Knowledge

Protein folding

Source 📝

1241:
however, it does not reveal the numerous folding pathways that are possible. A different molecule of the same exact protein may be able to follow marginally different folding pathways, seeking different lower energy intermediates, as long as the same native structure is reached. Different pathways may have different frequencies of utilization depending on the thermodynamic favorability of each pathway. This means that if one pathway is found to be more thermodynamically favorable than another, it is likely to be used more frequently in the pursuit of the native structure. As the protein begins to fold and assume its various conformations, it always seeks a more thermodynamically favorable structure than before and thus continues through the energy funnel. Formation of secondary structures is a strong indication of increased stability within the protein, and only one combination of secondary structures assumed by the polypeptide backbone will have the lowest energy and therefore be present in the native state of the protein. Among the first structures to form once the polypeptide begins to fold are alpha helices and beta turns, where alpha helices can form in as little as 100 nanoseconds and beta turns in 1 microsecond.
519:. Chaperones exist in all cellular compartments and interact with the polypeptide chain in order to allow the native three-dimensional conformation of the protein to form; however, chaperones themselves are not included in the final structure of the protein they are assisting in. Chaperones may assist in folding even when the nascent polypeptide is being synthesized by the ribosome. Molecular chaperones operate by binding to stabilize an otherwise unstable structure of a protein in its folding pathway, but chaperones do not contain the necessary information to know the correct native structure of the protein they are aiding; rather, chaperones work by preventing incorrect folding conformations. In this way, chaperones do not actually increase the rate of individual steps involved in the folding pathway toward the native structure; instead, they work by reducing possible unwanted aggregations of the polypeptide chain that might otherwise slow down the search for the proper intermediate and they provide a more efficient pathway for the polypeptide chain to assume the correct conformations. Chaperones are not to be confused with folding 803:
one must have a suitable solvent for crystallization, obtain a pure protein at supersaturated levels in solution, and precipitate the crystals in solution. Once a protein is crystallized, X-ray beams can be concentrated through the crystal lattice which would diffract the beams or shoot them outwards in various directions. These exiting beams are correlated to the specific three-dimensional configuration of the protein enclosed within. The X-rays specifically interact with the electron clouds surrounding the individual atoms within the protein crystal lattice and produce a discernible diffraction pattern. Only by relating the electron density clouds with the amplitude of the X-rays can this pattern be read and lead to assumptions of the phases or phase angles involved that complicate this method. Without the relation established through a mathematical basis known as
840:
different but discrete protein states, i.e. native state, intermediate states, unfolded state, depends on the denaturant value; therefore, the global fluorescence signal of their equilibrium mixture also depends on this value. One thus obtains a profile relating the global protein signal to the denaturant value. The profile of equilibrium unfolding may enable one to detect and identify intermediates of unfolding. General equations have been developed by Hugues Bedouelle to obtain the thermodynamic parameters that characterize the unfolding equilibria for homomeric or heteromeric proteins, up to trimers and potentially tetramers, from such profiles. Fluorescence spectroscopy can be combined with fast-mixing devices such as
983: 1258: 446: 832:
proteins, at the interface between two protein domains, or at the interface between subunits of oligomeric proteins. In this apolar environment, they have high quantum yields and therefore high fluorescence intensities. Upon disruption of the protein's tertiary or quaternary structure, these side chains become more exposed to the hydrophilic environment of the solvent, and their quantum yields decrease, leading to low fluorescence intensities. For Trp residues, the wavelength of their maximal fluorescence emission also depend on their environment.
1249:
transition state. The transition state can be referred to as a variant or premature form of the native state rather than just another intermediary step. The folding of the transition state is shown to be rate-determining, and even though it exists in a higher energy state than the native fold, it greatly resembles the native structure. Within the transition state, there exists a nucleus around which the protein is able to fold, formed by a process referred to as "nucleation condensation" where the structure begins to collapse onto the nucleus.
1237:. The description of protein folding by the leveling free-energy landscape is also consistent with the 2nd law of thermodynamics. Physically, thinking of landscapes in terms of visualizable potential or total energy surfaces simply with maxima, saddle points, minima, and funnels, rather like geographic landscapes, is perhaps a little misleading. The relevant description is really a high-dimensional phase space in which manifolds might take a variety of more complicated topological forms. 1187: 959:(NMR) is able to collect protein structural data by inducing a magnet field through samples of concentrated protein. In NMR, depending on the chemical environment, certain nuclei will absorb specific radio-frequencies. Because protein structural changes operate on a time scale from ns to ms, NMR is especially equipped to study intermediate structures in timescales of ps to s. Some of the main techniques for studying proteins structure and non-folding protein structural changes include 419: 193:
conformation. The amino acid composition is not as important as the sequence. The essential fact of folding, however, remains that the amino acid sequence of each protein contains the information that specifies both the native structure and the pathway to attain that state. This is not to say that nearly identical amino acid sequences always fold similarly. Conformations differ based on environmental factors as well; similar proteins fold differently based on where they are found.
689:-like structures which can cause degenerative disorders and cell death. The amyloids are fibrillary structures that contain intermolecular hydrogen bonds which are highly insoluble and made from converted protein aggregates. Therefore, the proteasome pathway may not be efficient enough to degrade the misfolded proteins prior to aggregation. Misfolded proteins can interact with one another and form structured aggregates and gain toxicity through intermolecular interactions. 220: 319: 789: 28: 20: 466:, or the inward folding of the hydrophobic groups. The hydrophobic collapse introduces entropy back to the system via the breaking of the water cages which frees the ordered water molecules. The multitude of hydrophobic groups interacting within the core of the globular folded protein contributes a significant amount to protein stability after folding, because of the vastly accumulated van der Waals forces (specifically 979:. NOE is especially useful because magnetization transfers can be observed between spatially proximal hydrogens are observed. Different NMR experiments have varying degrees of timescale sensitivity that are appropriate for different protein structural changes. NOE can pick up bond vibrations or side chain rotations, however, NOE is too sensitive to pick up protein folding because it occurs at larger timescale. 462:
aqueous environment, the water molecules tend to aggregate around the hydrophobic regions or side chains of the protein, creating water shells of ordered water molecules. An ordering of water molecules around a hydrophobic region increases order in a system and therefore contributes a negative change in entropy (less entropy in the system). The water molecules are fixed in these water cages which drives the
500: 1001:
thermodynamics and kinetics between the excited and ground. Saturation Transfer measures changes in signal from the ground state as excited states become perturbed. It uses weak radio frequency irradiation to saturate the excited state of a particular nuclei which transfers its saturation to the ground state. This signal is amplified by decreasing the magnetization (and the signal) of the ground state.
208: 1019:, excited intermediates were studied with relaxation dispersion and Saturation transfer. SOD1 had been previously tied to many disease causing mutants which were assumed to be involved in protein aggregation, however the mechanism was still unknown. By using Relaxation Dispersion and Saturation Transfer experiments many excited intermediate states were uncovered misfolding in the SOD1 mutants. 1296:. Because of computational cost, ab initio MD folding simulations with explicit water are limited to peptides and small proteins. MD simulations of larger proteins remain restricted to dynamics of the experimental structure or its high-temperature unfolding. Long-time folding processes (beyond about 1 millisecond), like folding of larger proteins (>150 residues) can be accessed using 1126:(vWF) is a protein with an essential role in blood clot formation process. It discovered – using single molecule optical tweezers measurement – that calcium-bound vWF acts as a shear force sensor in the blood. Shear force leads to unfolding of the A2 domain of vWF, whose refolding rate is dramatically enhanced in the presence of calcium. Recently, it was also shown that the simple src 453: 451: 449: 447: 595:, mechanical forces, and the presence of chemical denaturants can contribute to protein denaturation, as well. These individual factors are categorized together as stresses. Chaperones are shown to exist in increasing concentrations during times of cellular stress and help the proper folding of emerging proteins as well as denatured or misfolded ones. 452: 1210:, meaning that naturally evolved proteins have optimized their folding energy landscapes, and that nature has chosen amino acid sequences so that the folded state of the protein is sufficiently stable. In addition, the acquisition of the folded state had to become a sufficiently fast process. Even though nature has reduced the level of 450: 1330:. The longest published result of a simulation performed using Anton as of 2011 was a 2.936 millisecond simulation of NTL9 at 355 K. Such simulations are currently able to unfold and refold small proteins (<150 amino acids residues) in equilibrium and predict how mutations affect folding kinetics and stability. 1240:
The unfolded polypeptide chain begins at the top of the funnel where it may assume the largest number of unfolded variations and is in its highest energy state. Energy landscapes such as these indicate that there are a large number of initial possibilities, but only a single native state is possible;
577:
to humans, suggesting that they evolved very early and have an important function. Some proteins never fold in cells at all except with the assistance of chaperones which either isolate individual proteins so that their folding is not interrupted by interactions with other proteins or help to unfold
586:
amorphous aggregates. The external factors involved in protein denaturation or disruption of the native state include temperature, external fields (electric, magnetic), molecular crowding, and even the limitation of space (i.e. confinement), which can have a big influence on the folding of proteins.
1248:
for a particular protein is found. The transition state in the energy funnel diagram is the conformation that must be assumed by every molecule of that protein if the protein wishes to finally assume the native structure. No protein may assume the native structure without first passing through the
1000:
phenomenon. This technique exposes the target nuclei to a 90 pulse followed by one or more 180 pulses. As the nuclei refocus, a broad distribution indicates the target nuclei is involved in an intermediate excited state. By looking at Relaxation dispersion plots the data collect information on the
831:
are high enough to give good fluorescence signals. Both Trp and Tyr are excited by a wavelength of 280 nm, whereas only Trp is excited by a wavelength of 295 nm. Because of their aromatic character, Trp and Tyr residues are often found fully or partially buried in the hydrophobic core of
802:
is one of the more efficient and important methods for attempting to decipher the three dimensional configuration of a folded protein. To be able to conduct X-ray crystallography, the protein under investigation must be located inside a crystal lattice. To place a protein inside a crystal lattice,
739:
or Vyndaqel (a kinetic stabilizer of tetrameric transthyretin) for the treatment of transthyretin amyloid diseases. This suggests that the process of amyloid fibril formation (and not the fibrils themselves) causes the degeneration of post-mitotic tissue in human amyloid diseases. Misfolding and
539:
because they provide the protein with the aid needed to assume its proper alignments and conformations efficiently enough to become "biologically relevant". This means that the polypeptide chain could theoretically fold into its native structure without the aid of chaperones, as demonstrated by
192:
The primary structure of a protein, its linear amino-acid sequence, determines its native conformation. The specific amino acid residues and their position in the polypeptide chain are the determining factors for which portions of the protein fold closely together and form its three-dimensional
839:
of proteins by measuring the variation in the intensity of fluorescence emission or in the wavelength of maximal emission as functions of a denaturant value. The denaturant can be a chemical molecule (urea, guanidinium hydrochloride), temperature, pH, pressure, etc. The equilibrium between the
684:
that are organized in a supramolecular arrangement known as a cross-β structure. These β-sheet-rich assemblies are very stable, very insoluble, and generally resistant to proteolysis. The structural stability of these fibrillar assemblies is caused by extensive interactions between the protein
461:
Minimizing the number of hydrophobic side-chains exposed to water is an important driving force behind the folding process. The hydrophobic effect is the phenomenon in which the hydrophobic chains of a protein collapse into the core of the protein (away from the hydrophilic environment). In an
277:
The α-Helices and β-Sheets are commonly amphipathic, meaning they have a hydrophilic and a hydrophobic portion. This ability helps in forming tertiary structure of a protein in which folding occurs so that the hydrophilic sides are facing the aqueous environment surrounding the protein and the
1121:
have been used to stretch single protein molecules from their C- and N-termini and unfold them to allow study of the subsequent refolding. The technique allows one to measure folding rates at single-molecule level; for example, optical tweezers have been recently applied to study folding and
309:
Tertiary structure may give way to the formation of quaternary structure in some proteins, which usually involves the "assembly" or "coassembly" of subunits that have already folded; in other words, multiple polypeptide chains could interact to form a fully functional quaternary protein.
258:
to form a spiral shape (refer to figure on the right). The β pleated sheet is a structure that forms with the backbone bending over itself to form the hydrogen bonds (as displayed in the figure to the left). The hydrogen bonds are between the amide hydrogen and carbonyl oxygen of the
1356:
AlphaFold's protein structure prediction results at CASP were described as "transformational" and "astounding". Some researchers noted that the accuracy is not high enough for a third of its predictions, and that it does not reveal the physical mechanism of protein folding for the
263:. There exists anti-parallel β pleated sheets and parallel β pleated sheets where the stability of the hydrogen bonds is stronger in the anti-parallel β sheet as it hydrogen bonds with the ideal 180 degree angle compared to the slanted hydrogen bonds formed by parallel sheets. 1353:, a test that measures the degree of similarity between the structure, predicted by a computational program, and the empirical structure, determined experimentally in a lab. A score of 100 is considered a complete match, within the distance cutoff used for calculating GDT. 685:
monomers, formed by backbone hydrogen bonds between their β-strands. The misfolding of proteins can trigger the further misfolding and accumulation of other proteins into aggregates or oligomers. The increased levels of aggregated proteins in the cell leads to formation of
157:
proteins with lengths of up to a hundred amino acids typically fold in a single step. Time scales of milliseconds are the norm, and the fastest known protein folding reactions are complete within a few microseconds. The folding time scale of a protein depends on its size,
278:
hydrophobic sides are facing the hydrophobic core of the protein. Secondary structure hierarchically gives way to tertiary structure formation. Once the protein's tertiary structure is formed and stabilized by the hydrophobic interactions, there may also be
1040:
by determining the overall size of a monolayer of the protein and its density in real time at sub-Angstrom resolution, although real-time measurement of the kinetics of protein folding are limited to processes that occur slower than ~10 Hz. Similar to
478:
molecule containing a large hydrophobic region. The strength of hydrogen bonds depends on their environment; thus, H-bonds enveloped in a hydrophobic core contribute more than H-bonds exposed to the aqueous environment to the stability of the native state.
1164:
is a thought experiment based on the observation that if a protein were folded by sequential sampling of all possible conformations, it would take an astronomical amount of time to do so, even if the conformations were sampled at a rapid rate (on the
826:
is a highly sensitive method for studying the folding state of proteins. Three amino acids, phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp), have intrinsic fluorescence properties, but only Tyr and Trp are used experimentally because their
1159:
In 1969, Cyrus Levinthal noted that, because of the very large number of degrees of freedom in an unfolded polypeptide chain, the molecule has an astronomical number of possible conformations. An estimate of 3 or 10 was made in one of his papers.
995:
have become some of the primary techniques for NMR analysis of folding. In addition, both techniques are used to uncover excited intermediate states in the protein folding landscape. To do this, CPMG Relaxation dispersion takes advantage of the
3522:
Johnson SM, Wiseman RL, Sekijima Y, Green NS, Adamski-Werner SL, Kelly JW (December 2005). "Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses".
1150:
Computational studies of protein folding includes three main aspects related to the prediction of protein stability, kinetics, and structure. A 2013 review summarizes the available computational methods for protein folding.
