Knowledge

Resonator

Source 📝

1650: 1634:, tube waveguide, is a beam tube including at least two apertured cavity resonators. The beam of charged particles passes through the apertures of the resonators, often tunable wave reflection grids, in succession. A collector electrode is provided to intercept the beam after passing through the resonators. The first resonator causes bunching of the particles passing through it. The bunched particles travel in a field-free region where further bunching occurs, then the bunched particles enter the second resonator giving up their energy to excite it into oscillations. It is a 1612:
path rather than moving directly to this anode. Spaced about the rim of the chamber are cylindrical cavities. The cavities are open along their length and so they connect with the common cavity space. As electrons sweep past these openings they induce a resonant high frequency radio field in the cavity, which in turn causes the electrons to bunch into groups. A portion of this field is extracted with a short antenna that is connected to a waveguide (a metal tube usually of rectangular cross section). The
654: 1704:(LGR) is made by cutting a narrow slit along the length of a conducting tube. The slit has an effective capacitance and the bore of the resonator has an effective inductance. Therefore, the LGR can be modeled as an RLC circuit and has a resonant frequency that is typically between 200 MHz and 2 GHz. In the absence of radiation losses, the effective resistance of the LGR is determined by the resistivity and electromagnetic skin depth of the conductor used to make the resonator. 1940: 2000: 43: 191: 2420: 2045:, adds four sympathetic string resonators to the traditional classical guitar. By tuning these resonators in a very specific way (C, B♭, A♭, G♭) and making use of their strongest partials (corresponding to the octaves and fifths of the strings' fundamental tones), the bass strings of the guitar now resonate equally with any of the 12 tones of the chromatic octave. The 1611:
is a vacuum tube with a filament in the center of an evacuated, lobed, circular cavity resonator. A perpendicular magnetic field is imposed by a permanent magnet. The magnetic field causes the electrons, attracted to the (relatively) positive outer part of the chamber, to spiral outward in a circular
1707:
One key advantage of the LGR is that, at its resonant frequency, its dimensions are small compared to the free-space wavelength of the electromagnetic fields. Therefore, it is possible to use LGRs to construct a compact and high-Q resonator that operates at relatively low frequencies where cavity
1645:
is a klystron utilizing only a single apertured cavity resonator through which the beam of charged particles passes, first in one direction. A repeller electrode is provided to repel (or redirect) the beam after passage through the resonator back through the resonator in the other direction and in
274:
is most often used for a homogeneous object in which vibrations travel as waves, at an approximately constant velocity, bouncing back and forth between the sides of the resonator. The material of the resonator, through which the waves flow, can be viewed as being made of millions of coupled moving
1758:
transmission lines. Such planar transmission-line resonators can be very compact in size and are widely used elements in microwave circuitry. In cryogenic solid-state research, superconducting transmission-line resonators contribute to solid-state spectroscopy and quantum information science.
1734:
are structures that allow broadband transmission of electromagnetic waves, e.g. at radio or microwave frequencies. Abrupt change of impedance (e.g. open or short) in a transmission line causes reflection of the transmitted signal. Two such reflectors on a transmission line evoke standing waves
1682:(RF) radiation. The (charged) particles that are to be accelerated pass through these cavities in such a way that the microwave electric field transfers energy to the particles, thus increasing their kinetic energy and thus accelerating them. Several large accelerator facilities employ 1722:
If a piece of material with large dielectric constant is surrounded by a material with much lower dielectric constant, then this abrupt change in dielectric constant can cause confinement of an electromagnetic wave, which leads to a resonator that acts similarly to a cavity resonator.
266:
resonant frequencies. As the number of coupled harmonic oscillators grows, the time it takes to transfer energy from one to the next becomes significant. The vibrations in them begin to travel through the coupled harmonic oscillators in waves, from one oscillator to the next.
