Knowledge

Ratner's theorems

Source 📝

22: 153:: this turns out to be an important step towards proving the more general equidistribution property. There is no universal agreement on the names of these theorems: they are variously known as the "measure rigidity theorem", the "theorem on invariant measures" and its "topological version", and so on. 118:. Ratner's theorems have guided key advances in the understanding of the dynamics of unipotent flows. Their later generalizations provide ways to both sharpen the results and extend the theory to the setting of arbitrary 920: 1134: 854: 547: 341: 1034: 806: 952: 713: 1066: 381: 774: 663: 202: 1195: 594: 408: 311: 1158: 1089: 733: 477: 253: 981: 1259: 1239: 1215: 614: 567: 517: 497: 452: 432: 277: 226: 174: 51: 859: 1497: 138:
asserts that the closures of orbits of unipotent flows on the quotient of a Lie group by a lattice are nice, geometric subsets. The
1610: 1312: 1561:; Tomanov, Georges M. (1994). "Invariant measures for actions of unipotent groups over local fields on homogeneous spaces". 1098: 811: 73: 522: 316: 44: 986: 779: 925: 671: 1039: 346: 738: 627: 1528:
Ratner, Marina (1995). "Raghunathan's conjectures for cartesian products of real and p-adic Lie groups".
205: 183: 119: 1171: 34: 1461:
Ratner, Marina (1991). "Raghunathan's topological conjecture and distributions of unipotent flows".
1275: 38: 30: 1600: 572: 386: 289: 256: 145: 55: 1357:
Ratner, Marina (1990). "Strict measure rigidity for unipotent subgroups of solvable groups".
1143: 1074: 718: 457: 149:
is the weaker statement that every ergodic invariant probability measure is homogeneous, or
1583: 1550: 1520: 1483: 1453: 1415: 1379: 1322: 231: 111: 957: 110:. The study of the dynamics of unipotent flows played a decisive role in the proof of the 8: 1605: 1441: 1331: 1298: 1244: 1224: 1218: 1200: 599: 552: 502: 482: 437: 417: 284: 262: 211: 159: 1308: 99: 1571: 1558: 1538: 1506: 1471: 1433: 1401: 1367: 1137: 115: 1542: 1475: 1579: 1546: 1516: 1479: 1449: 1411: 1375: 1318: 1092: 107: 95: 1511: 1492: 1594: 1563: 1530: 1463: 1425: 1359: 1297:. Chicago Lectures in Mathematics. Chicago, IL: University of Chicago Press. 411: 103: 142:
further asserts that each such orbit is equidistributed in its closure. The
617: 623: 123: 87: 1575: 1445: 1406: 1393: 1388: 1371: 1270: 1303: 1165: 280: 177: 1437: 915:{\displaystyle u_{t}={\begin{pmatrix}1&t\\0&1\end{pmatrix}}} 1161: 1389:"On measure rigidity of unipotent subgroups of semisimple groups" 106:
around 1990. The theorems grew out of Ratner's earlier work on
1423:
Ratner, Marina (1991). "On Raghunathan's measure conjecture".