1057:
The study of protein folding has been greatly advanced in recent years by the development of fast, time-resolved techniques. Experimenters rapidly trigger the folding of a sample of unfolded protein and observe the resulting
405:
Proteins will have limitations on their folding abilities by the restricted bending angles or conformations that are possible. These allowable angles of protein folding are described with a two-dimensional plot known as the
294:
arrangement in a native structure of a protein. Tertiary structure of a protein involves a single polypeptide chain; however, additional interactions of folded polypeptide chains give rise to quaternary structure formation.
1173:
scale). Based upon the observation that proteins fold much faster than this, Levinthal then proposed that a random conformational search does not occur, and the protein must, therefore, fold through a series of meta-stable
448: 731:. It is not completely clear whether the aggregates are the cause or merely a reflection of the loss of protein homeostasis, the balance between synthesis, folding, aggregation and protein turnover. Recently the 482:
In proteins with globular folds, hydrophobic amino acids tend to be interspersed along the primary sequence, rather than randomly distributed or clustered together. However, proteins that have recently been born
679:
if it cannot achieve its normal native state. This can be due to mutations in the amino acid sequence or a disruption of the normal folding process by external factors. The misfolded protein typically contains
986:
Timescale of protein structural changes matched with NMR experiments. For protein folding, CPMG Relaxation Dispersion (CPMG RD) and chemical exchange saturation transfer (CEST) collect data in the appropriate
429:
Protein folding must be thermodynamically favorable within a cell in order for it to be a spontaneous reaction. Since it is known that protein folding is a spontaneous reaction, then it must assume a negative
69:
The folding of many proteins begins even during the translation of the polypeptide chain. The amino acids interact with each other to produce a well-defined three-dimensional structure, known as the protein's
1225:" landscape allows the protein to fold to the native state through any of a large number of pathways and intermediates, rather than being restricted to a single mechanism. The theory is supported by both 3789:
Ould-Abeih MB, Petit-Topin I, Zidane N, Baron B, Bedouelle H (June 2012). "Multiple folding states and disorder of ribosomal protein SA, a membrane receptor for laminin, anticarcinogens, and pathogens".
4162:
Cross GH, Freeman NJ, Swann MJ (2008). "Dual Polarization Interferometry: A Real-Time Optical Technique for Measuring (Bio)molecular Orientation, Structure and Function at the Solid/Liquid Interface".
1537: 1265:, like the one diagrammed here, to model the possible shapes and folding pathways a protein can take as it condenses from its initial randomly coiled state (left) into its native 3D structure (right). 610:
have been found that grow at temperatures as high as 122 °C, which of course requires that their full complement of vital proteins and protein assemblies be stable at that temperature or above.
561:. Under certain conditions some proteins can refold; however, in many cases, denaturation is irreversible. Cells sometimes protect their proteins against the denaturing influence of heat with 724:. These age onset degenerative diseases are associated with the aggregation of misfolded proteins into insoluble, extracellular aggregates and/or intracellular inclusions including cross-β 1349:, a long-standing structureprediction contest The team achieved a level of accuracy much higher than any other group. It scored above 90% for around two-thirds of the proteins in CASP's 5036:
Schaefer M, Bartels C, Karplus M (December 1998). "Solution conformations and thermodynamics of structured peptides: molecular dynamics simulation with an implicit solvation model".
760:, where loss of function is the origin of the disorder. While protein replacement therapy has historically been used to correct the latter disorders, an emerging approach is to use 89:
are important. Failure to fold into a native structure generally produces inactive proteins, but in some instances, misfolded proteins have modified or toxic functionality. Several
925:(FT) instruments, provide powerful means for determining protein conformations in solution even for very large protein molecules. Such VCD studies of proteins can be combined with 881:
are chiral, and thus absorb such light. The absorption of this light acts as a marker of the degree of foldedness of the protein ensemble. This technique has been used to measure
2418:
Deechongkit S, Nguyen H, Powers ET, Dawson PE, Gruebele M, Kelly JW (July 2004). "Context-dependent contributions of backbone hydrogen bonding to beta-sheet folding energetics".
304: 2332:
Cui D, Ou S, Patel S (December 2014). "Protein-spanning water networks and implications for prediction of protein–protein interactions mediated through hydrophobic effects".
1117:
Single molecule techniques such as optical tweezers and AFM have been used to understand protein folding mechanisms of isolated proteins as well as proteins with chaperones.
142:, and other contexts. Residual structure present, if any, in the supposedly unfolded state may form a folding initiation site and guide the subsequent folding reactions. 5384:
Piana S, Piana S, Sarkar K, Lindorff-Larsen K, Guo M, Gruebele M, Shaw DE (2010). "Computational Design and Experimental Testing of the Fastest-Folding β-Sheet Protein".
815:
use the presence of a heavy metal ion to diffract the X-rays into a more predictable manner, reducing the number of variables involved and resolving the phase problem.
550:
Along with its role in aiding native structure formation, chaperones are shown to be involved in various roles such as protein transport, degradation, and even allow
598:
Under some conditions proteins will not fold into their biochemically functional forms. Temperatures above or below the range that cells tend to live in will cause
6245: 425:. In the compact fold (to the right), the hydrophobic amino acids (shown as black spheres) collapse toward the center to become shielded from aqueous environment. 7049: 3750:"Dimeric tyrosyl-tRNA synthetase from Bacillus stearothermophilus unfolds through a monomeric intermediate. A quantitative analysis under equilibrium conditions" 964: 960: 442:. For a negative delta G to arise and for protein folding to become thermodynamically favorable, then either enthalpy, entropy, or both terms must be favorable. 1217:
A consequence of these evolutionarily selected sequences is that proteins are generally thought to have globally "funneled energy landscapes" (a term coined by
235:
is the first step in the folding process that a protein takes to assume its native structure. Characteristic of secondary structure are the structures known as
6498: 4930:"Transition-state structure as a unifying basis in protein-folding mechanisms: contact order, chain topology, stability, and the extended nucleus mechanism" 5635: 254:. Formation of intramolecular hydrogen bonds provides another important contribution to protein stability. α-helices are formed by hydrogen bonding of the 968: 546:; however, this process proves to be too inefficient or too slow to exist in biological systems; therefore, chaperones are necessary for protein folding 3428:
Hammarström P, Wiseman RL, Powers ET, Kelly JW (January 2003). "Prevention of transthyretin amyloid disease by changing protein misfolding energetics".
4624: 6043: 1036:
is a surface-based technique for measuring the optical properties of molecular layers. When used to characterize protein folding, it measures the
4005:
Vallurupalli P, Bouvignies G, Kay LE (May 2012). "Studying "invisible" excited protein states in slow exchange with a major state conformation".
153:, and must pass through a number of intermediate states, like checkpoints, before the process is complete. On the other hand, very small single- 535:
or interconversion between cis and trans stereoisomers of peptide group. Chaperones are shown to be critical in the process of protein folding
4289:
Park C, Marqusee S (March 2005). "Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding".
6908: 4677:
Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (March 1995). "Funnels, pathways, and the energy landscape of protein folding: a synthesis".
3184:"Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation" 4195:
Bu Z, Cook J, Callaway DJ (September 2001). "Dynamic regimes and correlated structural dynamics in native and denatured alpha-lactalbumin".
6238: 5444: 3959:
Ortega, Gabriel; Pons, Miquel; Millet, Oscar (2013). "Protein Functional Dynamics in Multiple Timescales as Studied by NMR Spectroscopy".
2174:
Zhang G, Ignatova Z (February 2011). "Folding at the birth of the nascent chain: coordinating translation with co-translational folding".
5420: 1214:
in proteins, some degree of it remains up to now as can be observed in the presence of local minima in the energy landscape of proteins.
897:(Tm) of the protein. As for fluorescence spectroscopy, circular-dichroism spectroscopy can be combined with fast-mixing devices such as 1138:
Biotin painting enables condition-specific cellular snapshots of (un)folded proteins. Biotin 'painting' shows a bias towards predicted
523:
proteins, which catalyze chemical reactions responsible for slow steps in folding pathways. Examples of folding catalysts are protein
2136: 3672:
Bedouelle H (February 2016). "Principles and equations for measuring and interpreting protein stability: From monomer to tetramer".
1070:. Among the many scientists who have contributed to the development of these techniques are Jeremy Cook, Heinrich Roder, Terry Oas, 6797: 6792: 6767: 6757: 6752: 6742: 5856: 5628: 5512:
Callaway, Ewen (30 November 2020). "'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures".
3393:
Soto C, Estrada L, Castilla J (March 2006). "Amyloids, prions and the inherent infectious nature of misfolded protein aggregates".
653:
Some proteins have multiple native structures, and change their fold based on some external factors. For example, the KaiB protein
5490: 6813: 6747: 6231: 2916:
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013). "Molecular chaperone functions in protein folding and proteostasis".
1415: 1004:
The main limitations in NMR is that its resolution decreases with proteins that are larger than 25 kDa and is not as detailed as
869:
is one of the most general and basic tools to study protein folding. Circular dichroism spectroscopy measures the absorption of
645:
chaperonin that is absolutely necessary for the folding and assembly in vivo of the bacteriophage T4 major capsid protein gp23.
7044: 6843: 3182:
Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (August 2008).
578:
misfolded proteins, allowing them to refold into the correct native structure. This function is crucial to prevent the risk of
4845: 4179: 3602: 2152: 2094: 1934: 1628: 1549: 1467: 1420: 3709:"Quantitative measurement of protein stability from unfolding equilibria monitored with the fluorescence maximum wavelength" 6141: 6036: 5621: 5587: 82: 7061: 1619:
Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2010). "Protein Structure and Function".
1106: 1008:. Additionally, protein NMR analysis is quite difficult and can propose multiple solutions from the same NMR spectrum. 6146: 6136: 6088: 3976: 1139: 488: 982: 6126: 4599: 1033: 1028: 812: 701: 4332:
Mashaghi A, Kramer G, Lamb DC, Mayer MP, Tans SJ (January 2014). "Chaperone action at the single-molecule level".
3043:"Electric field-driven disruption of a native beta-sheet protein conformation and generation of a helix-structure" 6254: 6131: 6029: 5884: 1952:"The design and characterization of two proteins with 88% sequence identity but different structure and function" 1430: 713: 709: 7086: 6454: 918: 5205:"De novo prediction of protein folding pathways and structure using the principle of sequential stabilization" 2259: 554:
exposed to certain external denaturant factors an opportunity to refold into their correct native structures.
1195: 1012: 697: 81:
The correct three-dimensional structure is essential to function, although some parts of functional proteins
2873:
Hartl FU, Bracher A, Hayer-Hartl M (July 2011). "Molecular chaperones in protein folding and proteostasis".
780:
or folding of proteins and observing conformational changes using standard non-crystallographic techniques.
6667: 6093: 6083: 5849: 4655: 4533: 4475:"Direct observation of a force-induced switch in the anisotropic mechanical unfolding pathway of a protein" 3245: 1365:
and great progress towards a decades-old grand challenge of biology, predicting the structure of proteins.
1281: 1230: 145:
The duration of the folding process varies dramatically depending on the protein of interest. When studied
6612: 6156: 6073: 1405: 893:
of unfolding as well as the protein's m value, or denaturant dependence. A temperature melt measures the
551: 232: 202: 123: 7096: 6078: 5644: 2211:"Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell" 956: 885:
of the protein by measuring the change in this absorption as a function of denaturant concentration or
757: 474:
exists as a driving force in thermodynamics only if there is the presence of an aqueous medium with an
272: 63: 4564:
Compiani M, Capriotti E (December 2013). "Computational and theoretical methods for protein folding".
2110: 6212: 6068: 3918: 976: 890: 823: 761: 732: 654: 579: 528: 187: 5086: 2035: 1803: 1644:
Yagi-Utsumi M, Chandak MS, Yanaka S, Hiranyakorn M, Nakamura T, Kato K, Kuwajima K (November 2020).
7091: 6552: 5608: 6877: 5842: 3825:
Royer CA (May 2006). "Probing protein folding and conformational transitions with fluorescence".
1358: 1338: 1297: 1105:
is routinely used to probe the fraction unfolded under a wide range of solution conditions (e.g.
557:
A fully denatured protein lacks both tertiary and secondary structure, and exists as a so-called
467: 5287: 2953:"The denatured state (the other half of the folding equation) and its role in protein stability" 6918: 6113: 6103: 6052: 5333:
Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (October 2011). "How fast-folding proteins fold".
2030: 1161: 992: 721: 705: 343: 339: 4525: 657:, acting as a clock for cyanobacteria. It has been estimated that around 0.5–4% of PDB ( 6299: 6121: 5988: 5720: 4103:
Sekhar A, Rumfeldt JA, Broom HR, Doyle CM, Sobering RE, Meiering EM, Kay LE (November 2016).
3492: 2084: 1385: 1362: 1175: 1123: 1005: 894: 882: 870: 836: 799: 793: 777: 569:(a type of chaperone), which assist other proteins both in folding and in remaining folded. 491:, show the opposite pattern of hydrophobic amino acid clustering along the primary sequence. 170: 169:
Understanding and simulating the protein folding process has been an important challenge for
4600:"Structural Biochemistry/Proteins/Protein Folding - Wikibooks, open books for an open world" 3592: 2705:"A Shift in Aggregation Avoidance Strategy Marks a Long-Term Direction to Protein Evolution" 1646:"Residual Structure of Unfolded Ubiquitin as Revealed by Hydrogen/Deuterium-Exchange 2D NMR" 457:
Entropy is decreased as the water molecules become more orderly near the hydrophobic solute.
5879: 5568: 5521: 5342: 5216: 5157: 4941: 4883: 4832:. Progress in Molecular Biology and Translational Science. Vol. 84. pp. 161–202. 4802: 4747: 4639: 4486: 4429: 4243: 4116: 4056: 3631: 3437: 3288: 3195: 3054: 2828: 2772: 2559: 2492: 2427: 2384: 2086:
Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding
2022: 1963: 1876: 1815: 1577: 1350: 1071: 1037: 463: 422: 363: 355: 335: 244: 47: 4232:"Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp" 4045:"Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding" 3562: 2929: 8: 6262: 6182: 6151: 5756: 3147:
Ellis RJ (July 2006). "Molecular chaperones: assisting assembly in addition to folding".
1395: 1375: 1327: 991:
Because protein folding takes place in about 50 to 3000 s CPMG Relaxation dispersion and
811:" would render predicting the diffraction patterns very difficult. Emerging methods like 524: 510: 399: 327: 150: 5564: 5525: 5346: 5220: 5161: 4945: 4887: 4806: 4751: 4643: 4490: 4433: 4247: 4120: 4060: 3963:. Advances in Protein Chemistry and Structural Biology. Vol. 92. pp. 219–251. 3635: 3479:
Chiti F, Dobson CM (2006). "Protein misfolding, functional amyloid, and human disease".
3441: 3292: 3199: 3058: 2832: 2776: 2563: 2496: 2431: 2388: 2026: 1967: 1880: 1819: 1706: 1581: 6276: 5545: 5495: 5462: 5366: 5239: 5204: 5180: 5145: 5013: 4988: 4907: 4712: 4686: 4509: 4474: 4450: 4417: 4393: 4368: 4314: 4266: 4231: 4139: 4105:"Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy" 4104: 4077: 4044: 3968: 3504: 3461: 3372: 3311: 3276: 3218: 3183: 3124: 3099: 3075: 3042: 2982: 2898: 2852: 2796: 2729: 2704: 2680: 2655: 2631: 2606: 2549: 2513: 2482: 2470: 2451: 2375:
Tanford C (June 1978). "The hydrophobic effect and the organization of living matter".
