 3404: 3403: 3397: 3376: 3358:(1): 173–206. 3347: 3337:(4): 711–738. 3326: 3305: 3297: 3275: 3260: 3257: 3255: 3254: 3203: 3168: 3125: 3105: 3085: 3042: 3006: 2984: 2972: 2944: 2917: 2890: 2879:(4): 661–665. 2862: 2835: 2810:Macromolecules 2799: 2777: 2767: 2764:(11): 635–638. 2744: 2716: 2688: 2663:Macromolecules 2653: 2612: 2577: 2541: 2514: 2505:|journal= 2487: 2461: 2442:(7): 481–494. 2423: 2384: 2340: 2302: 2292: 2241: 2203: 2175: 2156: 2131:Macromolecules 2121: 2097: 2070: 2045:Macromolecules 2035: 2024:(1): 233–244. 2008: 1983:Macromolecules 1978: 1964: 1943: 1918:Macromolecules 1908: 1883:Macromolecules 1869: 1817: 1790: 1755: 1725: 1695: 1670:Macromolecules 1660: 1633: 1614:(18): 5286–7. 1597: 1570: 1526: 1515:(9): 379–384. 1499: 1468: 1448: 1421: 1394: 1367: 1342:Macromolecules 1335: 1324: 1302: 1293: 1282:(9): 917–924. 1266: 1236: 1197: 1170: 1143: 1100: 1073:(7): 2537–74. 1057: 1012: 985: 974:(1): 173–178. 958: 924: 922: 919: 916: 915: 910: 906: 897: 896: 894: 891: 887:prion diseases 813:electrochromic 803: 800: 767: 764: 733: 728:, acetone, or 664: 661: 628: 625: 621:radical cation 590: 589: 585: 581: 577: 573: 569: 553: 550: 548: 545: 524: 521: 484: 481: 460: 459: 456: 453: 446:microstructure 430: 427: 413: 410: 389: 386: 369:hydrogen bonds 314:aromatic rings 296: 293: 291: 288: 253:sulfonic acids 249:propionic acid 228: 225: 201: 200: 196: 192: 188: 184: 180: 176: 172: 168: 164: 156: 151: 148: 136:Alan J. Heeger 88: 84: 80: 63:Polythiophenes 9: 6: 4: 3: 2: 3453: 3442: 3439: 3437: 3434: 3432: 3429: 3427: 3424: 3422: 3419: 3417: 3414: 3413: 3411: 3400: 3394: 3390: 3386: 3382: 3377: 3373: 3369: 3365: 3361: 3357: 3353: 3348: 3344: 3340: 3336: 3332: 3327: 3323: 3319: 3315: 3311: 3306: 3303: 3302: 3298: 3296: 3295:0-387-61483-4 3292: 3288: 3287:3-540-61483-4 3284: 3280: 3276: 3274: 3273:0-8247-0050-3 3270: 3266: 3263: 3262: 3250: 3246: 3241: 3236: 3231: 3226: 3222: 3218: 3214: 3207: 3199: 3195: 3191: 3187: 3183: 3179: 3172: 3164: 3160: 3156: 3152: 3148: 3144: 3140: 3136: 3129: 3123: 3122:3-527-29438-4 3119: 3115: 3109: 3103: 3102:3-527-29438-4 3099: 3095: 3089: 3081: 3077: 3073: 3069: 3065: 3061: 3057: 3053: 3046: 3038: 3034: 3030: 3026: 3022: 3018: 3010: 3002: 2998: 2994: 2990: 2979: 2977: 2967: 2963: 2959: 2955: 2948: 2940: 2936: 2933:(2–3): 1204. 2932: 2928: 2921: 2913: 2909: 2905: 2901: 2894: 2886: 2882: 2878: 2874: 2866: 2858: 2854: 2850: 2846: 2839: 2831: 2827: 2823: 2819: 2815: 2811: 2803: 2795: 2791: 2787: 2783: 2771: 2763: 2759: 2755: 2748: 2740: 2736: 2733:(25): 10087. 2732: 2728: 2720: 2712: 2708: 2704: 2700: 2692: 2684: 2680: 2676: 2672: 2668: 2664: 2657: 2648: 2643: 2639: 2635: 2631: 2627: 2623: 2616: 2608: 2604: 2600: 2596: 2592: 2588: 2581: 2573: 2569: 2565: 2562:(in German). 