613:. The above analysis assumes the medium inside the resonator is homogeneous, so the waves travel at a constant speed, and that the shape of the resonator is rectilinear. If the resonator is inhomogeneous or has a nonrectilinear shape, like a circular 1852:
Mechanical resonators can also be used to induce a standing wave in other media. For example, a multiple degree of freedom system can be created by imposing a base excitation on a cantilever beam. In this case the
596: 2049:
is a device for driving guitar string harmonics by an electromagnetic field. This resonance effect is caused by a feedback loop and is applied to drive the fundamental tones, octaves, 5th, 3rd to an infinite
456: 1979:. The length of the tube varies according to the pitch of the note, with higher notes having shorter resonators. The tube is open at the top end and closed at the bottom end, creating a column of air that 1735:
between them and thus act as a one-dimensional resonator, with the resonance frequencies determined by their distance and the effective dielectric constant of the transmission line. A common form is the
1589: 1963:" systems designed for performance, the resonance of the exhaust pipes can also be used to remove combustion products from the combustion chamber at a particular engine speed or range of speeds. 1821:, are used as frequency references. Common designs consist of electrodes attached to a piece of quartz, in the shape of a rectangular plate for high frequency applications, or in the shape of a 1562:
Since the cavity's lowest resonant frequency, the fundamental frequency, is that at which the width of the cavity is equal to a half-wavelength (λ/2), cavity resonators are only used at
1955:
to reduce noise, by making sound waves "cancel each other out". The "exhaust note" is an important feature for some vehicle owners, so both the original manufacturers and the
515: 1825:
for low frequency applications. The high dimensional stability and low temperature coefficient of quartz helps keeps resonant frequency constant. In addition, the quartz's
1502:
resonator has capacitance, inductance, and resistance that cannot be isolated into separate lumped capacitors, inductors, or resistors. An example of this, much used in
383: 275:
parts (such as atoms). Therefore, they can have millions of resonant frequencies, although only a few may be used in practical resonators. The oppositely moving waves
340:
wave after a round trip must be equal to the initial phase so the waves self-reinforce. The condition for resonance in a resonator is that the round trip distance,
362: 330: 480: 306: 1211: 2299:
M.B. Bauza; R.J Hocken; S.T Smith; S.C Woody (2005), "The development of a virtual probe tip with application to high aspect ratio microscale features",
1184: 210:
which are used at lower frequencies. Acoustic cavity resonators, in which sound is produced by air vibrating in a cavity with one opening, are known as
2450: 1196: 171:). Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use 1616:
directs the extracted RF energy to the load, which may be a cooking chamber in a microwave oven or a high gain antenna in the case of radar.
523: 206:
consisting of hollow metal boxes are used in microwave transmitters, receivers and test equipment to control frequency, in place of the
1983:
when the note is struck. This adds depth and volume to the note. In string instruments, the body of the instrument is a resonator. The
1447: 1216: 391: 2192:
L. Frunzio; et al. (2005). "Fabrication and Characterization of Superconducting Circuit QED Devices for Quantum Computation".
2018:
may also have resonators. Many five-string banjos have removable resonators, so players can use the instrument with a resonator in
1577:, the range of frequencies around the resonant frequency at which they will resonate, is very narrow. Thus they can act as narrow 1226: 629:. There may be several such series of resonant frequencies in a single resonator, corresponding to different modes of vibration. 1051: 2372: 1066: 1061: 688: 1076: 1551:(radio waves) reflecting back and forth between the cavity's walls. When a source of radio waves at one of the cavity's 621:, the resonant frequencies may not occur at equally spaced multiples of the fundamental frequency. They are then called 107: 2445: 2063: 79: 2115: 678: 126: 946: 227: 2400: 1683: 1649: 861: 86: 1585:. Their resonant frequency can be tuned by moving one of the walls of the cavity in or out, changing its size. 2455: 1440: 1206: 683: 64: 2131:
D. Hafner; et al. (2014). "Surface-resistance measurements using superconducting stripline resonators".
1574: 1221: 926: 1895:. Every musical instrument has resonators. Some generate the sound directly, such as the wooden bars in a 1086: 826: 693: 93: 816: 2424: 1654: 1566:
frequencies and above, where wavelengths are short enough that the cavity is conveniently small in size.
1379: 1254: 1151: 1126: 1046: 2342: 2247: 2073: 1503: 879: 60: 31: 17: 1592:
An illustration of the electric and magnetic field of one of the possible modes in a cavity resonator.