715:. In this case it takes the following more explicit form; let 668:
The simplest case to which the statement above applies is
156:
The formal statement of such a result is as follows. Let
1164:
of finite volume. The theorem above implies that every
1111: 1052: 938: 881: 792: 1247: 1227: 1217:
which is either a closed curve (a horocycle around a
1203: 1174: 1146: 1101: 1077: 1042: 989: 960: 928: 862: 814: 782: 741: 721: 674: 630: 602: 575: 555: 525: 505: 485: 460: 440: 420: 389: 349: 319: 292: 265: 234: 214: 186: 162: 1129:{\displaystyle M=\Gamma \backslash \mathbb {H} ^{2}} 569:-invariant measure, and contains the closure of the 1253: 1233: 1209: 1189: 1152: 1128: 1083: 1060: 1028: 975: 946: 914: 848: 808:a closed subset which is invariant under all maps 800: 768: 727: 707: 657: 608: 588: 561: 541: 511: 491: 471: 446: 426: 402: 375: 335: 305: 271: 247: 220: 196: 168: 1493:"Raghunathan's conjectures for p-adic Lie groups" 1592: 43:but its sources remain unclear because it lacks 1557: 849:{\displaystyle \Gamma g\mapsto \Gamma (gu_{t})} 410:is homogeneous. This means that there exists a 542:{\displaystyle {\mathit {\Gamma }}\setminus G} 336:{\displaystyle {\mathit {\Gamma }}\setminus G} 1350: 1029:{\displaystyle U=\{u_{t},t\in \mathbb {R} \}} 1023: 996: 801:{\displaystyle F\subset \Gamma \backslash G} 1498:International Mathematics Research Notices 1329: 1510: 1405: 1302: 1177: 1116: 1019: 759: 698: 648: 468: 461: 74:Learn how and when to remove this message 947:{\displaystyle x\in \Gamma \backslash G} 1593: 1527: 1490: 1460: 1422: 1386: 1356: 1292: 708:{\displaystyle G=SL_{2}(\mathbb {R} )} 1061:{\displaystyle F=\Gamma \backslash G} 376:{\displaystyle \left\{xu^{t}\right\}} 1295:Ratner's Theorems on Unipotent Flows 769:{\displaystyle SL_{2}(\mathbb {R} )} 658:{\displaystyle SL_{2}(\mathbb {R} )} 129: 15: 519:under the canonical projection to 197:{\displaystyle {\mathit {\Gamma }}} 13: 1147: 1108: 1078: 1049: 935: 824: 815: 789: 722: 528: 343:. Then the closure of every orbit 322: 189: 14: 1622: 533: 454:such that the image of the orbit 327: 94:are a group of major theorems in 1190:{\displaystyle \mathbb {H} ^{2}} 20: 140:Ratner equidistribution theorem 1332:"What is... measure rigidity?" 1286: 922:. Then either there exists an 843: 827: 821: 763: 755: 702: 694: 652: 644: 283:elements, with the associated 98:concerning unipotent flows on 1: 1611:Theorems in dynamical systems 1543:10.1215/S0012-7094-95-07710-2 1476:10.1215/S0012-7094-91-06311-8 1281: 1330:Einsiedler, Manfred (2009). 136:Ratner orbit closure theorem 7: 1293:Morris, Dave Witte (2005). 1264: 120:semisimple algebraic groups 10: 1627: 1351:Selected original articles 1512:10.1155/S1073792893000145 589:{\displaystyle \phi _{t}} 499:by right translations on 403:{\displaystyle \phi _{t}} 306:{\displaystyle \phi _{t}} 1276:Equidistribution theorem 549:is closed, has a finite 29:This article includes a 1491:Ratner, Marina (1993). 1387:Ratner, Marina (1990). 