2561: 2560: 2555: 2551: 2550:Meyer, Victor 2545: 2537: 2533: 2529: 2525: 2518: 2510: 2498: 2490: 2484: 2480: 2476: 2472: 2465: 2457: 2453: 2449: 2445: 2441: 2437: 2430: 2428: 2419: 2415: 2411: 2407: 2403: 2399: 2395: 2388: 2380: 2376: 2372: 2368: 2364: 2360: 2357:(6): 1596–7. 2356: 2352: 2344: 2336: 2332: 2328: 2324: 2320: 2316: 2312: 2308: 2296: 2288: 2284: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2245: 2237: 2233: 2229: 2225: 2221: 2217: 2210: 2208: 2199: 2195: 2191: 2187: 2179: 2171: 2167: 2166:Polym. Commun 2160: 2152: 2148: 2144: 2140: 2136: 2132: 2125: 2117: 2113: 2109: 2101: 2093: 2089: 2085: 2081: 2074: 2066: 2062: 2058: 2054: 2050: 2046: 2039: 2031: 2027: 2023: 2019: 2012: 2004: 2000: 1996: 1992: 1988: 1984: 1973: 1971: 1969: 1962: 1961:0-387-18582-8 1958: 1954: 1947: 1939: 1935: 1931: 1927: 1923: 1919: 1912: 1904: 1900: 1896: 1892: 1888: 1884: 1876: 1874: 1865: 1861: 1857: 1853: 1849: 1845: 1842:(2): 93–116. 1841: 1837: 1830: 1828: 1826: 1824: 1822: 1813: 1809: 1805: 1801: 1794: 1786: 1782: 1778: 1774: 1770: 1766: 1759: 1751: 1747: 1744:(25): 12214. 1743: 1739: 1732: 1730: 1721: 1717: 1713: 1709: 1702: 1700: 1691: 1687: 1683: 1679: 1675: 1671: 1664: 1656: 1652: 1648: 1644: 1637: 1629: 1625: 1621: 1617: 1613: 1609: 1601: 1593: 1589: 1585: 1581: 1574: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1530: 1522: 1518: 1514: 1510: 1503: 1495: 1491: 1487: 1483: 1479: 1472: 1466: 1465:3-527-29438-4 1462: 1458: 1452: 1444: 1440: 1436: 1432: 1425: 1417: 1413: 1409: 1405: 1398: 1390: 1386: 1382: 1378: 1371: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1328: 1320: 1316: 1312: 1308: 1297: 1289: 1285: 1281: 1277: 1270: 1262: 1258: 1254: 1250: 1243: 1241: 1232: 1228: 1224: 1220: 1216: 1212: 1204: 1202: 1193: 1189: 1185: 1181: 1174: 1166: 1162: 1158: 1154: 1147: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1104: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1061: 1053: 1049: 1044: 1043:10044/1/14442 1039: 1035: 1031: 1027: 1023: 1016: 1008: 1004: 1000: 996: 989: 981: 977: 973: 969: 962: 954: 950: 946: 943: 942: 937: 929: 925: 902: 898: 890: 888: 879: 875: 873: 869: 865: 860: 857: 853: 849: 845: 841: 837: 833: 829: 825: 820: 818: 814: 810: 799: 797: 793: 789: 785: 781: 772: 763: 760: 756: 751: 748: 746: 741: 739: 731: 727: 723: 722:diethyl ether 719: 715: 711: 707: 698: 694: 692: 687: 683: 678: 672: 670: 656: 652: 650: 641: 637: 635: 624: 622: 617: 615: 611: 605: 603: 594: 567: 566: 565: 563: 559: 544: 542: 541:photovoltaics 538: 534: 530: 520: 517: 515: 511: 506: 504: 499: 498: 494: 490: 480: 478: 473: 467: 465: 457: 454: 451: 450: 449: 447: 438: 434: 426: 424: 420: 405: 401: 399: 395: 385: 382: 381:thermochromic 378: 372: 370: 366: 362: 358: 353: 350: 345: 341: 336: 334: 330: 329:energy levels 321: 317: 315: 311: 307: 303: 287: 285: 281: 277: 273: 269: 266: 262: 258: 254: 250: 246: 242: 241:Organic acids 238: 234: 224: 222: 217: 208: 204: 162: 161: 160: 147: 145: 141: 137: 133: 128: 126: 122: 118: 114: 109: 105: 101: 96: 94: 78: 75: 71: 68: 64: 57: 56:boron nitride 53: 49: 42: 38: 31: 26: 18: 3380: 3355: 3351: 3334: 3330: 3316:(1): 51–57. 