Knowledge

Contact order

Source 📝

164:
methods are more accurate in predicting the structures of proteins with low contact orders. This may be partly because low contact order proteins tend to be small, but is likely to be explained by the smaller number of possible long-range residue-residue interactions to be considered during
157:
is the total number of residues in the protein. The value of contact order typically ranges from 5% to 25% for single-domain proteins, with lower contact order belonging to mainly helical proteins, and higher contact order belonging to proteins with a high beta-sheet content.
192:
has produced transition-state models whose contact order is close to that of the folded state in proteins that are small and fast-folding. Further, contact orders in transition states as well as those in native states are highly correlated with overall folding time.
132: 275:
Plaxco, Kevin W; Simons, Kim T; Baker, David (April 1998). "Contact order, transition state placement and the refolding rates of single domain proteins".
455:
Paci, E; Lindorff-Larsen, K; Dobson, CM; Karplus, M; Vendruscolo, M (2005). "Transition state contact orders correlate with protein folding rates".
177:
method overproduce low-contact-order structure predictions compared to the distributions observed in experimentally determined protein structures.
64: 420:
Pandit, AD; Jha, A; Freed, KF; Sosnick, TR (2006). "Small proteins fold through transition states with native-like topologies".
235:"Contact order, transition state placement and the refolding rates of single domain proteins11Edited by P. E. Wright" 180:
The percentage of the natively folded contact order can also be used as a measure of the "nativeness" of folding
161: 196:
In addition to their role in structure prediction, contact orders can themselves be predicted based on a
39:
in the folded protein divided by the total length of the protein. Higher contact orders indicate longer
555: 234: 364:
Zuo, G; Wang, J; Wang, W (2006). "Folding with downhill behavior and low cooperativity of proteins".
48: 550: 52: 8: 166: 522: 495: 389: 341: 316: 201: 197: 189: 185: 170: 32: 200:, which can be useful in classifying the fold of a novel sequence with some degree of 527: 472: 437: 381: 346: 292: 254: 393: 517: 507: 491: 464: 429: 373: 336: 328: 284: 246: 213: 181: 44: 40: 36: 35:. It is calculated as the average sequence distance between residues that form 468: 433: 544: 314: 258: 512: 315:
Bonneau, Richard; Ruczinski, Ingo; Tsai, Jerry; Baker, David (August 2002).
531: 476: 441: 385: 350: 288: 250: 174: 29: 296: 55:
associated with the formation of local as opposed to nonlocal contacts.
377: 332: 43:, and low contact order has been suggested as a predictor of potential 25: 145:
is the sequence separation, in residues, between contacting residues
410:
2nd ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
21: 454: 274: 51:
barrier. This effect is thought to be due to the lower loss of
127:{\displaystyle CO={1 \over {L\cdot N}}\sum ^{N}\Delta S_{i,j}} 233:
Plaxco, Kevin W; Simons, Kim T; Baker, David (1998-04-10).
173:. Even successful structure prediction methods such as the 317:"Contact order and ab initio protein structure prediction" 496:"Protein contact order prediction from primary sequences" 419: 67: 58:
Relative contact order (CO) is formally defined as:
