Knowledge

Randles circuit

Source 📝

25: 359: 412:= 300 Ω•s. Values of the charge transfer resistance and Warburg coefficient depend on physico-chemical parameters of a system under investigation. To obtain the Randles circuit parameters, the fitting of the model to the experimental data should be performed using complex nonlinear least-squares procedures available in numerous EIS data fitting computer programs. 163:(CPE) replacing the double layer capacity. The Randles equivalent circuit is one of the simplest possible models describing processes at the electrochemical interface. In real electrochemical systems, impedance spectra are usually more complicated and, thus, the Randles circuit may not give appropriate results. 171:
Figure 1 shows the equivalent circuit initially proposed by John Edward Brough Randles for modeling of interfacial electrochemical reactions in presence of semi-infinite linear diffusion of electroactive particles to flat electrodes. A simple model for an electrode immersed in an electrolyte is
90: 313: 371:
In a simple situation, the Warburg element manifests itself in EIS spectra by a line with an angle of 45 degrees in the low frequency region. Figure 2 shows an example of EIS spectrum (presented in the
208:. The key assumption is that the rate of the faradaic reaction is controlled by diffusion of the reactants to the electrode surface. The diffusional resistance element (the Warburg impedance, 230: 450:
A. Lasia. Electrochemical impedance spectroscopy and its applications. In: Modern Aspects of Electrochemistry. Volume 32. Kluwer Academic/Plenum Pub. 1999, Ch.2, p. 143.
190:. If a faradaic reaction is taking place then that reaction is occurring in parallel with the charging of the double layer – so the charge transfer resistance, 259: 54: 156: 76: 47: 106: 123: 37: 463: 127: 41: 33: 160: 58: 139: 8: 331: 439: 351: 431: 152: 98: 251: 341: 308:{\displaystyle Z_{\mathrm {w} }={\frac {A_{\mathrm {w} }}{\sqrt {j\omega }}},} 457: 443: 373: 229:
In this model, the impedance of a faradaic reaction consists of an active
435: 110: 422:
Randles, J. E. B. (1947). "Kinetics of rapid electrode reactions".
358: 89: 199:, associated with the faradaic reaction is in parallel with 159:(EIS) for interpretation of impedance spectra, often with a 172:
simply the series combination of the ionic resistance,
262: 241:
and a specific electrochemical element of diffusion
366: 307: 16:Equivalent circuit for an electrochemical reaction 455: 46:but its sources remain unclear because it lacks 362:Simulated EIS spectrum of the Randles circuit. 376:) simulated using the following parameters: 77:Learn how and when to remove this message 357: 88: 421: 456: 157:electrochemical impedance spectroscopy 181:, with the double layer capacitance, 126:with the parallel combination of the 18: 13: 424:Discussions of the Faraday Society 286: 269: 14: 475: 23: 367:Identifying the Warburg element 217:), is therefore in series with 166: 1: 415: 107:equivalent electrical circuit 7: 109:that consists of an active 10: 480: 231:charge transfer resistance 93:Randles circuit schematic. 155:. It is commonly used in 128:double-layer capacitance 32:This article includes a 61:more precise citations. 363: 309: 161:constant phase element 94: 361: 310: 92: 436:10.1039/df9470100011 260: 332:Warburg coefficient 250:, represented by a 364: 305: 95: 34:list of references 352:angular frequency 300: 299: 153:faradaic reaction 87: 86: 79: 471: 447: 411: 402: 393: 384: 349: 339: 329: 314: 312: 311: 306: 301: 292: 291: 290: 289: 279: 274: 273: 272: 249: 240: 225: 216: 207: 198: 189: 180: 150: 137: 121: 99:electrochemistry 82: 75: 71: 68: 62: 57:this article by 48:inline citations 27: 26: 19: 479: 478: 474: 473: 472: 470: 469: 468: 464:Analog circuits 454: 453: 418: 410: 404: 401: 395: 392: 386: 383: 377: 369: 347: 337: 328: 322: 285: 284: 280: 278: 268: 267: 263: 261: 258: 257: 252:Warburg element 248: 242: 239: 233: 224: 218: 215: 209: 206: 200: 197: 191: 188: 182: 179: 173: 169: 149: 143: 136: 130: 120: 114: 103:Randles circuit 83: 72: 66: 63: 52: 38:related reading 28: 24: 17: 12: 11: 5: 477: 467: 466: 452: 451: 448: 417: 414: 408: 403:= 100 Ω, 399: 394:= 25 μF, 390: 381: 368: 365: 356: 355: 345: 342:imaginary unit 335: 326: 316: 315: 304: 298: 295: 288: 283: 277: 271: 266: 246: 237: 222: 213: 204: 195: 186: 177: 168: 165: 147: 134: 118: 85: 84: 42:external links 31: 29: 22: 15: 9: 6: 4: 3: 2: 476: 465: 462: 461: 459: 449: 445: 441: 437: 433: 429: 425: 420: 419: 413: 407: 398: 389: 385:= 20 Ω, 380: 375: 360: 353: 346: 343: 336: 333: 325: 321: 320: 319: 302: 296: 293: 281: 275: 264: 256: 255: 254: 253: 245: 236: 232: 227: 221: 212: 203: 194: 185: 176: 164: 162: 158: 154: 146: 141: 133: 129: 125: 117: 112: 108: 104: 100: 91: 81: 78: 70: 67:December 2010 60: 56: 50: 49: 43: 39: 35: 30: 21: 20: 427: 423: 405: 396: 387: 378: 374:Nyquist plot 370: 323: 317: 243: 234: 228: 219: 210: 201: 192: 183: 174: 170: 144: 131: 115: 102: 96: 73: 64: 53:Please help 45: 167:Explanation 113:resistance 111:electrolyte 59:introducing 416:References 444:0366-9033 297:ω 140:impedance 458:Category 350:is the 330:is the 318:where 151:) of a 138:and an 55:improve 442:  430:: 11. 340:is an 124:series 105:is an 40:, or 440:ISSN 101:, a 432:doi 122:in 97:In 460:: 438:. 426:. 400:ct 391:dl 238:ct 226:. 223:ct 205:dl 196:ct 187:dl 135:dl 44:, 36:, 446:. 434:: 428:1 409:W 406:A 397:R 388:C 382:S 379:R 354:. 348:ω 344:; 338:j 334:; 327:W 324:A 303:, 294:j 287:w 282:A 276:= 270:w 265:Z 247:W 244:Z 235:R 220:R 214:W 211:Z 202:C 193:R 184:C 178:S 175:R 148:w 145:Z 142:( 132:C 119:S 116:R 80:) 74:( 69:) 65:( 51:.

Index

list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message

electrochemistry
equivalent electrical circuit
electrolyte
series
double-layer capacitance
impedance
faradaic reaction
electrochemical impedance spectroscopy
constant phase element
charge transfer resistance
Warburg element
Warburg coefficient
imaginary unit
angular frequency

Nyquist plot
doi
10.1039/df9470100011
ISSN
0366-9033
Category
Analog circuits

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.