2357: 2314: 2055: 2010: 1986: 1951: 1849: 1693:
Kim PS, Baldwin RL (1990). "Intermediates in the folding reactions of small proteins".
1670: 1645: 1601: 1509: 1484: 1400: 1285: 1262: 1063: 1042: 866: 861: 849: 773: 676: 570: 566: 504: 484: 471: 224: 149:, the slowest folding proteins require many minutes or hours to fold, primarily due to 5072: 4837: 3885: 2504: 2235: 2210: 1741: 6578: 6060: 5920: 5894: 5776: 5668: 5549: 5537: 5466: 5401: 5358: 5244: 5185: 5126: 5053: 5018: 4989:"Using simulations to provide the framework for experimental protein folding studies" 4969: 4964: 4929: 4899: 4851: 4841: 4775: 4770: 4735: 4704: 4581: 4514: 4455: 4398: 4349: 4306: 4271: 4212: 4175: 4144: 4082: 4022: 3982: 3972: 3938: 3890: 3842: 3807: 3771: 3730: 3689: 3649: 3598: 3540: 3496: 3453: 3410: 3364: 3359: 3342: 3316: 3257: 3223: 3164: 3129: 3080: 3023: 2974: 2933: 2890: 2844: 2788: 2734: 2685: 2636: 2587: 2582: 2537: 2518: 2443: 2400: 2349: 2306: 2240: 2191: 2148: 2141: 2090: 2060: 1991: 1930: 1892: 1853: 1841: 1784: 1745: 1710: 1675: 1624: 1593: 1545: 1514: 1463: 1361:
to be considered solved. Nevertheless, it is considered a significant achievement in
1293: 1190:
The energy funnel by which an unfolded polypeptide chain assumes its native structure
938: 926: 922: 902: 804: 658: 607: 431: 407: 90: 75: 5370: 4736:"Protein folding funnels: a kinetic approach to the sequence-structure relationship" 4716: 4318: 3508: 3465: 3376: 2986: 2361: 2318: 606:
turn opaque). Protein thermal stability is far from constant, however; for example,
6838: 6542: 6207: 5998: 5956: 5951: 5946: 5771: 5694: 5529: 5452: 5393: 5350: 5234: 5224: 5175: 5165: 5116: 5045: 5008: 5000: 4959: 4949: 4911: 4891: 4874:
Dill KA, MacCallum JL (November 2012). "The protein-folding problem, 50 years on".
4833: 4810: 4793:
Sharma V, Kaila VR, Annila A (2009). "Protein folding as an evolutionary process".
4765: 4755: 4696: 4647: 4573: 4544: 4504: 4494: 4445: 4437: 4388: 4380: 4341: 4298: 4261: 4251: 4204: 4167: 4134: 4124: 4072: 4064: 4014: 3964: 3930: 3880: 3834: 3799: 3761: 3720: 3681: 3639: 3532: 3488: 3445: 3402: 3354: 3306: 3296: 3213: 3203: 3156: 3119: 3111: 3070: 3062: 3013: 2964: 2925: 2902: 2882: 2856: 2836: 2800: 2780: 2724: 2716: 2675: 2667: 2626: 2618: 2577: 2567: 2508: 2500: 2455: 2435: 2392: 2341: 2296: 2230: 2222: 2183: 2050: 2040: 1981: 1971: 1884: 1831: 1823: 1776: 1737: 1702: 1665: 1657: 1605: 1585: 1504: 1496: 1410: 1390: 1319: 1292:. First equilibrium folding simulations were done using implicit solvent model and 1245: 1199: 1118: 1067: 1059: 972: 620: 387: 291: 163: 86: 39: 1091: 603: 6223: 5904: 5797: 5761: 4256: 4171: 3685: 3018: 3001: 1888: 1867:
Anfinsen CB (July 1973). "Principles that govern the folding of protein chains".
1226: 1075: 753: 717: 599: 109: 5121: 5104: 4814: 4731: 3934: 2969: 2952: 2720: 2671: 2301: 2284: 1270: 1218: 6591: 6586: 6177: 6098: 5925: 5802: 5730: 5699: 5658: 5533: 5209:
Proceedings of the National Academy of Sciences of the United States of America
5150:
Proceedings of the National Academy of Sciences of the United States of America
4934:
Proceedings of the National Academy of Sciences of the United States of America
4740:
Proceedings of the National Academy of Sciences of the United States of America
4479:
Proceedings of the National Academy of Sciences of the United States of America
4109:
Proceedings of the National Academy of Sciences of the United States of America
4068: 3406: 3188:
Proceedings of the National Academy of Sciences of the United States of America
3160: 3115: 2542:
Proceedings of the National Academy of Sciences of the United States of America
2226: 2015:
Proceedings of the National Academy of Sciences of the United States of America
1956:
Proceedings of the National Academy of Sciences of the United States of America
1455: 1234: 1222: 1079: 532: 330:
that is mainly guided by hydrophobic interactions, formation of intramolecular
283: 255: 154: 5457: 5397: 5103:
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (July 2016).
5004: 3644: 3619: 3066: 2187: 1780: 1661: 1257: 776:, typically, experimental techniques for studying protein folding rely on the 7080: 5983: 5978: 5766: 5613: 4651: 3766: 3749: 3725: 3708: 1533: 1451: 1203: 828: 808: 383: 371: 367: 331: 279: 251: 247: 159: 139: 113: 104:
formed by misfolded proteins, the infectious varieties of which are known as
5354: 5229: 5170: 4895: 4760: 4499: 4129: 3449: 3301: 3208: 2656:"Gene Birth Contributes to Structural Disorder Encoded by Overlapping Genes" 2622: 2572: 2045: 1976: 418: 6947: 6929: 6192: 5684: 5541: 5405: 5362: 5248: 5189: 5130: 5049: 5022: 4973: 4954: 4903: 4855: 4700: 4585: 4518: 4459: 4402: 4353: 4310: 4275: 4216: 4208: 4148: 4086: 4026: 3986: 3942: 3846: 3811: 3734: 3693: 3653: 3544: 3500: 3457: 3414: 3368: 3320: 3227: 3168: 3133: 3084: 3027: 2937: 2894: 2792: 2738: 2689: 2640: 2522: 2447: 2396: 2353: 2244: 2195: 2064: 1995: 1845: 1788: 1679: 1597: 1380: 1308: 1304: 1186: 1083: 906: 898: 845: 841: 740:
excessive degradation instead of folding and function leads to a number of
260: 71: 5057: 4779: 4708: 3894: 3868: 3775: 3261: 2978: 2848: 2819:
Hartl FU (June 1996). "Molecular chaperones in cellular protein folding".
2591: 2310: 1896: 1749: 1714: 1518: 513:
are a class of proteins that aid in the correct folding of other proteins
219: 7023: 6891: 6021: 6003: 5993: 5725: 5689: 5421:"DeepMind solves 50-year-old 'grand challenge' with protein folding A.I." 2487: 2404: 1425: 1102: 1087: 1046: 950: 886: 878: 874: 745: 741: 670: 641:
particles during infection. Like GroES, gp31 forms a stable complex with
625: 558: 475: 395: 236: 212: 127: 59: 5146:"Characterization of protein-folding pathways by reduced-space modeling" 4691: 4418:"Calcium modulates force sensing by the von Willebrand factor A2 domain" 3343:"Protein-misfolding diseases and chaperone-based therapeutic approaches" 2886: 2784: 2554: 2439: 1836: 1589: 66:. This structure permits the protein to become biologically functional. 6853: 6281: 6187: 5930: 5807: 5751: 5735: 5704: 4441: 3100:"Effects of macromolecular crowding on protein folding and aggregation" 2345: 1827: 1170: 1166: 1127: 767: 681: 351: 347: 240: 117: 55: 4577: 4384: 4345: 4018: 3838: 3803: 3536: 1500: 1322:, a massively parallel supercomputer designed and built around custom 1229:
and experimental studies, and it has been used to improve methods for
318: 6601: 6547: 6008: 5823: 5792: 5308: 5262: 4302: 2840: 1334: 1289: 1276: 1244:
There exists a saddle point in the energy funnel landscape where the
997: 749: 736: 583: 520: 362:; however, a protein molecule may fold spontaneously during or after 2538:"Evidence for nonrandom hydrophobicity structures in protein chains" 1764: 788: 27: 6881: 6514: 6506: 5961: 5899: 4549: 1802:
Scalvini, Barbara; Sheikhhassani, Vahid; Mashaghi, Alireza (2021).
1643: 1342: 664: 574: 542: 435: 434:
value. Gibbs free energy in protein folding is directly related to
359: 290:
residues. These non-covalent and covalent contacts take a specific
287: 146: 51: 1623:(Third ed.). New York, NY: Garland Science. pp. 120–70. 944: 637:
and able to substitute for it in the assembly of bacteriophage T4
19: 6632: 6519: 6479: 6410: 6405: 6400: 6395: 6390: 6345: 6172: 5971: 5966: 5865: 5572: 5491:'The game has changed.' AI triumphs at solving protein structures 4473:
Jagannathan B, Elms PJ, Bustamante C, Marqusee S (October 2012).
4472: 3869:"Protein structure determination in solution by NMR spectroscopy" 2285:"Forces contributing to the conformational stability of proteins" 725: 686: 615: 588: 515: 439: 375: 131: 112:
are caused by the incorrect folding of some proteins because the
101: 98: 94: 43: 4534:"Biotinylation by proximity labelling favours unfolded proteins" 3788: 2260:"Torsion Angles and the Ramachnadran Plot in Protein Structures" 1728:
Jackson SE (1998). "How do small single-domain proteins fold?".
6848: 6823: 6818: 6808: 6772: 6762: 6737: 6722: 6717: 6712: 6707: 6702: 6697: 6692: 6687: 6652: 6637: 6484: 6449: 6434: 6429: 6424: 6385: 6380: 6375: 6370: 6365: 6360: 6355: 6350: 6340: 6335: 6330: 6325: 6320: 5383: 2703:
Foy SG, Wilson BA, Bertram J, Cordes MH, Masel J (April 2019).
1312: 1284:
can be used for simulating various aspects of protein folding.
1052: 728: 562: 499: 4828:
Robson B, Vaithilingam A (2008). "Protein Folding Revisited".
3243: 1318:
Long continuous-trajectory simulations have been performed on
207: 7039: 7029: 7019: 7004: 6986: 6981: 6976: 6971: 6903: 6863: 6828: 6802: 6787: 6782: 6777: 6732: 6727: 6682: 6677: 6672: 6642: 6627: 6524: 6493: 6474: 6469: 6464: 6459: 6444: 6439: 6419: 6315: 6308: 6304: 6294: 6289: 4676: 3427: 3244:
Marusich, EI; Kurochkina, LP; Mesyanzhinov, VV (April 1998).
2763:
Dobson CM (December 2003). "Protein folding and misfolding".
2417: 1801: 1568:
Selkoe DJ (December 2003). "Folding proteins in fatal ways".
1288:(MD) was used in simulations of protein folding and dynamics 930: 912: 693: 642: 638: 634: 602:
proteins to unfold or denature (this is why boiling makes an
379: 105: 74:. This structure is determined by the amino-acid sequence or 5332: 5102: 2009:
Rose GD, Fleming PJ, Banavar JR, Maritan A (November 2006).
1066:, ultrafast mixing of solutions, photochemical methods, and 629:) appears to be structurally and functionally homologous to 7054: 7034: 7014: 7009: 6959: 6942: 6898: 6886: 6868: 6858: 6657: 6647: 6622: 6617: 6562: 6557: 5834: 3521: 2209:
van den Berg B, Wain R, Dobson CM, Ellis RJ (August 2000).
2208: 1950:
Alexander PA, He Y, Chen Y, Orban J, Bryan PN (July 2007).
1454:, Johnson A, Lewis J, Raff M, Roberts K, Walters P (2002). 1346: 1323: 1221:) that are largely directed toward the native state. This " 1145: 1016: 772:
While inferences about protein folding can be made through
135: 126:
of proteins is a process of transition from a folded to an
4632:
Journal de Chimie Physique et de Physico-Chimie Biologique
4415: 3563:"Phase Problem in X-ray Crystallography, and Its Solution" 2283:
Pace CN, Shirley BA, McNutt M, Gajiwala K (January 1996).
835:
Fluorescence spectroscopy can be used to characterize the
410:, depicted with psi and phi angles of allowable rotation. 6202: 6197: 4416:
Jakobi AJ, Mashaghi A, Tans SJ, Huizinga EG (July 2011).
4004: 3181: 2915: 2282: 2008: 4102: 1618: 716:, as well as intracellular aggregation diseases such as 4331: 3097: 2872: 1450: 1341:(AI) protein structure prediction program developed by 592: 391: 5105:"Coarse-Grained Protein Models and Their Applications" 5035: 4531: 2702: 2535: 1762: 1485:"The formation and stabilization of protein structure" 1181: 398:, the possible presence of cofactors and of molecular 5445:"Structural biology: How proteins got their close-up" 4795:
Physica A: Statistical Mechanics and Its Applications
4042: 3098:
van den Berg B, Ellis RJ, Dobson CM (December 1999).
1122:
unfolding of proteins involved in blood coagulation.
1112: 704:(mad cow disease), amyloid-related illnesses such as 5202: 4729: 1949: 1303:
Several large-scale computational projects, such as
1198:
of a protein during folding can be visualized as an
768:
Experimental techniques for studying protein folding
764:
to fold mutated proteins to render them functional.