3313: 3309: 3300: 3278: 3264: 3220: 3216: 3206: 3181: 3177: 3171: 3138: 3134: 3128: 3113: 3108: 3093: 3088: 3055: 3051: 3045: 3020: 3016: 3009: 2992: 2988: 2957: 2953: 2947: 2930: 2926: 2920: 2906:(1): 91–95. 2903: 2899: 2893: 2876: 2872: 2865: 2848: 2844: 2838: 2816:(23): 8617. 2813: 2809: 2802: 2785: 2781: 2770: 2761: 2757: 2747: 2730: 2726: 2719: 2702: 2698: 2691: 2669:(13): 3462. 2666: 2662: 2656: 2629: 2625: 2615: 2590: 2586: 2580: 2563: 2557: 2544: 2530:(27): 6706. 2527: 2523: 2517: 2470: 2464: 2439: 2435: 2401: 2397: 2387: 2354: 2350: 2343: 2310: 2306: 2295: 2254: 2250: 2244: 2219: 2215: 2189: 2185: 2178: 2169: 2165: 2159: 2137:(12): 3964. 2134: 2130: 2124: 2110:(14): 1651. 2107: 2100: 2083: 2079: 2073: 2051:(17): 4457. 2048: 2044: 2038: 2021: 2017: 2011: 1989:(22): 6503. 1986: 1982: 1952: 1946: 1924:(16): 5416. 1921: 1917: 1911: 1889:(11): 3039. 1886: 1882: 1839: 1835: 1803: 1799: 1793: 1768: 1764: 1758: 1741: 1737: 1711: 1707: 1673: 1669: 1663: 1646: 1642: 1636: 1611: 1607: 1600: 1586:(24): 8632. 1583: 1579: 1573: 1540: 1536: 1529: 1512: 1508: 1502: 1488:(15): 5887. 1485: 1481: 1471: 1456: 1451: 1434: 1430: 1424: 1407: 1403: 1397: 1380: 1376: 1370: 1348:(23): 7999. 1345: 1341: 1327: 1310: 1306: 1296: 1279: 1275: 1269: 1252: 1248: 1217:(11): 4910. 1214: 1210: 1183: 1179: 1173: 1159:(1): 77–86. 1156: 1152: 1146: 1113: 1109: 1103: 1070: 1066: 1060: 1025: 1021: 1015: 998: 994: 988: 971: 967: 961: 947:(1): 78–87. 944: 941:Chem. Mater. 939: 935: 928: 901: 884: 861: 856:conductivity 821: 805: 777: 766:Applications 758: 752: 749: 742: 705: 703: 681: 673: 668: 666: 646: 630: 618: 606: 599: 555: 526: 518: 507: 500: 486: 477:Stokes shift 468: 461: 443: 432: 415: 391: 373: 354: 348: 343: 337: 326: 310:fluorescence 298: 276:acetonitrile 243:, including 230: 213: 202: 153: 129: 97: 62: 61: 30:fluorescence 3184:(11): 848. 3058:(11): 783. 2705:(4): 1445. 2593:(1): 9–12. 2086:(6): 1858. 1676:(8): 2141. 1116:: 550–561. 872:crown ether 832:solar cells 730:formic acid 558:electrolyte 394:alkali ions 340:red-shifted 333:side chains 263:, although 117:temperature 98:PTs become 77:heterocycle 67:polymerized 3421:Thiophenes 3410:Categories 2851:(3): 261. 2788:(2): 141. 2436:Adv. Mater 2313:(2): 180. 2192:(2): 107. 2172:: 546–548. 1806:(1): 2–9. 1437:(2): 273. 1383:(3): 341. 1313:(2): 449. 1186:(2): 463. 921:References 796:antistatic 774:PEDOT-PSS. 720:, and not 306:absorption 100:conductive 70:thiophenes 65:(PTs) are 3080:137731242 2507:ignored ( 2497:cite book 1714:(2): 89. 1557:0002-7863 1410:(2): 93. 