75: 1499: 1433: 1394: 921: 911: 851: 846: 786: 164: 1771:, light is amplified in a cavity resonator that is usually composed of two or more mirrors. Thus an 485: 2245:
M. Göppl; et al. (2008). "Coplanar waveguide resonators for circuit quantum electrodynamics".
1956: 1638:
that works in conjunction with a specifically tuned cavity by the configuration of the structures.
931: 1364: 866: 2078: 1244: 771: 761: 756: 53: 1800: 1369: 1339: 367: 1658: 1191: 961: 736: 276: 1547:
is a hollow closed conductor such as a metal box or a cavity within a metal block, containing
1479:
are included. Oscillations are limited by the inclusion of resistance, either via a specific
1874: 1778: 1582: 1522: 1518: 1484: 1289: 976: 966: 916: 906: 610: 202:
is one in which waves exist in a hollow space inside the device. In electronics and radio,
2308: 2265: 2211: 2150: 1794: 1717: 1635: 1548: 1466: 1414: 1314: 1279: 1031: 896: 796: 781: 716: 1931:, and the sound boxes of stringed instruments are examples of acoustic cavity resonators. 1471:
An electrical circuit composed of discrete components can act as a resonator when both an
653: 343: 311: 8: 1972: 1904: 1374: 1354: 1349: 1156: 1141: 1026: 996: 891: 821: 464: 290: 231: 211: 160: 2312: 2269: 2215: 2154: 1525:
in RF circuits. The self-resonance of inductors is used in a few circuits, such as the
2460: 2440: 2394: 2281: 2255: 2227: 2201: 2174: 2140: 2083: 1976: 1908: 1892: 1886: 1834: 1814: 1806: 1747: 1701: 1695: 1552: 1249: 989: 791: 751: 280: 223: 176: 100: 1569:
Due to the low resistance of their conductive walls, cavity resonators have very high
2166: 2111: 2038: 1862: 1846: 1731: 1678:
of an accelerator system, there are specific sections that are cavity resonators for
1507: 1309: 180: 172: 2285: 2231: 2178: 1588: 2316: 2273: 2219: 2158: 2031: 2008: 1826: 1608: 1602: 1538: 1488: 1409: 1324: 1284: 1274: 1161: 1116: 1099: 1016: 951: 721: 645: 618: 203: 2019: 1743:
or open circuit, connected in series or parallel with a main transmission line.
1679: 1642: 1578: 1517:
consisting of a coil of wire, is self-resonant at a certain frequency due to the
1344: 1269: 1264: 1131: 1006: 971: 831: 731: 255: 247: 1384: 1948: 1818: 1773: 1304: 1299: 1121: 1011: 936: 886: 836: 809: 766: 741: 711: 704: 1581:. Cavity resonators are widely used as the frequency determining element in 2434: 2364: 2223: 2042: 1960: 1943:
A sport motorcycle, equipped with exhaust resonator, designed for performance
1854: 1740: 1736: 1556: 1419: 1404: 1389: 1329: 1041: 956: 941: 856: 841: 746: 333: 284: 239: 207: 163:, than at other frequencies. The oscillations in a resonator can be either 2170: 1842: 1838: 1399: 1294: 1259: 1201: 1136: 1056: 1021: 901: 776: 602: 184: 1911:. Some modify the sound by enhancing particular frequencies, such as the 246:
have one resonant frequency. Systems with two degrees of freedom, such as
175:
resonators that produce sound waves of specific tones. Another example is
2206: 2068: 1999: 1939: 1866: 1822: 1492: 1319: 1171: 1001: 663: 251: 243: 148: 190: 2023: 1988: 1924: 1755: 1526: 1036: 337: 2320: 2298: 2277: 2162: 1980: 1912: 1896: 1870: 1810: 1751: 1613: 1563: 1476: 1359: 1334: 1146: 668: 591:{\displaystyle f={\frac {Nc}{2d}}\qquad \qquad N\in \{1,2,3,\dots \}} 168: 156: 152: 144: 1646:
proper phase to reinforce the oscillations set up in the resonator.