1153:{\displaystyle \Gamma } 1084:{\displaystyle \Gamma } 728:{\displaystyle \Gamma } 58:more precise citations. 1255: 1235: 1211: 1191: 1154: 1130: 1085: 1062: 1030: 977: 948: 916: 850: 802: 770: 729: 709: 659: 610: 590: 563: 543: 513: 493: 473: 472:{\displaystyle \,xS\,} 448: 428: 404: 377: 337: 307: 273: 257:one-parameter subgroup 249: 222: 198: 170: 146:classification theorem 1256: 1236: 1212: 1192: 1155: 1131: 1086: 1063: 1031: 978: 949: 917: 851: 803: 771: 730: 710: 660: 611: 591: 564: 544: 514: 494: 474: 449: 429: 405: 378: 338: 308: 274: 250: 248:{\displaystyle u^{t}} 223: 199: 171: 1559:Margulis, Grigory A. 1245: 1225: 1201: 1172: 1144: 1099: 1075: 1040: 987: 976:{\displaystyle F=xU} 958: 926: 860: 812: 780: 739: 719: 672: 628: 600: 573: 553: 523: 503: 483: 458: 438: 418: 387: 347: 317: 290: 263: 232: 212: 184: 160: 112:Oppenheim conjecture 1071:In geometric terms 1576:10.1007/BF01231565 1407:10.1007/BF02391906 1372:10.1007/BF01231511 1339:Notices of the AMS 1251: 1231: 1207: 1187: 1150: 1126: 1095:, so the quotient 1081: 1058: 1026: 973: 944: 912: 906: 846: 798: 766: 725: 705: 655: 606: 586: 559: 539: 509: 489: 479:for the action of 469: 444: 424: 414:, closed subgroup 400: 373: 333: 303: 269: 245: 218: 194: 166: 100:homogeneous spaces 31:list of references 1314:978-0-226-53984-3 1254:{\displaystyle M} 1234:{\displaystyle M} 1210:{\displaystyle M} 609:{\displaystyle x} 562:{\displaystyle S} 512:{\displaystyle G} 492:{\displaystyle S} 447:{\displaystyle G} 427:{\displaystyle S} 272:{\displaystyle G} 221:{\displaystyle G} 169:{\displaystyle G} 130:Short description 92:Ratner's theorems 84: 83: 76: 1618: 1587: 1554: 1524: 1514: 1487: 1457: 1419: 1409: 1383: 1346: 1336: 1326: 1306: 1260: 1258: 1257: 1252: 1240: 1238: 1237: 1232: 1216: 1214: 1213: 1208: 1197:has an image in 1196: 1194: 1193: 1188: 1186: 1185: 1180: 1160:is a hyperbolic 1159: 1157: 1156: 1151: 1138:hyperbolic plane 1135: 1133: 1132: 1127: 1125: 1124: 1119: 1090: 1088: 1087: 1082: 1067: 1065: 1064: 1059: 1035: 1033: 1032: 1027: 1022: 1008: 1007: 982: 980: 979: 974: 953: 951: 950: 945: 921: 919: 918: 913: 911: 910: 872: 871: 855: 853: 852: 847: 842: 841: 807: 805: 804: 799: 775: 773: 772: 767: 762: 754: 753: 735:be a lattice in 734: 732: 731: 726: 714: 712: 711: 706: 701: 693: 692: 664: 662: 661: 656: 651: 643: 642: 615: 613: 612: 607: 595: 593: 592: 587: 585: 584: 568: 566: 565: 560: 548: 546: 545: 540: 532: 531: 518: 516: 515: 510: 498: 496: 495: 490: 478: 476: 475: 470: 453: 451: 450: 445: 433: 431: 430: 425: 409: 407: 406: 401: 399: 398: 382: 380: 379: 374: 372: 368: 367: 366: 342: 340: 339: 334: 326: 325: 312: 310: 309: 304: 302: 301: 278: 276: 275: 270: 254: 252: 251: 246: 244: 243: 227: 225: 224: 219: 203: 201: 200: 195: 193: 192: 175: 173: 172: 167: 116:Grigory Margulis 79: 72: 68: 65: 59: 54:this article by 45:inline citations 24: 23: 16: 1626: 1625: 1621: 1620: 1619: 1617: 1616: 1615: 1591: 1590: 1438:10.2307/2944357 1353: 1334: 1315: 1289: 1284: 