313: 5288:"The Folding@home Consortium (FAHC) – Folding@home" 4366: 4229: 3923:
Progress in Nuclear Magnetic Resonance Spectroscopy
3706: 3572:. Macmillan Publishers Ltd, Nature Publishing Group 3392: 3275:Porter, Lauren L.; Looger, Loren L. (5 June 2018). 2536:Irbäck A, Peterson C, Potthast F (September 1996). 1763:Kubelka J, Hofrichter J, Eaton WA (February 2004). 1022: 921:(VCD) techniques for proteins, currently involving 6253: 5485: 5483: 5203:Adhikari AN, Freed KF, Sosnick TR (October 2012). 4827: 3916: 2604: 2471:"On hydrophobicity correlations in protein chains" 2140: 1531: 1130:accesses multiple unfolding pathways under force. 1045:, the stimulus for folding can be a denaturant or 844:, to measure protein folding kinetics, generate a 16:Change of a linear protein chain to a 3D structure 4792: 4563: 4161: 3336: 3334: 3332: 3330: 3002:"Molecular chaperones in protein quality control" 243:that fold rapidly because they are stabilized by 7078: 5565:"CASP14 #s just came out and they're astounding" 4155: 3958: 3667: 3665: 3663: 2605:Wilson BA, Foy SG, Neme R, Masel J (June 2017). 665:Protein misfolding and neurodegenerative disease 97:are believed to result from the accumulation of 5507: 5505: 5480: 5143: 4043:Neudecker P, Lundström P, Kay LE (March 2009). 3281:Proceedings of the National Academy of Sciences 3277:"Extant fold-switching proteins are widespread" 3239: 3237: 3040: 945:Protein nuclear magnetic resonance spectroscopy 227:displaying hydrogen bonding within the backbone 5643: 4986: 4923: 4921: 4194: 3556: 3554: 3327: 2758: 2756: 2754: 2752: 2750: 2748: 2468: 2078: 2076: 2074: 1252: 573:have been found in all species examined, from 6239: 6037: 5850: 5629: 4873: 4672: 4670: 4668: 3747: 3660: 3340: 3006:Journal of Biochemistry and Molecular Biology 2868: 2866: 2814: 2812: 2810: 2173: 1924: 1460:Molecular Biology of the Cell; Fourth Edition 176: 5562: 5502: 5412: 5377: 5326: 5073:"Fragment-based Protein Folding Simulations" 4869: 4867: 4865: 4830:Molecular Biology of Protein Folding, Part B 4325: 4288: 3707:Monsellier E, Bedouelle H (September 2005). 3515: 3421: 3388: 3386: 3274: 3234: 2134: 2011:"A backbone-based theory of protein folding" 1920: 1918: 1916: 1914: 1912: 1910: 1908: 1906: 1053:Studies of folding with high time resolution 933:data for protein solutions in heavy water (D 818: 4918: 4821: 4532:Minde DP, Ramakrishna M, Lilley KS (2018). 4369:"Protein folding and unfolding under force" 4367:Jagannathan B, Marqusee S (November 2013). 3713:Protein Engineering, Design & Selection 3594:Principles of Protein X-Ray Crystallography 3551: 3478: 3472: 2745: 2653: 2411: 2071: 1804:"Topological principles of protein folding" 1563: 1561: 1227:computational simulations of model proteins 6246: 6232: 6051: 6044: 6030: 5857: 5843: 5636: 5622: 4665: 2863: 2807: 2331: 1692: 913:Vibrational circular dichroism of proteins 5456: 5238: 5228: 5179: 5169: 5120: 5012: 4963: 4953: 4862: 4769: 4759: 4690: 4625:"Are there pathways for protein folding?" 4622: 4548: 4508: 4498: 4449: 4392: 4265: 4255: 4230:Minde DP, Maurice MM, Rüdiger SG (2012). 4138: 4128: 4076: 3884: 3765: 3724: 3671: 3643: 3597:. Springer Science & Business Media. 3383: 3358: 3310: 3300: 3246:"Chaperones in bacteriophage T4 assembly" 3217: 3207: 3123: 3074: 3017: 2968: 2728: 2679: 2630: 2581: 2571: 2553: 2512: 2486: 2300: 2234: 2054: 2044: 2034: 1985: 1975: 1903: 1860: 1835: 1669: 1508: 322:All forms of protein structure summarized 5511: 5442: 5436: 5196: 4188: 4007:Journal of the American Chemical Society 3866: 3493:10.1146/annurev.biochem.75.101304.123901 2993: 2257: 1866: 1558: 1482: 1462:. New York and London: Garland Science. 1333:In 2020 a team of researchers that used 1256: 1185: 1146:Computational studies of protein folding 1011:In a study focused on the folding of an 981: 787: 783: 692:Aggregated proteins are associated with 498: 444: 417: 350:of the protein begins to fold while the 317: 218: 206: 26: 18: 5137: 4993:Archives of Biochemistry and Biophysics 4980: 2999: 2950: 2944: 2374: 1727: 1476: 1416:Protein misfolding cyclic amplification 298: 7079: 4927: 3961:Dynamics of Proteins and Nucleic Acids 3917:Zhuravleva A, Korzhnev DM (May 2017). 3617: 3590: 3560: 2762: 2469:Irbäck A, Sandelin E (November 2000). 2082: 1567: 1444: 1154: 623:, and the phage encoded gp31 protein ( 540:protein folding experiments conducted 354:portion of the protein is still being 342:. The process of folding often begins 196: 6227: 6025: 5838: 5617: 5585: 5418: 4223: 4098: 4096: 4038: 4036: 4000: 3998: 3996: 3954: 3952: 3912: 3910: 3908: 3906: 3904: 3862: 3860: 3858: 3856: 3824: 3146: 3034: 2930:10.1146/annurev-biochem-060208-092442 2818: 2176:Current Opinion in Structural Biology 1769:Current Opinion in Structural Biology 1456:"The Shape and Structure of Proteins" 1421:Protein structure prediction software 1202:. According to Joseph Bryngelson and 993:chemical exchange saturation transfer 855: 531:that may be involved in formation of 413: 266: 5443:Stoddart, Charlotte (1 March 2022). 4282: 3091: 3041:Ojeda-May P, Garcia ME (July 2010). 2654:Willis S, Masel J (September 2018). 2276: 2002: 181: 5563:@MoAlQuraishi (November 30, 2020). 5144:Kmiecik S, Kolinski A (July 2007). 4987:Rizzuti B, Daggett V (March 2013). 4164:Handbook of Biosensors and Biochips 3873:The Journal of Biological Chemistry 3754:The Journal of Biological Chemistry 3341:Chaudhuri TK, Paul S (April 2006). 1808:Physical Chemistry Chemical Physics 1765:"The protein folding 'speed limit'" 1707:10.1146/annurev.bi.59.070190.003215 1538:"3. Protein Structure and Function" 1182:Energy landscape of protein folding 1068:laser temperature jump spectroscopy 374:", the process also depends on the 13: 7062:Prokaryotic ubiquitin-like protein 5586:Balls, Phillip (9 December 2020). 4093: 4033: 3993: 3969:10.1016/b978-0-12-411636-8.00006-7 3949: 3901: 3853: 3748:Park YC, Bedouelle H (July 1998). 1925:Voet D, Voet JG, Pratt CW (2016). 1133: 1113:Single-molecule force spectroscopy 1107:fast parallel proteolysis (FASTpp) 873:. In proteins, structures such as 14: 7108: 5602: 5588:"Behind the screens of AlphaFold" 5070: 1140:Intrinsically disordered proteins 1062:. Fast techniques in use include 889:. A denaturant melt measures the 648: 314:Driving forces of protein folding 3624:Acta Crystallographica Section D 3360:10.1111/j.1742-4658.2006.05181.x 1544:. San Francisco: W. H. Freeman. 1208:principle of minimal frustration 1034:Dual polarisation interferometry 1029:Dual-polarization interferometry 1023:Dual-polarization interferometry 917:The more recent developments of 813:multiple isomorphous replacement 702:bovine spongiform encephalopathy 655:switches fold throughout the day 250:, as was first characterized by 120:for certain protein structures. 23:Protein before and after folding 5885:Post-translational modification 5669:Structure determination methods 5579: 5556: 5301: 5280: 5255: 5096: 5079: 5064: 5029: 4786: 4723: 4616: 4592: 4557: 4466: 4409: 4360: 3818: 3782: 3741: 3700: 3611: 3584: 3268: 3175: 3140: 2909: 2696: 2647: 2598: 2529: 2462: 2368: 2325: 2251: 2202: 2167: 2128: 2103: 1943: 1795: 1431:Time-resolved mass spectrometry 710:familial amyloid cardiomyopathy 6592:Mitochondrial targeting signal 6255:Posttranslational modification 5609:Human Proteome Folding Project 3395:Trends in Biochemical Sciences 3149:Trends in Biochemical Sciences 2611:Nature Ecology & Evolution 1756: 1721: 1686: 1637: 1612: 1525: 1097: 919:vibrational circular dichroism 675:A protein is considered to be 503:Example of a small eukaryotic 1: 4838:10.1016/S0079-6603(08)00405-4 3886:10.1016/S0021-9258(18)45665-7 3570:Encyclopedia of Life Sciences 3525:Accounts of Chemical Research 3481:Annual Review of Biochemistry 2918:Annual Review of Biochemistry 2505:10.1016/S0006-3495(00)76472-1 1742:10.1016/S1359-0278(98)00033-9 1695:Annual Review of Biochemistry 1437: 1280:techniques for computational 1078:, Brian Dyer, William Eaton, 1013:amyotrophic lateral sclerosis 494: 305:Protein quarternary structure 6668:Ubiquitin-conjugating enzyme 5864: 5075:. University College London. 5038:Journal of Molecular Biology 4257:10.1371/journal.pone.0046147 4197:Journal of Molecular Biology 4172:10.1002/9780470061565.hbb055 3867:Wüthrich K (December 1990). 3686:10.1016/j.biochi.2015.11.013 3019:10.5483/BMBRep.2005.38.3.259 1889:10.1126/science.181.4096.223 1282:protein structure prediction 1231:protein structure prediction 7: 6956:E2 SUMO-conjugating enzyme 6613:Ubiquitin-activating enzyme 5122:10.1021/acs.chemrev.6b00163 4928:Fersht AR (February 2000). 4815:10.1016/j.physa.2008.12.004 3935:10.1016/j.pnmrs.2016.10.002 2970:10.1096/fasebj.10.1.8566543 2721:10.1534/genetics.118.301719 2672:10.1534/genetics.118.301249 2302:10.1096/fasebj.10.1.8566551 2135:Pratt C, Cornely K (2004). 1406:Potential energy of protein 1368: 1253:Modeling of protein folding 929:data for protein crystals, 901:to measure protein folding 696:-related illnesses such as 203:Protein secondary structure 64:three-dimensional structure 58:, changes from an unstable 10: 7113: 6939:E1 SUMO-activating enzyme 5926:Protein structural domains 5645:Protein tertiary structure 5534:10.1038/d41586-020-03348-4 4069:10.1016/j.bpj.2008.12.3907 3407:10.1016/j.tibs.2006.01.002 3161:10.1016/j.tibs.2006.05.001 2951:Shortle D (January 1996). 1927:Principles of Biochemistry 1351:global distance test (GDT) 1315:, target protein folding. 1026: 957:nuclear magnetic resonance 948: 871:circularly polarized light 859: 758:lysosomal storage diseases 668: 608:hyperthermophilic bacteria 529:peptidyl-prolyl isomerases 302: 273:Protein tertiary structure 270: 200: 185: 177:Process of protein folding 31:Results of protein folding 6997: 6928: 6917: 6600: 6577: 6535: 6275: 6261: 6213:Nucleic acid double helix 6165: 6112: 6059: 5939: 5913: 5872: 5816: 5785: 5744: 5713: 5677: 5651: 5458:10.1146/knowable-022822-1 5419:Shead, Sam (2020-11-30). 5398:10.1016/j.jmb.2010.10.023 5005:10.1016/j.abb.2012.12.015 3645:10.1107/S0907444903017815 3067:10.1016/j.bpj.2010.04.040 2264:www.proteinstructures.com 2188:10.1016/j.sbi.2010.10.008 1929:(Fifth ed.). Wiley. 1781:10.1016/j.sbi.2004.01.013 1662:10.1016/j.bpj.2020.10.003 1483:Anfinsen CB (July 1972). 824:Fluorescence spectroscopy 819:Fluorescence spectroscopy 762:pharmaceutical chaperones 733:European Medicines Agency 698:Creutzfeldt–Jakob disease 661:) proteins switch folds. 