1138:101640805 1052:136757919 844:batteries 576:S → (C 547:Synthesis 497:urethanes 489:sulfonate 216:bipolaron 199:+ 1/5 nA 175:+ 1/5n PF 3431:Plastics 3372:11848868 3249:22493452 3163:12701566 3155:17235499 3037:11667817 2418:21375339 2379:33756974 2371:14871066 2335:97859155 2287:35348519 2279:17789638 2236:20567781 1628:12720435 1565:28872865 1231:15848137 1087:11749295 261:catalyst 227:Oxidants 3240:3365923 3186:Bibcode 3060:Bibcode 2954:Polymer 2873:Polymer 2818:Bibcode 2671:Bibcode 2634:Bibcode 2595:Bibcode 2444:Bibcode 2315:Bibcode 2259:Bibcode 2251:Science 2139:Bibcode 2053:Bibcode 1991:Bibcode 1926:Bibcode 1891:Bibcode 1864:7147581 1844:Bibcode 1773:Bibcode 1678:Bibcode 1350:Bibcode 1118:Bibcode 1095:4936796 934:Poly(3- 852:sensors 819:costs. 784:Heraeus 714:pentane 710:toluene 272:toluene 237:bromine 125:sensors 113:solvent 3395:  3370:  3293:  3285:  3271:  3247:  3237:  3161:  3153:  3120:  3100:  3078:  3035:  2485:  2416:  2377:  2369:  2333:  2285:  2277:  2234:  1959:  1862:  1626:  1563:  1555:  1463:  1229:  1136:  1093:  1085:  1050:  848:diodes 759:et al. 726:xylene 718:hexane 716:, and 706:et al. 682:et al. 669:et al. 503:chiral 349:et al. 344:et al. 251:, and 233:Iodine 221:copper 179:→ (C 142:, and 74:sulfur 3159:S2CID 3076:S2CID 2375:S2CID 2331:S2CID 2283:S2CID 1860:S2CID 1227:S2CID 1134:S2CID 1091:S2CID 1048:S2CID 893:Notes 562:anode 533:PEDOT 523:PEDOT 398:above 93:alkyl 3393:ISBN 3368:PMID 3291:ISBN 3283:ISBN 3269:ISBN 3245:PMID 3151:PMID 3118:ISBN 3098:ISBN 3033:PMID 2776:FeCl 2509:help 2483:ISBN 2414:PMID 2367:PMID 2275:PMID 2232:PMID 1957:ISBN 1624:PMID 1561:PMID 1553:ISSN 1461:ISBN 1083:PMID 788:AGFA 600:The 472:zinc 421:and 308:and 282:and 235:and 197:0.2n 72:, a 3385:doi 3360:doi 3339:doi 3318:doi 3235:PMC 3225:doi 3221:287 3194:doi 3143:doi 3139:387 3068:doi 3025:doi 2997:doi 2962:doi 2935:doi 2908:doi 2904:128 2881:doi 2853:doi 2849:114 2826:doi 2790:doi 2780:". 2735:doi 2731:114 2707:doi 2679:doi 2642:doi 2603:doi 2568:doi 2532:doi 2475:doi 2452:doi 2406:doi 2402:133 2359:doi 2355:126 2323:doi 2267:doi 2255:257 2224:doi 2194:doi 2147:doi 2112:doi 2088:doi 2084:109 2061:doi 2026:doi 2022:117 1999:doi 1981:". 1934:doi 1899:doi 1852:doi 1808:doi 1781:doi 1746:doi 1742:115 1716:doi 1686:doi 1651:doi 1647:118 1616:doi 1612:125 1588:doi 1545:doi 1541:139 1517:doi 1490:doi 1486:113 1439:doi 1412:doi 1385:doi 1358:doi 1315:doi 1311:122 1284:doi 1257:doi 1219:doi 1215:115 1188:doi 1161:doi 1126:doi 1075:doi 1071:100 1038:hdl 1030:doi 1003:doi 976:doi 972:135 949:doi 610:SCE 568:n C 191:(PF 134:to 52:AFM 3412:: 3391:. 3366:. 3356:97 3354:. 3335:92 3333:. 3314:25 3312:. 3289:; 3243:. 3233:. 3219:. 3215:. 3192:. 3180:. 3157:. 3149:. 3137:. 3074:. 3066:. 3056:13 3054:. 3031:. 3021:61 3019:. 2993:69 2991:. 2975:^ 2958:33 2956:. 2931:55 2929:. 2902:. 2877:37 2875:. 2847:. 2824:. 2814:36 2812:. 2786:75 2784:. 2760:. 2756:. 2729:. 