1267: 1246: 1243: 1242: 1226: 1223: 1222: 1202: 1199: 1198: 1181: 1176: 1175: 1173: 1170: 1169: 1145: 1142: 1141: 1120: 1115: 1114: 1100: 1097: 1096: 1076: 1073: 1072: 1041: 1038: 1037: 1018: 1003: 999: 988: 985: 984: 959: 956: 955: 927: 924: 923: 905: 904: 899: 893: 892: 887: 877: 876: 867: 863: 861: 858: 857: 837: 833: 813: 810: 809: 781: 778: 777: 758: 749: 745: 740: 737: 736: 720: 717: 716: 697: 688: 684: 673: 670: 669: 666: 647: 638: 634: 629: 626: 625: 601: 598: 597: 580: 576: 574: 571: 570: 554: 551: 550: 527: 526: 524: 521: 520: 504: 501: 500: 484: 481: 480: 459: 456: 455: 439: 436: 435: 419: 416: 415: 394: 390: 388: 385: 384: 362: 358: 354: 350: 348: 345: 344: 321: 320: 318: 315: 314: 297: 293: 291: 288: 287: 264: 261: 260: 239: 235: 233: 230: 229: 213: 210: 209: 188: 187: 185: 182: 181: 161: 158: 157: 144:Ratner measure 132: 108:horocycle flows 80: 69: 63: 60: 49: 35:related reading 25: 21: 12: 11: 5: 1624: 1614: 1613: 1608: 1603: 1601:Ergodic theory 1589: 1588: 1570:(1): 347–392. 1555: 1537:(2): 275–382. 1525: 1505:(5): 141–146. 1488: 1470:(1): 235–280. 1458: 1432:(3): 545–607. 1420: 1400:(1): 229–309. 1384: 1366:(2): 449–482. 1352: 1349: 1348: 1347: 1327: 1313: 1288: 1285: 1283: 1280: 1279: 1278: 1273: 1266: 1263: 1250: 1241:) or dense in 1230: 1206: 1184: 1179: 1149: 1123: 1118: 1113: 1110: 1107: 1104: 1093:Fuchsian group 1091:is a cofinite 1080: 1057: 1054: 1051: 1048: 1045: 1025: 1021: 1017: 1014: 1011: 1006: 1002: 998: 995: 992: 972: 969: 966: 963: 943: 940: 937: 934: 931: 909: 903: 900: 898: 895: 894: 891: 888: 886: 883: 882: 880: 875: 870: 866: 845: 840: 836: 832: 829: 826: 823: 820: 817: 797: 794: 791: 788: 785: 765: 761: 757: 752: 748: 744: 724: 704: 700: 696: 691: 687: 683: 680: 677: 665: 654: 650: 646: 641: 637: 633: 622: 605: 583: 579: 558: 538: 535: 530: 508: 488: 467: 464: 443: 423: 397: 393: 371: 365: 361: 357: 353: 332: 329: 324: 300: 296: 279:consisting of 268: 242: 238: 217: 191: 165: 131: 128: 96:ergodic theory 82: 81: 64:September 2019 39:external links 28: 26: 19: 9: 6: 4: 3: 2: 1623: 1612: 1609: 1607: 1604: 1602: 1599: 1598: 1596: 1585: 1581: 1577: 1573: 1569: 1566: 1565: 1564:Invent. Math. 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1533: 1532: 1531:Duke Math. J. 1526: 1522: 1518: 1513: 1508: 1504: 1500: 1499: 1494: 1489: 1485: 1481: 1477: 1473: 1469: 1466: 1465: 1464:Duke Math. J. 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1428: 1427: 1426:Ann. of Math. 1421: 1417: 1413: 1408: 1403: 1399: 1396: 1395: 1390: 1385: 1381: 1377: 1373: 1369: 1365: 1362: 1361: 1360:Invent. Math. 1355: 1354: 1345:(5): 600–601. 