188:Protein primary structure 6553:Survival of motor neuron 3919:"Protein folding by NMR" 3767:10.1074/jbc.273.29.18052 3250:Biochemistry. Biokhimiia 3116:10.1093/emboj/18.24.6927 2227:10.1093/emboj/19.15.3870 895:denaturation temperature 489:intrinsically disordered 468:London Dispersion forces 386:), the concentration of 6919:Ubiquitin-like proteins 6878:Deubiquitinating enzyme 5355:10.1126/science.1208351 5230:10.1073/pnas.1209000109 5171:10.1073/pnas.0702265104 5090:(by Molecular Dynamics) 4896:10.1126/science.1219021 4761:10.1073/pnas.89.18.8721 4500:10.1073/pnas.1201800109 4130:10.1073/pnas.1611418113 3591:Drenth J (2007-04-05). 3450:10.1126/science.1079589 3302:10.1073/pnas.1800168115 3209:10.1073/pnas.0712334105 3000:Lee S, Tsai FT (2005). 2623:10.1038/s41559-017-0146 2573:10.1073/pnas.93.18.9533 2046:10.1073/pnas.0606843103 1977:10.1073/pnas.0700922104 1489:The Biochemical Journal 1359:protein folding problem 1339:artificial intelligence 587:High concentrations of 338:, and it is opposed by 6053:Biomolecular structure 5050:10.1006/jmbi.1998.2172 4955:10.1073/pnas.97.4.1525 4730:Leopold PE, Montal M, 4701:10.1002/prot.340210302 4652:10.1051/jcp/1968650044 4209:10.1006/jmbi.2001.5006 3726:10.1093/protein/gzi046 2397:10.1126/science.653353 2143:Essential Biochemistry 1621:Essential cell biology 1532:Berg JM, Tymoczko JL, 1266: 1206:, proteins follow the 1191: 988: 796: 507: 458: 426: 340:conformational entropy 323: 228: 216: 173:since the late 1960s. 32: 24: 7087:Biochemical reactions 5989:Photoreceptor protein 5721:Immunoglobulin domain 4422:Nature Communications 1386:Denaturation midpoint 1363:computational biology 1326:and interconnects by 1298:coarse-grained models 1260: 1189: 1124:von Willebrand factor 1006:X-ray crystallography 985: 883:equilibrium unfolding 837:equilibrium unfolding 800:X-ray crystallography 794:X-ray crystallography 791: 784:X-ray crystallography 502: 456: 421: 321: 222: 210: 171:computational biology 151:proline isomerization 116:does not produce the 54:as a linear chain of 30: 22: 5880:Protein biosynthesis 4623:Levinthal C (1968). 2607:"De Novo Gene Birth" 1730:Folding & Design 1094:and Lars Konermann. 939:quantum computations 735:approved the use of 525:disulfide isomerases 511:Molecular chaperones 464:hydrophobic collapse 423:Hydrophobic collapse 370:may be regarded as " 336:van der Waals forces 299:Quaternary structure 62:into a more ordered 6277:Heat shock proteins 6183:Protein engineering 5757:Leucine-rich repeat 5526:2020Natur.588..203C 5489:Robert F. Service, 5347:2011Sci...334..517L 5221:2012PNAS..10917442A 5162:2007PNAS..10412330K 4946:2000PNAS...97.1525F 4888:2012Sci...338.1042D 4807:2009PhyA..388..851S 4752:1992PNAS...89.8721L 4644:1968JCP....65...44L 4491:2012PNAS..10917820J 4434:2011NatCo...2..385J 4248:2012PLoSO...746147M 4121:2016PNAS..113E6939S 4115:(45): E6939–E6945. 4061:2009BpJ....96.2045N 4049:Biophysical Journal 3636:2003AcCrD..59.1881T 3620:"The phase problem" 3442:2003Sci...299..713H 3293:2018PNAS..115.5968P 3200:2008PNAS..10510949T 3059:2010BpJ....99..595O 3047:Biophysical Journal 2887:10.1038/nature10317 2833:1996Natur.381..571H 2785:10.1038/nature02261 2777:2003Natur.426..884D 2564:1996PNAS...93.9533I 2497:2000BpJ....79.2252I 2475:Biophysical Journal 2440:10.1038/nature02611 2432:2004Natur.430..101D 2389:1978Sci...200.1012T 2111:"Protein Structure" 2027:2006PNAS..10316623R 1968:2007PNAS..10411963A 1881:1973Sci...181..223A 1820:2021PCCP...2321316S 1814:(37): 21316–21328. 1650:Biophysical Journal 1590:10.1038/nature02264 1582:2003Natur.426..900S 1396:Folding (chemistry) 1328:D. E. Shaw Research 1263:Markov state models 1196:configuration space 1176:intermediate states 1162:Levinthal's paradox 1155:Levinthal's paradox 975:(T1 & T2), and 722:Parkinson's disease 706:Alzheimer's disease 571:Heat shock proteins 567:heat shock proteins 487:, which tend to be 328:spontaneous process 286:formed between two 233:secondary structure 197:Secondary structure 83:may remain unfolded 5499:, 30 November 2020 5267:boinc.bakerlab.org 4734:(September 1992). 4442:10.1038/ncomms1385 2346:10.1002/prot.24683 2117:. Nature Education 1828:10.1039/D1CP03390E 1401:Phi value analysis 1286:Molecular dynamics 1267: 1261:Folding@home uses 1192: 1064:neutron scattering 1043:circular dichroism 989: 867:Circular dichroism 862:Circular dichroism 856:Circular dichroism 850:Phi value analysis 797: 633:chaperone protein 600:thermally unstable 552:denatured proteins 508: 505:heat shock protein 472:hydrophobic effect 459: 427: 414:Hydrophobic effect 372:folding themselves 344:co-translationally 324: 267:Tertiary structure 229: 225:beta pleated sheet 217: 85:, indicating that 33: 25: 7097:Protein structure 7074: 7073: 7070: 7069: 6579:Protein targeting 6573: 6572: 6221: 6220: 6019: 6018: 5921:Protein structure 5895:Protein targeting 5832: 5831: 5777:Trefoil knot fold 5659:Structural domain 5520:(7837): 203–204. 5449:Knowable Magazine 5087:"Protein folding" 4847:978-0-12-374595-8 4578:10.1021/bi4001529 4385:10.1002/bip.22321 4346:10.1021/cr400326k 4181:978-0-470-01905-4 4019:10.1021/ja3001419 3839:10.1021/cr0404390 3804:10.1021/bi300335r 3618:Taylor G (2003). 3604:978-0-387-33746-3 3561:Cowtan K (2001). 3537:10.1021/ar020073i 3287:(23): 5968–5973. 2154:978-0-471-39387-0 2096:978-0-7167-3268-6 2083:Fersht A (1999). 1936:978-1-118-91840-1 1630:978-0-8153-4454-4 1551:978-0-7167-4684-3 1501:10.1042/bj1280737 1469:978-0-8153-3218-3 1294:umbrella sampling 1015:involved protein 927:X-ray diffraction 923:Fourier transform 805:Fourier transform 778:gradual unfolding 744:diseases such as 659:Protein Data Bank 454: 432:Gibbs free energy 408:Ramachandran plot 284:disulfide bridges 223:An anti-parallel 182:Primary structure 91:neurodegenerative 76:primary structure 7104: 6926: 6925: 6839:Ubiquitin ligase 6605:(ubiquitylation) 6543:Alpha crystallin 6273: 6272: 6248: 6241: 6234: 6225: 6224: 6208:Structural motif 6046: 6039: 6032: 6023: 6022: 5999:Phycobiliprotein 5957:Globular protein 5952:Membrane protein 5947:List of proteins 5859: 5852: 5845: 5836: 5835: 5817:Irregular folds: 5772:Thioredoxin fold 5695:Homeodomain fold 5638: 5631: 5624: 5615: 5614: 5596: 5595: 5583: 5577: 5576: 5560: 5554: 5553: 5509: 5500: 5487: 5478: 5477: 5475: 5473: 5460: 5440: 5434: 5433: 5431: 5430: 5416: 5410: 5409: 5381: 5375: 5374: 5341:(6055): 517–20. 5330: 5324: 5323: 5321: 5319: 5305: 5299: 5298: 5296: 5294: 5284: 5278: 5277: 5275: 5273: 5259: 5253: 5252: 5242: 5232: 5200: 5194: 5193: 5183: 5173: 5141: 5135: 5134: 5124: 5115:(14): 7898–936. 5109:Chemical Reviews 5100: 5094: 5093: 5091: 5083: 5077: 5076: 5068: 5062: 5061: 5033: 5027: 5026: 5016: 4984: 4978: 4977: 4967: 4957: 4925: 4916: 4915: 4882:(6110): 1042–6. 4871: 4860: 4859: 4825: 4819: 4818: 4790: 4784: 4783: 4773: 4763: 4727: 4721: 4720: 4694: 4674: 4663: 4662: 4660: 4654:. Archived from 4629: 4620: 4614: 4613: 4611: 4610: 4604:en.wikibooks.org 4596: 4590: 4589: 4561: 4555: 4554: 4552: 4538: 4529: 4523: 4522: 4512: 4502: 4470: 4464: 4463: 4453: 4413: 4407: 4406: 4396: 4364: 4358: 4357: 4334:Chemical Reviews 4329: 4323: 4322: 4303:10.1038/nmeth740 4286: 4280: 4279: 4269: 4259: 4227: 4221: 4220: 4192: 4186: 4185: 4159: 4153: 4152: 4142: 4132: 4100: 4091: 4090: 4080: 4040: 4031: 4030: 4002: 3991: 3990: 3956: 3947: 3946: 3914: 3899: 3898: 3888: 3879:(36): 22059–62. 3864: 3851: 3850: 3827:Chemical Reviews 3822: 3816: 3815: 3786: 3780: 3779: 3769: 3745: 3739: 3738: 3728: 3704: 3698: 3697: 3669: 3658: 3657: 3647: 3615: 3609: 3608: 3588: 3582: 3581: 3579: 3577: 3567: 3558: 3549: 3548: 3519: 3513: 3512: 3476: 3470: 3469: 3425: 3419: 3418: 3390: 3381: 3380: 3362: 3347:The FEBS Journal 3338: 3325: 3324: 3314: 3304: 3272: 3266: 3265: 3241: 3232: 3231: 3221: 3211: 3194:(31): 10949–54. 3179: 3173: 3172: 3144: 3138: 3137: 3127: 3104:The EMBO Journal 3095: 3089: 3088: 3078: 3038: 3032: 3031: 3021: 2997: 2991: 2990: 2972: 2948: 2942: 2941: 2913: 2907: 2906: 2881:(7356): 324–32. 2870: 2861: 2860: 2841:10.1038/381571a0 2816: 2805: 2804: 2771:(6968): 884–90. 2760: 2743: 2742: 2732: 2715:(4): 1345–1355. 2700: 2694: 2693: 2683: 2651: 2645: 2644: 2634: 2602: 2596: 2595: 2585: 2575: 2557: 2533: 2527: 2526: 2516: 2490: 2488:cond-mat/0010390 2466: 2460: 2459: 2415: 2409: 2408: 2383:(4345): 1012–8. 2372: 2366: 2365: 2329: 2323: 2322: 2304: 2280: 2274: 2273: 2271: 2270: 2258:Al-Karadaghi S. 2255: 2249: 2248: 2238: 2215:The EMBO Journal 2206: 2200: 2199: 2171: 2165: 2164: 2162: 2161: 2146: 2137:"Thermodynamics" 2132: 2126: 2125: 2123: 2122: 2107: 2101: 2100: 2080: 2069: 2068: 2058: 2048: 2038: 2021:(45): 16623–33. 2006: 2000: 1999: 1989: 1979: 1947: 1941: 1940: 1922: 1901: 1900: 1875:(4096): 223–30. 1864: 1858: 1857: 1839: 1799: 1793: 1792: 1760: 1754: 1753: 1725: 1719: 1718: 1690: 1684: 1683: 1673: 1641: 1635: 1634: 1616: 1610: 1609: 1565: 1556: 1555: 1529: 1523: 1522: 1512: 1480: 1474: 1473: 1448: 1411:Protein dynamics 1391:Downhill folding 1376:Anfinsen's dogma 1345:placed first in 1246:transition state 1200:energy landscape 1119:Optical tweezers 905:and to generate 774:mutation studies 628: 621:bacteriophage T4 619:is the host for 455: 280:covalent bonding 215:spiral formation 164:circuit topology 147:outside the cell 130:. It happens in 87:protein dynamics 40:physical process 7112: 7111: 7107: 7106: 7105: 7103: 7102: 7101: 7092:Protein folding 7077: 7076: 7075: 7066: 6993: 6968:E3 SUMO ligase 6932: 6921: 6913: 6604: 6596: 6569: 6531: 6510: 6502: 6280: 6268:protein folding 6266: 6257: 6252: 6222: 6217: 6161: 6108: 6055: 6050: 6020: 6015: 5979:Fibrous protein 5935: 5909: 5905:Protein methods 5890:Protein folding 5868: 5863: 5833: 5828: 5812: 5798:Ferredoxin fold 5781: 5762:Flavodoxin fold 5740: 5709: 5673: 5664:Protein folding 5647: 5642: 5605: 5600: 5599: 5592:Chemistry World 5584: 5580: 5561: 5557: 5510: 5503: 5488: 5481: 5471: 5469: 5441: 5437: 5428: 5426: 5417: 5413: 5382: 5378: 5331: 5327: 5317: 5315: 5307: 5306: 5302: 5292: 5290: 5286: 5285: 5281: 5271: 5269: 5261: 5260: 5256: 5215:(43): 17442–7. 5201: 5197: 5156:(30): 12330–5. 5142: 5138: 5101: 5097: 5089: 5085: 5084: 5080: 5069: 5065: 5034: 5030: 4999:(1–2): 128–35. 4985: 4981: 4926: 4919: 4872: 4863: 4848: 4826: 4822: 4791: 4787: 4728: 4724: 4692:chem-ph/9411008 4675: 4666: 4658: 4627: 4621: 4617: 4608: 4606: 4598: 4597: 4593: 4572:(48): 8601–24. 4562: 4558: 4536: 4530: 4526: 4485:(44): 17820–5. 4471: 4467: 4414: 4410: 4365: 4361: 4330: 4326: 4287: 4283: 4228: 4224: 4193: 4189: 4182: 4160: 4156: 4101: 4094: 4041: 4034: 4013:(19): 8148–61. 4003: 3994: 3979: 3957: 3950: 3915: 3902: 3865: 3854: 3823: 3819: 3798:(24): 4807–21. 3787: 3783: 3760:(29): 18052–9. 3746: 3742: 3705: 3701: 3670: 3661: 3630:(11): 1881–90. 3616: 3612: 3605: 3589: 3585: 3575: 3573: 3565: 3559: 3552: 3520: 3516: 3477: 3473: 3436:(5607): 713–6. 3426: 3422: 3391: 3384: 3339: 3328: 3273: 3269: 3242: 3235: 3180: 3176: 3145: 3141: 3110:(24): 6927–33. 