2703:56 2701:. 2677:. 2667:26 2665:. 2640:. 2630:18 2628:. 2624:. 2601:. 2591:18 2589:. 2564:16 2528:91 2526:. 2501:: 2499:}} 2495:{{ 2481:. 2450:. 2440:12 2438:. 2426:^ 2412:. 2400:. 2396:. 2373:. 2365:. 2353:. 2329:. 2321:. 2311:16 2309:. 2301:CO 2281:. 2273:. 2265:. 2253:. 2230:. 2220:39 2218:. 2206:^ 2190:98 2188:. 2170:32 2168:. 2145:. 2135:32 2133:. 2082:. 2059:. 2049:26 2047:. 2020:. 1997:. 1987:27 1985:. 1967:^ 1932:. 1922:29 1920:. 1897:. 1887:27 1885:. 1872:^ 1858:. 1850:. 1840:10 1838:. 1820:^ 1804:19 1802:. 1779:. 1769:25 1767:. 1740:. 1728:^ 1712:12 1710:. 1698:^ 1684:. 1674:25 1672:. 1645:. 1622:. 1610:. 1584:63 1582:. 1559:. 1551:. 1539:. 1513:48 1511:. 1484:. 1480:. 1435:39 1433:. 1408:60 1406:. 1381:44 1379:. 1356:. 1346:34 1344:. 1340:. 1309:. 1280:28 1278:. 1253:41 1251:. 1239:^ 1225:. 1213:. 1200:^ 1184:35 1182:. 1155:. 1132:. 1124:. 1114:57 1112:. 1089:. 1081:. 1069:. 1046:. 1036:. 1026:38 1024:. 999:18 997:. 970:. 945:21 889:. 846:, 842:, 838:, 834:, 830:, 826:, 724:, 584:S) 539:, 466:. 365:pH 286:. 247:, 187:S) 171:S) 163:(C 159:: 138:, 119:, 115:, 87:S) 3401:. 3387:: 3374:. 3362:: 3345:. 3341:: 3324:. 3320:: 3251:. 3227:: 3200:. 3196:: 3188:: 3182:5 3165:. 3145:: 3082:. 3070:: 3062:: 3039:. 3027:: 3003:. 2999:: 2985:3 2970:. 2968:. 2964:: 2941:. 2937:: 2914:. 2910:: 2887:. 2883:: 2859:. 2855:: 2832:. 2828:: 2820:: 2796:. 2792:: 2778:3 2762:1 2741:. 2737:: 2713:. 2709:: 2685:. 2681:: 2673:: 2650:. 2644:: 2636:: 2609:. 2605:: 2597:: 2574:. 2570:: 2538:. 2534:: 2511:) 2491:. 2477:: 2458:. 2454:: 2446:: 2420:. 2408:: 2381:. 2361:: 2337:. 2325:: 2317:: 2303:2 2289:. 2269:: 2261:: 2238:. 2226:: 2200:. 2196:: 2153:. 2149:: 2141:: 2118:. 2114:: 2094:. 2090:: 2067:. 2063:: 2055:: 2032:. 2028:: 2005:. 2001:: 1993:: 1979:3 1940:. 1936:: 1928:: 1905:. 1901:: 1893:: 1866:. 1854:: 1846:: 1814:. 1810:: 1787:. 1783:: 1775:: 1752:. 1748:: 1722:. 1718:: 1692:. 1688:: 1680:: 1657:. 1653:: 1630:. 1618:: 1594:. 1590:: 1567:. 1547:: 1523:. 1519:: 1496:. 1492:: 1445:. 1441:: 1418:. 1414:: 1391:. 1387:: 1364:. 1360:: 1352:: 1338:" 1336:3 1321:. 1317:: 1303:3 1290:. 1286:: 1263:. 1259:: 1233:. 1221:: 1194:. 1190:: 1167:. 1163:: 1157:9 1140:. 1128:: 1120:: 1097:. 1077:: 1054:. 1040:: 1032:: 1009:. 1005:: 982:. 978:: 955:. 951:: 936:n 911:2 909:H 907:4 734:3 586:n 582:2 580:H 578:4 574:4 572:H 570:4 195:) 193:6 189:n 185:2 183:H 181:4 177:6 173:n 169:2 167:H 165:4 157:6 89:n 85:2 83:H 81:4

Index



fluorescence

Space-filling model

AFM
boron nitride
polymerized
thiophenes
sulfur
heterocycle
alkyl
conductive
electrical conductivity
delocalization of electrons
solvent
temperature
applied potential
sensors
Nobel Prize in Chemistry
Alan J. Heeger
Alan MacDiarmid
Hideki Shirakawa

bipolaron
copper
Iodine
bromine
Organic acids

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.