1344: 1340: 1333: 1328: 1324: 1320: 1316: 1310: 1305: 1300: 1296: 1291: 1290: 1277: 1274: 1272: 1269: 1268: 1262: 1248: 1228: 1220: 1204: 1182: 1167: 1163: 1139: 1121: 1105: 1102: 1094: 1069: 1055: 1046: 1043: 1015: 1012: 1009: 1004: 1000: 993: 990: 970: 967: 964: 961: 941: 932: 929: 907: 901: 896: 889: 884: 878: 873: 868: 864: 838: 834: 830: 818: 795: 786: 783: 750: 746: 742: 689: 685: 681: 678: 675: 639: 635: 631: 621: 619: 603: 581: 577: 556: 536: 506: 486: 465: 462: 441: 421: 413: 395: 391: 369: 363: 359: 355: 351: 330: 298: 294: 286: 282: 266: 258: 240: 236: 215: 207: 179: 163: 154: 152: 148: 147: 141: 137: 127: 125: 121: 117: 113: 109: 105: 104:Marina Ratner 101: 97: 93: 89: 78: 75: 67: 57: 53: 47: 46: 40: 36: 32: 27: 18: 17: 1567: 1562: 1534: 1529: 1502: 1496: 1467: 1462: 1429: 1424: 1397: 1392: 1363: 1358: 1342: 1338: 1304:math/0310402 1294: 1070: 667: 618:dense subset 155: 150: 143: 139: 135: 133: 91: 85: 70: 61: 50:Please help 42: 1287:Expositions 124:local field 88:mathematics 56:introducing 1606:Lie groups 1595:Categories 1394:Acta Math. 1282:References 1271:Danzer set 954:such that 596:-orbit of 102:proved by 1166:horocycle 1148:Γ 1112:∖ 1109:Γ 1079:Γ 1053:∖ 1050:Γ 1016:∈ 939:∖ 936:Γ 933:∈ 825:Γ 822:↦ 816:Γ 793:∖ 790:Γ 787:⊂ 723:Γ 624:Example: 578:ϕ 534:∖ 529:Γ 412:connected 392:ϕ 328:∖ 323:Γ 295:ϕ 281:unipotent 190:Γ 178:Lie group 151:algebraic 1265:See also 1162:orbifold 1584:1253197 1551:1321062 1521:1219864 1484:1106945 1454:1135878 1446:2944357 1416:1075042 1380:1062971 1323:2158954 1136:of the 983:(where 206:lattice 122:over a 52:improve 1582:  1549:  1519:  1482:  1452:  1444:  1414:  1378:  1321:  1311:  856:where 228:, and 1442:JSTOR 1335:(PDF) 1299:arXiv 1036:) or 616:as a 176:be a 37:, or 1503:1993 1309:ISBN 1219:cusp 776:and 285:flow 134:The 1572:doi 1568:116 1539:doi 1507:doi 1472:doi 1434:doi 1430:134 1402:doi 1398:165 1368:doi 1364:101 1221:of 1168:of 1140:by 1068:. 434:of 383:of 313:on 259:of 208:in 114:by 86:In 1597:: 1580:MR 1578:. 1547:MR 1545:. 1535:77 1517:MR 1515:. 1501:. 1495:. 1480:MR 1478:. 1468:63 1450:MR 1448:. 1440:. 1412:MR 1410:. 1391:. 1376:MR 1374:. 1343:56 1341:. 1337:. 1319:MR 1317:. 1307:. 1261:. 620:. 255:a 204:a 180:, 126:. 90:, 41:, 33:, 1586:. 1574:: 1553:. 1541:: 1523:. 1509:: 1486:. 1474:: 1456:. 1436:: 1418:. 1404:: 1382:. 1370:: 1325:. 1301:: 1249:M 1229:M 1205:M 1183:2 1178:H 1122:2 1117:H 1106:= 1103:M 1056:G 1047:= 1044:F 1024:} 1020:R 1013:t 1010:, 1005:t 1001:u 997:{ 994:= 991:U 971:U 968:x 965:= 962:F 942:G 930:x 908:) 902:1 897:0 890:t 885:1 879:( 874:= 869:t 865:u 844:) 839:t 835:u 831:g 828:( 819:g 796:G 784:F 764:) 760:R 756:( 751:2 747:L 743:S 703:) 699:R 695:( 690:2 686:L 682:S 679:= 676:G 653:) 649:R 645:( 640:2 636:L 632:S 604:x 582:t 557:S 537:G 507:G 487:S 466:S 463:x 442:G 422:S 396:t 370:} 364:t 360:u 356:x 352:{ 331:G 299:t 267:G 241:t 237:u 216:G 164:G 77:) 71:( 66:) 62:( 48:.

Index

list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
mathematics
ergodic theory
homogeneous spaces
Marina Ratner
horocycle flows
Oppenheim conjecture
Grigory Margulis
semisimple algebraic groups
local field
classification theorem
Lie group
lattice
one-parameter subgroup
unipotent
flow
connected
dense subset
Fuchsian group
hyperbolic plane
orbifold
horocycle
cusp
Danzer set

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.