3096: 3092: 3039: 3035: 2998: 2994: 2949: 2945: 2914: 2910: 2871: 2864: 2827:(6583): 571–9. 2817: 2808: 2761: 2746: 2701: 2697: 2652: 2648: 2617:(6): 0146–146. 2603: 2599: 2555:chem-ph/9512004 2534: 2530: 2467: 2463: 2426:(6995): 101–5. 2416: 2412: 2373: 2369: 2340:(12): 3312–26. 2330: 2326: 2281: 2277: 2268: 2266: 2256: 2252: 2207: 2203: 2172: 2168: 2159: 2157: 2155: 2133: 2129: 2120: 2118: 2109: 2108: 2104: 2097: 2081: 2072: 2036:10.1.1.630.5487 2007: 2003: 1962:(29): 11963–8. 1948: 1944: 1937: 1923: 1904: 1865: 1861: 1800: 1796: 1761: 1757: 1726: 1722: 1691: 1687: 1656:(10): 2029–38. 1642: 1638: 1631: 1617: 1613: 1576:(6968): 900–4. 1566: 1559: 1552: 1530: 1526: 1481: 1477: 1470: 1449: 1445: 1440: 1435: 1371: 1255: 1184: 1157: 1148: 1136: 1134:Biotin painting 1115: 1100: 1076:Martin Gruebele 1055: 1031: 1025: 973:time relaxation 953: 947: 936: 915: 864: 858: 821: 786: 770: 754:cystic fibrosis 673: 667: 651: 624: 533:disulfide bonds 497: 445: 416: 316: 307: 301: 282:in the form of 275: 269: 231:Formation of a 205: 199: 190: 184: 179: 140:proteinopathies 36:Protein folding 17: 12: 11: 5: 7110: 7100: 7099: 7094: 7089: 7072: 7071: 7068: 7067: 7065: 7064: 7058: 7057: 7052: 7047: 7042: 7037: 7032: 7027: 7017: 7012: 7007: 7001: 6999: 6995: 6994: 6992: 6991: 6990: 6989: 6984: 6979: 6974: 6965: 6964: 6963: 6962: 6953: 6952: 6951: 6950: 6945: 6936: 6934: 6923: 6915: 6914: 6912: 6911: 6906: 6901: 6895: 6894: 6889: 6884: 6874: 6873: 6872: 6871: 6866: 6861: 6856: 6851: 6846: 6834: 6833: 6832: 6831: 6826: 6821: 6816: 6811: 6806: 6800: 6795: 6790: 6785: 6780: 6775: 6770: 6765: 6760: 6755: 6750: 6745: 6740: 6735: 6730: 6725: 6720: 6715: 6710: 6705: 6700: 6695: 6690: 6685: 6680: 6675: 6663: 6662: 6661: 6660: 6655: 6650: 6645: 6640: 6635: 6630: 6625: 6620: 6608: 6606: 6598: 6597: 6595: 6594: 6589: 6587:Signal peptide 6583: 6581: 6575: 6574: 6571: 6570: 6568: 6567: 6566: 6565: 6560: 6550: 6545: 6539: 6537: 6533: 6532: 6530: 6529: 6528: 6527: 6522: 6517: 6512: 6508: 6504: 6500: 6490: 6489: 6488: 6487: 6482: 6477: 6472: 6467: 6462: 6457: 6452: 6447: 6442: 6437: 6432: 6427: 6416: 6415: 6414: 6413: 6408: 6403: 6398: 6393: 6388: 6383: 6378: 6373: 6368: 6363: 6358: 6353: 6348: 6343: 6338: 6333: 6328: 6323: 6312: 6311: 6302: 6297: 6292: 6286: 6284: 6270: 6259: 6258: 6251: 6250: 6243: 6236: 6228: 6219: 6218: 6216: 6215: 6210: 6205: 6200: 6195: 6190: 6185: 6180: 6178:Protein domain 6175: 6169: 6167: 6163: 6162: 6160: 6159: 6157:Thermodynamics 6154: 6149: 6144: 6139: 6134: 6129: 6124: 6118: 6116: 6110: 6109: 6107: 6106: 6104:Thermodynamics 6101: 6096: 6091: 6086: 6081: 6076: 6071: 6065: 6063: 6057: 6056: 6049: 6048: 6041: 6034: 6026: 6017: 6016: 6014: 6013: 6012: 6011: 6006: 6001: 5991: 5986: 5981: 5976: 5975: 5974: 5969: 5964: 5954: 5949: 5943: 5941: 5937: 5936: 5934: 5933: 5928: 5923: 5917: 5915: 5911: 5910: 5908: 5907: 5902: 5897: 5892: 5887: 5882: 5876: 5874: 5870: 5869: 5862: 5861: 5854: 5847: 5839: 5830: 5829: 5827: 5826: 5820: 5818: 5814: 5813: 5811: 5810: 5805: 5803:Ribonuclease A 5800: 5795: 5789: 5787: 5783: 5782: 5780: 5779: 5774: 5769: 5764: 5759: 5754: 5748: 5746: 5742: 5741: 5739: 5738: 5733: 5731:Beta-propeller 5728: 5723: 5717: 5715: 5711: 5710: 5708: 5707: 5702: 5700:Alpha solenoid 5697: 5692: 5687: 5681: 5679: 5675: 5674: 5672: 5671: 5666: 5661: 5655: 5653: 5649: 5648: 5641: 5640: 5633: 5626: 5618: 5612: 5611: 5604: 5603:External links 5601: 5598: 5597: 5578: 5571:) – via 5555: 5501: 5479: 5435: 5411: 5376: 5325: 5300: 5279: 5263:"Rosetta@home" 5254: 5195: 5136: 5095: 5078: 5063: 5028: 4979: 4917: 4861: 4846: 4820: 4785: 4746:(18): 8721–5. 4722: 4664: 4661:on 2009-09-02. 4615: 4591: 4556: 4550:10.1101/274761 4524: 4465: 4408: 4359: 4324: 4291:Nature Methods 4281: 4242:(10): e46147. 4222: 4187: 4180: 4154: 4092: 4055:(6): 2045–54. 4032: 3992: 3977: 3948: 3900: 3852: 3833:(5): 1769–84. 3817: 3781: 3740: 3699: 3659: 3610: 3603: 3583: 3550: 3531:(12): 911–21. 3514: 3471: 3420: 3382: 3353:(7): 1331–49. 3326: 3267: 3256:(4): 399–406. 3233: 3174: 3155:(7): 395–401. 3139: 3090: 3033: 2992: 2943: 2908: 2862: 2806: 2744: 2695: 2666:(1): 303–313. 2646: 2597: 2548:(18): 9533–8. 2528: 2461: 2410: 2367: 2324: 2275: 2250: 2221:(15): 3870–5. 2201: 2166: 2153: 2127: 2102: 2095: 2070: 2001: 1942: 1935: 1902: 1859: 1794: 1755: 1720: 1685: 1636: 1629: 1611: 1557: 1550: 1524: 1475: 1468: 1442: 1441: 1439: 1436: 1434: 1433: 1428: 1423: 1418: 1413: 1408: 1403: 1398: 1393: 1388: 1383: 1378: 1372: 1370: 1367: 1254: 1251: 1223:folding funnel 1183: 1180: 1156: 1153: 1147: 1144: 1135: 1132: 1114: 1111: 1099: 1096: 1080:Sheena Radford 1054: 1051: 1027:Main article: 1024: 1021: 949:Main article: 946: 943: 934: 914: 911: 860:Main article: 857: 854: 829:quantum yields 820: 817: 785: 782: 769: 766: 714:polyneuropathy 669:Main article: 666: 663: 650: 649:Fold switching 647: 613:The bacterium 591:, extremes of 496: 493: 415: 412: 368:macromolecules 366:. While these 346:, so that the 332:hydrogen bonds 315: 312: 303:Main article: 300: 297: 271:Main article: 268: 265: 248:hydrogen bonds 245:intramolecular 201:Main article: 198: 195: 186:Main article: 183: 180: 178: 175: 128:unfolded state 15: 9: 6: 4: 3: 2: 7109: 7098: 7095: 7093: 7090: 7088: 7085: 7084: 7082: 7063: 7060: 7059: 7056: 7053: 7051: 7048: 7046: 7043: 7041: 7038: 7036: 7033: 7031: 7028: 7025: 7021: 7018: 7016: 7013: 7011: 7008: 7006: 7003: 7002: 7000: 6996: 6988: 6985: 6983: 6980: 6978: 6975: 6973: 6970: 6969: 6967: 6966: 6961: 6958: 6957: 6955: 6954: 6949: 6946: 6944: 6941: 6940: 6938: 6937: 6935: 6933:(SUMOylation) 6931: 6927: 6924: 6920: 6916: 6910: 6907: 6905: 6902: 6900: 6897: 6896: 6893: 6890: 6888: 6885: 6883: 6879: 6876: 6875: 6870: 6867: 6865: 6862: 6860: 6857: 6855: 6852: 6850: 6847: 6845: 6842: 6841: 6840: 6836: 6835: 6830: 6827: 6825: 6822: 6820: 6817: 6815: 6812: 6810: 6807: 6804: 6801: 6799: 6796: 6794: 6791: 6789: 6786: 6784: 6781: 6779: 6776: 6774: 6771: 6769: 6766: 6764: 6761: 6759: 6756: 6754: 6751: 6749: 6746: 6744: 6741: 6739: 6736: 6734: 6731: 6729: 6726: 6724: 6721: 6719: 6716: 6714: 6711: 6709: 6706: 6704: 6701: 6699: 6696: 6694: 6691: 6689: 6686: 6684: 6681: 6679: 6676: 6674: 6671: 6670: 6669: 6665: 6664: 6659: 6656: 6654: 6651: 6649: 6646: 6644: 6641: 6639: 6636: 6634: 6631: 6629: 6626: 6624: 6621: 6619: 6616: 6615: 6614: 6610: 6609: 6607: 6603: 6599: 6593: 6590: 6588: 6585: 6584: 6582: 6580: 6576: 6564: 6561: 6559: 6556: 6555: 6554: 6551: 6549: 6546: 6544: 6541: 6540: 6538: 6534: 6526: 6523: 6521: 6518: 6516: 6513: 6511: 6505: 6503: 6497: 6496: 6495: 6492: 6491: 6486: 6483: 6481: 6478: 6476: 6473: 6471: 6468: 6466: 6463: 6461: 6458: 6456: 6453: 6451: 6448: 6446: 6443: 6441: 6438: 6436: 6433: 6431: 6428: 6426: 6423: 6422: 6421: 6418: 6417: 6412: 6409: 6407: 6404: 6402: 6399: 6397: 6394: 6392: 6389: 6387: 6384: 6382: 6379: 6377: 6374: 6372: 6369: 6367: 6364: 6362: 6359: 6357: 6354: 6352: 6349: 6347: 6344: 6342: 6339: 6337: 6334: 6332: 6329: 6327: 6324: 6322: 6319: 6318: 6317: 6314: 6313: 6310: 6306: 6303: 6301: 6298: 6296: 6293: 6291: 6288: 6287: 6285: 6283: 6278: 6274: 6271: 6269: 6264: 6260: 6256: 6249: 6244: 6242: 6237: 6235: 6230: 6229: 6226: 6214: 6211: 6209: 6206: 6204: 6201: 6199: 6196: 6194: 6191: 6189: 6186: 6184: 6181: 6179: 6176: 6174: 6171: 6170: 6168: 6164: 6158: 6155: 6153: 6150: 6148: 6145: 6143: 6142:Determination 6140: 6138: 6135: 6133: 6130: 6128: 6125: 6123: 6120: 6119: 6117: 6115: 6111: 6105: 6102: 6100: 6097: 6095: 6092: 6090: 6089:Determination 6087: 6085: 6082: 6080: 6077: 6075: 6072: 6070: 6067: 6066: 6064: 6062: 6058: 6054: 6047: 6042: 6040: 6035: 6033: 6028: 6027: 6024: 6010: 6007: 6005: 6002: 6000: 5997: 5996: 5995: 5992: 5990: 5987: 5985: 5984:Chromoprotein 5982: 5980: 5977: 5973: 5970: 5968: 5965: 5963: 5960: 5959: 5958: 5955: 5953: 5950: 5948: 5945: 5944: 5942: 5938: 5932: 5929: 5927: 5924: 5922: 5919: 5918: 5916: 5912: 5906: 5903: 5901: 5898: 5896: 5893: 5891: 5888: 5886: 5883: 5881: 5878: 5877: 5875: 5871: 5867: 5860: 5855: 5853: 5848: 5846: 5841: 5840: 5837: 5825: 5822: 5821: 5819: 5815: 5809: 5808:SH2-like fold 5806: 5804: 5801: 5799: 5796: 5794: 5791: 5790: 5788: 5784: 5778: 5775: 5773: 5770: 5768: 5767:Rossmann fold 5765: 5763: 5760: 5758: 5755: 5753: 5750: 5749: 5747: 5743: 5737: 5734: 5732: 5729: 5727: 5724: 5722: 5719: 5718: 5716: 5712: 5706: 5703: 5701: 5698: 5696: 5693: 5691: 5688: 5686: 5683: 5682: 5680: 5676: 5670: 5667: 5665: 5662: 5660: 5657: 5656: 5654: 5650: 5646: 5639: 5634: 5632: 5627: 5625: 5620: 5619: 5616: 5610: 5607: 5606: 5593: 5589: 5582: 5574: 5570: 5566: 5559: 5551: 5547: 5543: 5539: 5535: 5531: 5527: 5523: 5519: 5515: 5508: 5506: 5498: 5497: 5492: 5486: 5484: 5468: 5464: 5459: 5454: 5450: 5446: 5439: 5425: 5422: 5415: 5407: 5403: 5399: 5395: 5391: 5387: 5380: 5372: 5368: 5364: 5360: 5356: 5352: 5348: 5344: 5340: 5336: 5329: 5314: 5310: 5304: 5289: 5283: 5268: 5264: 5258: 5250: 5246: 5241: 5236: 5231: 5226: 5222: 5218: 5214: 5210: 5206: 5199: 5191: 5187: 5182: 5177: 5172: 5167: 5163: 5159: 5155: 5151: 5147: 5140: 5132: 5128: 5123: 5118: 5114: 5110: 5106: 5099: 5088: 5082: 5074: 5067: 5059: 5055: 5051: 5047: 5044:(3): 835–48. 5043: 5039: 5032: 5024: 5020: 5015: 5010: 5006: 5002: 4998: 4994: 4990: 4983: 4975: 4971: 4966: 4961: 4956: 4951: 4947: 4943: 4940:(4): 1525–9. 4939: 4935: 4931: 4924: 4922: 4913: 4909: 4905: 4901: 4897: 4893: 4889: 4885: 4881: 4877: 4870: 4868: 4866: 4857: 4853: 4849: 4843: 4839: 4835: 4831: 4824: 4816: 4812: 4808: 4804: 4801:(6): 851–62. 4800: 4796: 4789: 4781: 4777: 4772: 4767: 4762: 4757: 4753: 4749: 4745: 4741: 4737: 4733: 4726: 4718: 4714: 4710: 4706: 4702: 4698: 4693: 4688: 4685:(3): 167–95. 4684: 4680: 4673: 4671: 4669: 4657: 4653: 4649: 4645: 4641: 4637: 4633: 4626: 4619: 4605: 4601: 4595: 4587: 4583: 4579: 4575: 4571: 4567: 4560: 4551: 4546: 4542: 4535: 4528: 4520: 4516: 4511: 4506: 4501: 4496: 4492: 4488: 4484: 4480: 4476: 4469: 4461: 4457: 4452: 4447: 4443: 4439: 4435: 4431: 4427: 4423: 4419: 4412: 4404: 4400: 4395: 4390: 4386: 4382: 4379:(11): 860–9. 4378: 4374: 4370: 4363: 4355: 4351: 4347: 4343: 4340:(1): 660–76. 4339: 4335: 4328: 4320: 4316: 4312: 4308: 4304: 4300: 4297:(3): 207–12. 4296: 4292: 4285: 4277: 4273: 4268: 4263: 4258: 4253: 4249: 4245: 4241: 4237: 4233: 4226: 4218: 4214: 4210: 4206: 4203:(4): 865–73. 4202: 4198: 4191: 4183: 4177: 4173: 4169: 4165: 4158: 4150: 4146: 4141: 4136: 4131: 4126: 4122: 4118: 4114: 4110: 4106: 4099: 4097: 4088: 4084: 4079: 4074: 4070: 4066: 4062: 4058: 4054: 4050: 4046: 4039: 4037: 4028: 4024: 4020: 4016: 4012: 4008: 4001: 3999: 3997: 3988: 3984: 3980: 3978:9780124116368 3974: 3970: 3966: 3962: 3955: 3953: 3944: 3940: 3936: 3932: 3928: 3924: 3920: 3913: 3911: 3909: 3907: 3905: 3896: 3892: 3887: 3882: 3878: 3874: 3870: 3863: 3861: 3859: 3857: 3848: 3844: 3840: 3836: 3832: 3828: 3821: 3813: 3809: 3805: 3801: 3797: 3793: 3785: 3777: 3773: 3768: 3763: 3759: 3755: 3751: 3744: 3736: 3732: 3727: 3722: 3719:(9): 445–56. 