489: 126: 232: 542: 408:Bioinformatics: Sequence and Genome Analysis 363: 47:, or protein folding that occurs without a 24:is a measure of the locality of the inter- 521: 511: 340: 310: 308: 306: 270: 268: 543: 490:Shi, Yi; Zhou, Jianjun; Arndt, David; 303: 413: 265: 216:: topological arrangement of contacts 400: 448: 13: 483: 357: 141:is the total number of contacts, Δ 105: 14: 567: 226: 1: 220: 277:Journal of Molecular Biology 239:Journal of Molecular Biology 169:procedures that minimize an 162:Protein structure prediction 7: 207: 10: 572: 28:contacts in the protein's 469:10.1016/j.jmb.2005.06.081 434:10.1016/j.jmb.2006.06.041 513:10.1186/1471-2105-9-255 494:; Lin, Guohui (2008). 289:10.1006/jmbi.1998.1645 251:10.1006/jmbi.1998.1645 128: 53:conformational entropy 129: 204:to known sequences. 65: 167:global optimization 500:BMC Bioinformatics 406:Mount DM. (2004). 378:10.1002/prot.20857 333:10.1110/ps.3790102 198:sequence alignment 190:molecular dynamics 186:Phi value analysis 124: 33:tertiary structure 556:Protein structure 492:Wishart, David S. 182:transition states 104: 93: 563: 536: 535: 525: 515: 487: 481: 480: 452: 446: 445: 417: 411: 404: 398: 397: 361: 355: 354: 344: 327:(8): 1937–1944. 312: 301: 300: 272: 263: 262: 230: 214:Circuit topology 188:in concert with 133: 131: 130: 125: 123: 122: 103: 95: 94: 92: 78: 45:downhill folding 571: 570: 566: 565: 564: 562: 561: 560: 541: 540: 539: 488: 484: 453: 449: 418: 414: 405: 401: 362: 358: 321:Protein Science 313: 304: 273: 266: 231: 227: 223: 210: 171:energy function 112: 108: 99: 82: 77: 66: 63: 62: 37:native contacts 12: 11: 5: 569: 559: 558: 553: 551:Bioinformatics 538: 537: 482: 463:(3): 495–500. 447: 412: 399: 356: 302: 283:(4): 985–994. 264: 245:(4): 985–994. 224: 222: 219: 218: 217: 209: 206: 135: 134: 121: 118: 115: 111: 107: 102: 98: 91: 88: 85: 81: 76: 73: 70: 9: 6: 4: 3: 2: 568: 557: 554: 552: 549: 548: 546: 533: 529: 524: 519: 514: 509: 505: 501: 497: 493: 486: 478: 474: 470: 466: 462: 458: 451: 443: 439: 435: 431: 428:(4): 755–70. 427: 423: 416: 409: 403: 395: 391: 387: 383: 379: 375: 372:(1): 165–73. 371: 367: 360: 352: 348: 343: 338: 334: 330: 326: 322: 318: 311: 309: 307: 298: 294: 290: 286: 282: 278: 271: 269: 260: 256: 252: 248: 244: 240: 236: 229: 225: 215: 212: 211: 205: 203: 199: 194: 191: 187: 183: 178: 176: 172: 168: 163: 159: 156: 152: 148: 144: 140: 119: 116: 113: 109: 100: 96: 89: 86: 83: 79: 74: 71: 68: 61: 60: 59: 56: 54: 50: 46: 42: 41:folding times 38: 34: 31: 27: 23: 19: 18:contact order 503: 499: 485: 460: 456: 450: 425: 421: 415: 407: 402: 369: 365: 359: 324: 320: 280: 276: 242: 238: 228: 195: 179: 160: 154: 150: 146: 142: 138: 136: 57: 30:native state 17: 15: 49:free energy 545:Categories 457:J Mol Biol 422:J Mol Biol 221:References 26:amino acid 259:0022-2836 106:Δ 97:∑ 87:⋅ 532:18513429 477:16120445 442:16876194 394:11970404 386:16416404 366:Proteins 351:12142448 208:See also 202:homology 523:2440764 506:: 255. 342:2373674 297:9545386 175:Rosetta 22:protein 530:  520:  475:  440:  392:  384:  349:  339:  295:  257:  153:, and 137:where 390:S2CID 20:of a 528:PMID 473:PMID 438:PMID 382:PMID 347:PMID 293:PMID 255:ISSN 149:and 143:Si,j 16:The 518:PMC 508:doi 465:doi 461:352 430:doi 426:361 374:doi 337:PMC 329:doi 285:doi 281:277 247:doi 243:277 547:: 526:. 516:. 502:. 498:. 471:. 459:. 436:. 424:. 388:. 380:. 370:63 368:. 345:. 335:. 325:11 323:. 319:. 305:^ 291:. 279:. 267:^ 253:. 241:. 237:. 184:. 534:. 510:: 504:9 479:. 467:: 444:. 432:: 396:. 376:: 353:. 331:: 299:. 287:: 261:. 249:: 155:L 151:j 147:i 139:N 120:j 117:, 114:i 110:S 101:N 90:N 84:L 80:1 75:= 72:O 69:C

Index

protein
amino acid
native state
tertiary structure
native contacts
folding times
downhill folding
free energy
conformational entropy
Protein structure prediction
global optimization
energy function
Rosetta
transition states
Phi value analysis
molecular dynamics
sequence alignment
homology
Circuit topology
"Contact order, transition state placement and the refolding rates of single domain proteins11Edited by P. E. Wright"
doi
10.1006/jmbi.1998.1645
ISSN
0022-2836


doi
10.1006/jmbi.1998.1645
PMID
9545386

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.