3718: 3714: 3710: 3703: 3695: 3691: 3687: 3683: 3679: 3675: 3668: 3666: 3664: 3655: 3651: 3646: 3641: 3637: 3633: 3629: 3625: 3621: 3614: 3606: 3600: 3596: 3595: 3587: 3571: 3564: 3557: 3555: 3546: 3542: 3538: 3534: 3530: 3526: 3518: 3510: 3506: 3502: 3498: 3494: 3490: 3486: 3482: 3475: 3467: 3463: 3459: 3455: 3451: 3447: 3443: 3439: 3435: 3431: 3424: 3416: 3412: 3408: 3404: 3400: 3396: 3389: 3387: 3378: 3374: 3370: 3366: 3361: 3356: 3352: 3348: 3344: 3337: 3335: 3333: 3331: 3322: 3318: 3313: 3308: 3303: 3298: 3294: 3290: 3286: 3282: 3278: 3271: 3263: 3259: 3255: 3251: 3247: 3240: 3238: 3229: 3225: 3220: 3215: 3210: 3205: 3201: 3197: 3193: 3189: 3185: 3178: 3170: 3166: 3162: 3158: 3154: 3150: 3143: 3135: 3131: 3126: 3121: 3117: 3113: 3109: 3105: 3101: 3094: 3086: 3082: 3077: 3072: 3068: 3064: 3060: 3056: 3052: 3048: 3044: 3037: 3029: 3025: 3020: 3015: 3012:(3): 259–65. 3011: 3007: 3003: 2996: 2988: 2984: 2980: 2976: 2971: 2966: 2962: 2958: 2957:FASEB Journal 2954: 2947: 2939: 2935: 2931: 2927: 2923: 2919: 2912: 2904: 2900: 2896: 2892: 2888: 2884: 2880: 2876: 2869: 2867: 2858: 2854: 2850: 2846: 2842: 2838: 2834: 2830: 2826: 2822: 2815: 2813: 2811: 2802: 2798: 2794: 2790: 2786: 2782: 2778: 2774: 2770: 2766: 2759: 2757: 2755: 2753: 2751: 2749: 2740: 2736: 2731: 2726: 2722: 2718: 2714: 2710: 2706: 2699: 2691: 2687: 2682: 2677: 2673: 2669: 2665: 2661: 2657: 2650: 2642: 2638: 2633: 2628: 2624: 2620: 2616: 2612: 2608: 2601: 2593: 2589: 2584: 2579: 2574: 2569: 2565: 2561: 2556: 2551: 2547: 2543: 2539: 2532: 2524: 2520: 2515: 2510: 2506: 2502: 2498: 2494: 2489: 2484: 2481:(5): 2252–8. 2480: 2476: 2472: 2465: 2457: 2453: 2449: 2445: 2441: 2437: 2433: 2429: 2425: 2421: 2414: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2371: 2363: 2359: 2355: 2351: 2347: 2343: 2339: 2335: 2328: 2320: 2316: 2312: 2308: 2303: 2298: 2294: 2290: 2289:FASEB Journal 2286: 2279: 2265: 2261: 2254: 2246: 2242: 2237: 2232: 2228: 2224: 2220: 2216: 2212: 2205: 2197: 2193: 2189: 2185: 2181: 2177: 2170: 2156: 2150: 2145: 2144: 2138: 2131: 2116: 2112: 2106: 2098: 2092: 2089:. Macmillan. 2088: 2087: 2079: 2077: 2075: 2066: 2062: 2057: 2052: 2047: 2042: 2037: 2032: 2028: 2024: 2020: 2016: 2012: 2005: 1997: 1993: 1988: 1983: 1978: 1973: 1969: 1965: 1961: 1957: 1953: 1946: 1938: 1932: 1928: 1921: 1919: 1917: 1915: 1913: 1911: 1909: 1907: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1855: 1851: 1847: 1843: 1838: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1805: 1798: 1790: 1786: 1782: 1778: 1774: 1770: 1766: 1759: 1751: 1747: 1743: 1739: 1736:(4): R81-91. 1735: 1731: 1724: 1716: 1712: 1708: 1704: 1700: 1696: 1689: 1681: 1677: 1672: 1667: 1663: 1659: 1655: 1651: 1647: 1640: 1632: 1626: 1622: 1615: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1564: 1562: 1553: 1547: 1543: 1539: 1535: 1528: 1520: 1516: 1511: 1506: 1502: 1498: 1495:(4): 737–49. 1494: 1490: 1486: 1479: 1471: 1465: 1461: 1457: 1453: 1447: 1443: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1373: 1366: 1364: 1360: 1354: 1352: 1348: 1344: 1340: 1336: 1331: 1329: 1325: 1321: 1316: 1314: 1310: 1306: 1301: 1299: 1295: 1291: 1287: 1283: 1279: 1278: 1273: 1272: 1264: 1259: 1250: 1247: 1242: 1238: 1236: 1232: 1228: 1224: 1220: 1215: 1213: 1209: 1205: 1204:Peter Wolynes 1201: 1197: 1188: 1179: 1177: 1172: 1168: 1163: 1152: 1143: 1141: 1131: 1129: 1125: 1120: 1110: 1108: 1104: 1095: 1093: 1092:Bengt Nölting 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1050: 1048: 1044: 1039: 1035: 1030: 1020: 1018: 1014: 1009: 1007: 1002: 999: 994: 984: 980: 978: 974: 970: 966: 962: 958: 952: 942: 940: 932: 928: 924: 920: 910: 908: 907:chevron plots 904: 900: 896: 892: 888: 884: 880: 876: 875:alpha helices 872: 868: 863: 853: 851: 848:and derive a 847: 843: 838: 833: 830: 825: 816: 814: 810: 809:phase problem 806: 801: 795: 790: 781: 779: 775: 765: 763: 759: 755: 751: 747: 743: 738: 734: 730: 727: 723: 719: 715: 711: 707: 703: 699: 695: 690: 688: 683: 678: 672: 662: 660: 656: 646: 644: 640: 636: 632: 627: 622: 618: 617: 611: 609: 605: 601: 596: 594: 590: 585: 581: 580:precipitation 576: 572: 568: 564: 560: 555: 553: 549: 545: 544: 538: 534: 530: 526: 522: 518: 517: 512: 506: 501: 492: 490: 486: 480: 477: 473: 469: 465: 443: 441: 437: 433: 424: 420: 411: 409: 403: 401: 397: 393: 389: 385: 384:lipid bilayer 381: 377: 373: 369: 365: 361: 357: 353: 349: 345: 341: 337: 333: 329: 326:Folding is a 320: 311: 306: 296: 293: 289: 285: 281: 274: 264: 262: 257: 253: 252:Linus Pauling 249: 246: 242: 238: 237:alpha helices 234: 226: 221: 214: 209: 204: 194: 189: 174: 172: 167: 165: 161: 160:contact order 156: 152: 148: 143: 141: 137: 133: 129: 125: 121: 119: 115: 114:immune system 111: 107: 103: 100: 96: 92: 88: 84: 79: 77: 73: 67: 65: 61: 57: 53: 49: 45: 41: 37: 29: 21: 6930:SUMO protein 6267: 6193:Nucleic acid 6114:Nucleic acid 5889: 5714:All-β folds: 5685:Helix bundle 5678:All-α folds: 5663: 5591: 5581: 5558: 5517: 5513: 5494: 5470:. Retrieved 5448: 5438: 5427:. Retrieved 5423: 5414: 5392:(1): 43–48. 5389: 5386:J. Mol. Biol 5385: 5379: 5338: 5334: 5328: 5316:. Retrieved 5312: 5303: 5291:. Retrieved 5282: 5270:. Retrieved 5266: 5257: 5212: 5208: 5198: 5153: 5149: 5139: 5112: 5108: 5098: 5081: 5066: 5041: 5037: 5031: 4996: 4992: 4982: 4937: 4933: 4879: 4875: 4829: 4823: 4798: 4794: 4788: 4743: 4739: 4725: 4682: 4678: 4656:the original 4635: 4631: 4618: 4607:. Retrieved 4603: 4594: 4569: 4566:Biochemistry 4565: 4559: 4540: 4527: 4482: 4478: 4468: 4425: 4421: 4411: 4376: 4372: 4362: 4337: 4333: 4327: 4294: 4290: 4284: 4239: 4235: 4225: 4200: 4196: 4190: 4163: 4157: 4112: 4108: 4052: 4048: 4010: 4006: 3960: 3926: 3922: 3876: 3872: 3830: 3826: 3820: 3795: 3792:Biochemistry 3791: 3784: 3757: 3753: 3743: 3716: 3712: 3702: 3677: 3673: 3627: 3623: 3613: 3593: 3586: 3574:. Retrieved 3569: 3528: 3524: 3517: 3484: 3480: 3474: 3433: 3429: 3423: 3401:(3): 150–5. 3398: 3394: 3350: 3346: 3284: 3280: 3270: 3253: 3249: 3191: 3187: 3177: 3152: 3148: 3142: 3107: 3103: 3093: 3053:(2): 595–9. 3050: 3046: 3036: 3009: 3005: 2995: 2963:(1): 27–34. 2960: 2956: 2946: 2921: 2917: 2911: 2878: 2874: 2824: 2820: 2768: 2764: 2712: 2708: 2698: 2663: 2659: 2649: 2614: 2610: 2600: 2545: 2541: 2531: 2478: 2474: 2464: 2423: 2419: 2413: 2380: 2376: 2370: 2337: 2333: 2327: 2295:(1): 75–83. 2292: 2288: 2278: 2267:. Retrieved 2263: 2253: 2218: 2214: 2204: 2182:(1): 25–31. 2179: 2175: 2169: 2158:. Retrieved 2142: 2130: 2119:. Retrieved 2114: 2105: 2085: 2018: 2014: 2004: 1959: 1955: 1945: 1926: 1872: 1868: 1862: 1837:1887/3277889 1811: 1807: 1797: 1775:(1): 76–88. 1772: 1768: 1758: 1733: 1729: 1723: 1698: 1694: 1688: 1653: 1649: 1639: 1620: 1614: 1573: 1569: 1542:Biochemistry 1541: 1527: 1492: 1488: 1478: 1459: 1446: 1381:Chevron plot 1355: 1332: 1317: 1309:Folding@home 1305:Rosetta@home 1302: 1275: 1269: 1268: 1243: 1239: 1219:José Onuchic 1216: 1211: 1207: 1193: 1158: 1149: 1137: 1116: 1101: 1084:Chris Dobson 1056: 1038:conformation 1032: 1010: 1003: 990: 954: 916: 899:stopped flow 865: 846:chevron plot 842:stopped flow 834: 822: 798: 771: 748:-associated 718:Huntington's 691: 674: 652: 630: 614: 612: 597: 556: 547: 541: 536: 514: 509: 481: 460: 428: 404: 364:biosynthesis 325: 308: 276: 261:peptide bond 230: 191: 168: 144: 124:Denaturation 122: 80: 72:native state 68: 35: 34: 7024:neddylation 6290:Hsp10/GroES 6282:Chaperonins 6004:Phytochrome 5994:Biliprotein 5726:Beta barrel 5690:Globin fold 4373:Biopolymers 3576:November 3, 1426:Proteopathy 1212:frustration 1103:Proteolysis 1098:Proteolysis 1088:Alan Fersht 1047:temperature 951:Protein NMR 891:free energy 887:temperature 879:beta sheets 746:antitrypsin 742:proteopathy 671:Proteopathy 559:random coil 476:amphiphilic 396:temperature 356:synthesized 292:topological 241:beta sheets 213:alpha helix 60:random coil 56:amino acids 42:by which a 7081:Categories 6316:Hsp40/DnaJ 6263:Chaperones 6188:Proteasome 6147:Prediction 6137:Quaternary 6094:Prediction 6084:Quaternary 5931:Proteasome 5914:Structures 5786:α+β folds: 5752:TIM barrel 5745:α/β folds: 5736:Beta helix 5705:Death fold 5429:2020-11-30 4732:Onuchic JN 4609:2016-11-05 3487:: 333–66. 2924:: 323–55. 2269:2016-11-26 2160:2016-11-26 2121:2016-11-26 1701:: 631–60. 1438:References 1171:picosecond 1167:nanosecond 1128:SH3 domain 1072:Harry Gray 987:timescale. 495:Chaperones 400:chaperones 352:C-terminal 348:N-terminus 118:antibodies 93:and other 6602:Ubiquitin 6548:Clusterin 6127:Secondary 6074:Secondary 6009:Lipocalin 5873:Processes 5824:Conotoxin 5793:DNA clamp 5550:227243204 5467:247206999 5071:Jones D. 4638:: 44–45. 3929:: 52–77. 3680:: 29–37. 3674:Biochimie 2147:. Wiley. 2031:CiteSeerX 1854:237583577 1452:Alberts B 1335:AlphaFold 1290:in silico 1277:ab initio 998:spin echo 792:Steps of 750:emphysema 737:Tafamidis 677:misfolded 604:egg white 584:insoluble 565:known as 110:allergies 48:synthesis 6882:Ataxin 3 6166:See also 6132:Tertiary 6079:Tertiary 5962:Globulin 5900:Proteome 5866:Proteins 5542:33257889 5472:25 March 5406:20974152 5371:27988268 5363:22034434 5318:14 March 5309:"Foldit" 5293:14 March 5272:14 March 5249:23045636 5190:17636132 5131:27333362 5023:23266569 4974:10677494 4904:23180855 4856:19121702 4717:13838095 4679:Proteins 4586:24187909 4519:22949695 4460:21750539 4403:23784721 4354:24001118 4319:21364478 4311:15782190 4276:23056252 4236:PLOS ONE 4217:11575938 4149:27791136 4087:19289032 4027:22554188 3987:23954103 3943:28552172 3847:16683754 3812:22640394 3735:16087653 3694:26607240 3654:14573942 3545:16359163 3509:23797549 3501:16756495 3466:30829998 3458:12560553 3415:16473510 3377:23370420 3369:16689923 3321:29784778 3228:18664583 3169:16716593 3134:10601015 3085:20643079 3028:15943899 2987:24066207 2938:23746257 2895:21776078 2793:14685248 2739:30692195 2709:Genetics 2690:30026186 2660:Genetics 2641:28642936 2523:11053106 2448:15229605 2362:27113763 2354:25204743 2334:Proteins 2319:20021399 2245:10921869 2196:21111607 2115:Scitable 2065:17075053 1996:17609385 1846:34545868 1789:15102453 1680:33142107 1598:14685251 1536:(2002). 1534:Stryer L 1369:See also 1343:DeepMind 1060:dynamics 955:Protein 903:kinetics 756:and the 682:β-sheets 575:bacteria 548:in vivo. 543:in vitro 521:catalyst 436:enthalpy 360:ribosome 288:cysteine 256:backbone 95:diseases 52:ribosome 46:, after 6805:(CDC34) 6173:Protein 6122:Primary 6069:Primary 6061:Protein 5972:Albumin 5967:Edestin 5652:General 5573:Twitter 5522:Bibcode 5496:Science 5343:Bibcode 5335:Science 5313:fold.it 5240:3491489 5217:Bibcode 5181:1941469 5158:Bibcode 5058:9826519 5014:4084838 4942:Bibcode 4912:5756068 4884:Bibcode 4876:Science 4803:Bibcode 4780:1528885 4748:Bibcode 4709:7784423 4640:Bibcode 4541:bioRxiv 4510:3497811 4487:Bibcode 4451:3144584 4430:Bibcode 4428:: 385. 4394:4065244 4267:3463568 4244:Bibcode 4140:5111666 4117:Bibcode 4078:2717354 4057:Bibcode 3895:2266107 3776:9660761 3632:Bibcode 3438:Bibcode 3430:Science 3312:6003340 3289:Bibcode 3262:9556522 3219:2490668 3196:Bibcode 3125:1171756 3076:2905109 3055:Bibcode 2979:8566543 2903:4337671 2857:4347271 2849:8637592 2829:Bibcode 2801:1036192 2773:Bibcode 2730:6456324 2681:6116962 2632:5476217 2592:8790365 2560:Bibcode 2514:1301114 2493:Bibcode 2456:4315026 2428:Bibcode 2385:Bibcode 2377:Science 2311:8566551 2056:1636505 2023:Bibcode 1987:1906725 1964:Bibcode 1897:4124164 1877:Bibcode 1869:Science 1816:Bibcode 1750:9710577 1715:2197986 1671:7732725 1606:6451881 1578:Bibcode 1519:4565129 1510:1173893 1271:De novo 967:,  937:O), or 807:, the " 729:fibrils 726:amyloid 687:amyloid 631:E. coli 616:E. coli 589:solutes 563:enzymes 537:in vivo 516:in vivo 485:de novo 470:). The 440:entropy 376:solvent 358:by the 132:cooking 108:. Many 102:fibrils 99:amyloid 44:protein 38:is the 6849:Cullin 6152:Design 6099:Design 5548:  5540:  5514:Nature 5465:  5404:  5369:  5361:  5247:  5237:  5188:  5178:  5129:  5056:  5021:  5011:  4972:  4962:  4910:  4902:  4854:  4844:  4778:  4768:  4715:  4707:  4584:  4517:  4507:  4458:  4448:  4401:  4391:  4352:  4317:  4309:  4274:  4264:  4215:  4178:  4147:  4137:  4085:  4075:  4025:  3985:  3975:  3941:  3893:  3845:  3810:  3774:  3733:  3692:  3652:  3601:  3543:  3507:  3499:  3464:  3456:  3413:  3375:  3367:  3319:  3309:  3260:  3226:  3216:  3167:  3132:  3122:  3083:  3073:  3026:  2985:  2977:  2936:  2901:  2893:  2875:Nature 2855:  2847:  2821:Nature 2799:  2791:  2765:Nature 2737:  2727:  2688:  2678:  2639:  2629:  2590:  2580:  2521:  2511:  2454:  2446:  2420:Nature 2405:653353 2403:  2360:  2352:  2317:  2309:  2243:  2236:306593 2233:  2194:  2151:  2093:  2063:  2053:  2033:  1994:  1984:  1933:  1895:  1852:  1844:  1787:  1748:  1713:  1678:  1668:  1627:  1604:  1596:  1570:Nature 1548:  1517:  1507:  1466:  1313:Foldit 1235:design 626:P17313 394:, the 390:, the 162:, and 155:domain 106:prions 7040:ATG12 7030:FAT10 7020:NEDD8 7005:ISG15 6998:Other 6987:PIAS4 6982:PIAS3 6977:PIAS2 6972:PIAS1 6922:(UBL) 6904:BIRC6 6864:FANCL 6536:Other 6525:TRAP1 6494:Hsp90 6420:Hsp70 6309:GroEL 6305:HSP60 6300:Hsp47 6295:Hsp27 5940:Types 5569:Tweet 5546:S2CID 5463:S2CID 5367:S2CID 4965:26468 4908:S2CID 4771:49992 4713:S2CID 4687:arXiv 4659:(PDF) 4628:(PDF) 4537:(PDF) 4315:S2CID 3566:(PDF) 3505:S2CID 3462:S2CID 3373:S2CID 2983:S2CID 2899:S2CID 2853:S2CID 2797:S2CID 2583:38463 2550:arXiv 2483:arXiv 2452:S2CID 2358:S2CID 2315:S2CID 1850:S2CID 1602:S2CID 1337:, an 1324:ASICs 1320:Anton 965:TOCSY 931:FT-IR 694:prion 643:GroEL 639:virus 635:GroES 582:into 388:salts 380:water 136:burns 50:by a 7055:UBL5 7045:FUB1 7035:ATG8 7015:UFM1 7010:URM1 6960:UBC9 6948:SAE2 6943:SAE1 6909:UFC1 6899:ATG3 6892:CYLD 6887:USP6 6869:UBR1 6859:MDM2 6658:SAE1 6653:NAE1 6648:ATG7 6643:UBA7 6638:UBA6 6633:UBA5 6628:UBA3 6623:UBA2 6618:UBA1 6563:SMN2 6558:SMN1 5538:PMID 5474:2022 5424:CNBC 5402:PMID 5359:PMID 5320:2023 5295:2023 5274:2023 5245:PMID 5186:PMID 5127:PMID 5054:PMID 5019:PMID 4970:PMID 4900:PMID 4852:PMID 4842:ISBN 4776:PMID 4705:PMID 4582:PMID 4515:PMID 4456:PMID 4399:PMID 4350:PMID 4307:PMID 4272:PMID 4213:PMID 4176:ISBN 4145:PMID 4083:PMID 4023:PMID 3983:PMID 3973:ISBN 3939:PMID 3891:PMID 3843:PMID 3808:PMID 3772:PMID 3731:PMID 3690:PMID 3650:PMID 3599:ISBN 3578:2016 3541:PMID 3497:PMID 3454:PMID 3411:PMID 3365:PMID 3317:PMID 3258:PMID 3224:PMID 3165:PMID 3130:PMID 3081:PMID 3024:PMID 2975:PMID 2934:PMID 2891:PMID 2845:PMID 2789:PMID 2735:PMID 2686:PMID 2637:PMID 2588:PMID 2519:PMID 2444:PMID 2401:PMID 2350:PMID 2307:PMID 2241:PMID 2192:PMID 2149:ISBN 2091:ISBN 2061:PMID 1992:PMID 1931:ISBN 1893:PMID 1842:PMID 1785:PMID 1746:PMID 1711:PMID 1676:PMID 1625:ISBN 1594:PMID 1546:ISBN 1515:PMID 1464:ISBN 1347:CASP 1311:and 1233:and 1194:The 1017:SOD1 969:HSQC 961:COSY 877:and 720:and 708:and 527:and 438:and 239:and 211:The 7050:MUB 6854:CBL 6844:VHL 6837:E3 6666:E2 6611:E1 6480:12A 6411:C19 6406:C14 6401:C13 6396:C11 6391:C10 6346:B11 6203:RNA 6198:DNA 5530:doi 5518:588 5453:doi 5394:doi 5390:405 5351:doi 5339:334 5235:PMC 5225:doi 5213:109 5176:PMC 5166:doi 5154:104 5117:doi 5113:116 5046:doi 5042:284 5009:PMC 5001:doi 4997:531 4960:PMC 4950:doi 4892:doi 4880:338 4834:doi 4811:doi 4799:388 4766:PMC 4756:doi 4697:doi 4648:doi 4574:doi 4545:doi 4505:PMC 4495:doi 4483:109 4446:PMC 4438:doi 4389:PMC 4381:doi 4342:doi 4338:114 4299:doi 4262:PMC 4252:doi 4205:doi 4201:312 4168:doi 4135:PMC 4125:doi 4113:113 4073:PMC 4065:doi 4015:doi 4011:134 3965:doi 3931:doi 3927:100 3881:doi 3877:265 3835:doi 3831:106 3800:doi 3762:doi 3758:273 3721:doi 3682:doi 3678:121 3640:doi 3533:doi 3489:doi 3446:doi 3434:299 3403:doi 3355:doi 3351:273 3307:PMC 3297:doi 3285:115 3214:PMC 3204:doi 3192:105 3157:doi 3120:PMC 3112:doi 3071:PMC 3063:doi 3014:doi 2965:doi 2926:doi 2883:doi 2879:475 2837:doi 2825:381 2781:doi 2769:426 2725:PMC 2717:doi 2713:211 2676:PMC 2668:doi 2664:210 2627:PMC 2619:doi 2578:PMC 2568:doi 2509:PMC 2501:doi 2436:doi 2424:430 2393:doi 2381:200 2342:doi 2297:doi 2231:PMC 2223:doi 2184:doi 2051:PMC 2041:doi 2019:103 1982:PMC 1972:doi 1960:104 1885:doi 1873:181 1832:hdl 1824:doi 1777:doi 1738:doi 1703:doi 1666:PMC 1658:doi 1654:119 1586:doi 1574:426 1505:PMC 1497:doi 1493:128 1274:or 1169:or 977:NOE 712:or 382:or 7083:: 6880:: 6824:V2 6819:V1 6809:R2 6803:R1 6798:Q2 6793:Q1 6773:L6 6768:L4 6763:L3 6758:L2 6753:L1 6743:J2 6738:J1 6723:G2 6718:G1 6713:E3 6708:E2 6703:E1 6698:D3 6693:D2 6688:D1 6520:ER 6485:14 6450:4L 6435:1L 6430:1B 6425:1A 6386:C7 6381:C6 6376:C5 6371:C3 6366:C1 6361:B9 6356:B6 6351:B4 6341:B2 6336:B1 6331:A3 6326:A2 6321:A1 5590:. 5544:. 5536:. 5528:. 5516:. 5504:^ 5493:, 5482:^ 5461:. 5451:. 5447:. 5400:. 5388:. 5365:. 5357:. 5349:. 5337:. 5311:. 5265:. 5243:. 5233:. 5223:. 5211:. 5207:. 5184:. 5174:. 5164:. 5152:. 5148:. 5125:. 5111:. 5107:. 5052:. 5040:. 5017:. 5007:. 4995:. 4991:. 4968:. 4958:. 4948:. 4938:97 4936:. 4932:. 4920:^ 4906:. 4898:. 4890:. 4878:. 4864:^ 4850:. 4840:. 4809:. 4797:. 4774:. 4764:. 4754:. 4744:89 4742:. 4738:. 4711:. 4703:. 4695:. 4683:21 4681:. 4667:^ 4646:. 4636:65 4634:. 4630:. 4602:. 4580:. 4570:52 4568:. 4543:. 4539:. 4513:. 4503:. 4493:. 4481:. 4477:. 4454:. 4444:. 4436:. 4424:. 4420:. 4397:. 4387:. 4377:99 4375:. 4371:. 4348:. 4336:. 4313:. 4305:. 4293:. 4270:. 4260:. 4250:. 4238:. 4234:. 4211:. 4199:. 4174:. 4166:. 4143:. 4133:. 4123:. 4111:. 4107:. 4095:^ 4081:. 4071:. 4063:. 4053:96 4051:. 4047:. 4035:^ 4021:. 4009:. 3995:^ 3981:. 3971:. 3951:^ 3937:. 3925:. 3921:. 3903:^ 3889:. 3875:. 3871:. 3855:^ 3841:. 3829:. 3806:. 3796:51 3794:. 3770:. 3756:. 3752:. 3729:. 3717:18 3715:. 3711:. 3688:. 3676:. 3662:^ 3648:. 3638:. 3628:59 3626:. 3622:. 3568:. 3553:^ 3539:. 3529:38 3527:. 3503:. 3495:. 3485:75 3483:. 3460:. 3452:. 3444:. 3432:. 3409:. 3399:31 3397:. 3385:^ 3371:. 3363:. 3349:. 3345:. 3329:^ 3315:. 3305:. 3295:. 3283:. 3279:. 3254:63 3252:. 3248:. 3236:^ 3222:. 3212:. 3202:. 3190:. 3186:. 3163:. 3153:31 3151:. 3128:. 3118:. 3108:18 3106:. 3102:. 3079:. 3069:. 3061:. 3051:99 3049:. 3045:. 3022:. 3010:38 3008:. 3004:. 2981:. 2973:. 2961:10 2959:. 2955:. 2932:. 2922:82 2920:. 2897:. 2889:. 2877:. 2865:^ 2851:. 2843:. 2835:. 2823:. 2809:^ 2795:. 2787:. 2779:. 2767:. 2747:^ 2733:. 2723:. 2711:. 2707:. 2684:. 2674:. 2662:. 2658:. 2635:. 2625:. 2613:. 2609:. 2586:. 2576:. 2566:. 2558:. 2546:93 2544:. 2540:. 2517:. 2507:. 2499:. 2491:. 2479:79 2477:. 2473:. 2450:. 2442:. 2434:. 2422:. 2399:. 2391:. 2379:. 2356:. 2348:. 2338:82 2336:. 2313:. 2305:. 2293:10 2291:. 2287:. 2262:. 2239:. 2229:. 2219:19 2217:. 2213:. 2190:. 2180:21 2178:. 2139:. 2113:. 2073:^ 2059:. 2049:. 2039:. 2029:. 2017:. 2013:. 1990:. 1980:. 1970:. 1958:. 1954:. 1905:^ 1891:. 1883:. 1871:. 1848:. 1840:. 1830:. 1822:. 1812:23 1810:. 1806:. 1783:. 1773:14 1771:. 1767:. 1744:. 1732:. 1709:. 1699:59 1697:. 1674:. 1664:. 1652:. 1648:. 1600:. 1592:. 1584:. 1572:. 1560:^ 1540:. 1513:. 1503:. 1491:. 1487:. 1458:. 1307:, 1300:. 1178:. 1142:. 1109:. 1090:, 1086:, 1082:, 1074:, 1049:. 971:, 963:, 941:. 909:. 852:. 752:, 700:, 593:pH 402:. 392:pH 334:, 166:. 138:, 134:, 78:. 7026:) 7022:( 6829:Z 6814:S 6788:O 6783:N 6778:M 6748:K 6733:I 6728:H 6683:C 6678:B 6673:A 6515:β 6509:2 6507:α 6501:1 6499:α 6475:9 6470:8 6465:7 6460:6 6455:5 6445:4 6440:2 6307:/ 6279:/ 6265:/ 6247:e 6240:t 6233:v 6045:e 6038:t 6031:v 5858:e 5851:t 5844:v 5637:e 5630:t 5623:v 5594:. 5575:. 5567:( 5552:. 5532:: 5524:: 5476:. 5455:: 5432:. 5408:. 5396:: 5373:. 5353:: 5345:: 5322:. 5297:. 5276:. 5251:. 5227:: 5219:: 5192:. 5168:: 5160:: 5133:. 5119:: 5092:. 5060:. 5048:: 5025:. 5003:: 4976:. 4952:: 4944:: 4914:. 4894:: 4886:: 4858:. 4836:: 4817:. 4813:: 4805:: 4782:. 4758:: 4750:: 4719:. 4699:: 4689:: 4650:: 4642:: 4612:. 4588:. 4576:: 4553:. 4547:: 4521:. 4497:: 4489:: 4462:. 4440:: 4432:: 4426:2 4405:. 4383:: 4356:. 4344:: 4321:. 4301:: 4295:2 4278:. 4254:: 4246:: 4240:7 4219:. 4207:: 4184:. 4170:: 4151:. 4127:: 4119:: 4089:. 4067:: 4059:: 4029:. 4017:: 3989:. 3967:: 3945:. 3933:: 3897:. 3883:: 3849:. 3837:: 3814:. 3802:: 3778:. 3764:: 3737:. 3723:: 3696:. 3684:: 3656:. 3642:: 3634:: 3607:. 3580:. 3547:. 3535:: 3511:. 3491:: 3468:. 3448:: 3440:: 3417:. 3405:: 3379:. 3357:: 3323:. 3299:: 3291:: 3264:. 3230:. 3206:: 3198:: 3171:. 3159:: 3136:. 3114:: 3087:. 3065:: 3057:: 3030:. 3016:: 2989:. 2967:: 2940:. 2928:: 2905:. 2885:: 2859:. 2839:: 2831:: 2803:. 2783:: 2775:: 2741:. 2719:: 2692:. 2670:: 2643:. 2621:: 2615:1 2594:. 2570:: 2562:: 2552:: 2525:. 2503:: 2495:: 2485:: 2458:. 2438:: 2430:: 2407:. 2395:: 2387:: 2364:. 2344:: 2321:. 2299:: 2272:. 2247:. 2225:: 2198:. 2186:: 2163:. 2124:. 2099:. 2067:. 2043:: 2025:: 1998:. 1974:: 1966:: 1939:. 1899:. 1887:: 1879:: 1856:. 1834:: 1826:: 1818:: 1791:. 1779:: 1752:. 1740:: 1734:3 1717:. 1705:: 1682:. 1660:: 1633:. 1608:. 1588:: 1580:: 1554:. 1521:. 1499:: 1472:. 935:2 378:(

Index



physical process
protein
synthesis
ribosome
amino acids
random coil
three-dimensional structure
native state
primary structure
may remain unfolded
protein dynamics
neurodegenerative
diseases
amyloid
fibrils
prions
allergies
immune system
antibodies
Denaturation
unfolded state
cooking
burns
proteinopathies
outside the cell
proline isomerization
domain
contact order

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.