1521:
between its turns. This is often an unwanted effect that can cause
42: 2335:"Precision Engineering and Manufacturing Solutions - IST Precision" 1928: 1675: 1662: 1631: 1625: 1570: 1514: 1480: 1472: 1111: 1106: 726: 626: 622: 606: 235: 2260: 2145: 1975:
instruments, below the centre of each note is a tube, which is an
234:. Systems with one degree of freedom, such as a mass on a spring, 2051: 1991:
is achieved via a mechanism that opens and shuts the resonators.
1984: 1952: 1830: 1777:, also known as a resonator, is a cavity with walls that reflect 1686:
for improved performance compared to metallic (copper) cavities.
1665:; the linac is the tube passing through the middle of the cavity. 1081: 1829:
property converts the mechanical vibrations into an oscillating
451:{\displaystyle 2d=N\lambda ,\qquad \qquad N\in \{1,2,3,\dots \}} 2419: 1920: 1916: 1858: 1166: 673: 1873:
of the fiber. One application is as a measurement device for
1857:
is imposed on the beam. This type of system can be used as a
1785:). This allows standing wave modes to exist with little loss. 1746:
Planar transmission-line resonators are commonly employed for
2015: 2004: 1845:
that runs computers, and to stabilize the output signal from
1782: 1768: 2334: 2046: 1900: 614: 1891:
The most familiar examples of acoustic resonators are in
2307:(9), Rev. Sci Instrum, 76 (9) 095112: 095112–095112–8, 1951:
are designed as acoustic resonators that work with the
1833:, which is picked up by the attached electrodes. These 1739:, a length of transmission line terminated in either a 1669: 287:
in the resonator. If the distance between the sides is
526: 488: 467: 394: 370: 346: 314: 293: 187:to produce oscillations of very precise frequency. 67:. Unsourced material may be challenged and removed. 601:So the resonant frequencies of resonators, called 590: 509: 474: 450: 377: 356: 324: 300: 194:A standing wave in a rectangular cavity resonator 2432: 1559:, and the cavity stores electromagnetic energy. 1726: 364:, is equal to an integer number of wavelengths 2194:IEEE Transactions on Applied Superconductivity 1495:after the circuit symbols for the components. 1959:use the resonator to enhance the sound. In " 1555:is applied, the oppositely-moving waves form 1441: 585: 561: 445: 421: 283:reinforce each other to create a pattern of 147:or resonant behavior. That is, it naturally 2191: 1661:are used to accelerate and bunch beams of 1448: 1434: 652: 230:; each degree of freedom can vibrate as a 2259: 2205: 2144: 2130: 2014:String instruments such as the bluegrass 1966: 1708:resonators would be impractically large. 506: 471: 374: 353: 321: 297: 127:Learn how and when to remove this message 2451:Musical instrument parts and accessories 2244: 2030:, used by itself, may also refer to the 1998: 1938: 1711: 1648: 1587: 189: 27:Device or system that exhibits resonance 2101: 2099: 2089: 1994: 1197:Electromagnetism and special relativity 14: 2433: 2105: 1689: 1217:Maxwell equations in curved spacetime 1071: 254:can have two resonant frequencies. A 2096: 1670:Application in particle accelerators 1532: 1460: 143:is a device or system that exhibits 65:adding citations to reliable sources 36: 2375:from the original on 8 October 2005 1801:Mechanical filter § Resonators 1762: 1596: 632: 609:) of a lowest frequency called the 222:A physical system can have as many 179:used in electronic devices such as 24: 2064:Coupling coefficient of resonators 1805:Mechanical resonators are used in 25: 2472: 2412: 2345:from the original on 31 July 2016 1809:to generate signals of a precise 517:so the resonant frequencies are: 2418: 2301:Review of Scientific Instruments 1947:The exhaust pipes in automobile 1684:superconducting niobium cavities 1487:of the inductor windings. Such 605:, are equally spaced multiples ( 308:, the length of a round trip is 41: 2401:Office of Technology Assessment 2110:(2 ed.). New York: Wiley. 554: 553: 414: 413: 52:needs additional citations for 2396:Advanced Automotive Technology 2387: 2357: 2327: 2292: 2238: 2185: 2124: 1934: 510:{\displaystyle f=c/\lambda \,} 262:atoms bound together can have 217: 13: 1: 2403:. September 1995. p. 84. 1788: 1222:Relativistic electromagnetism 461:If the velocity of a wave is 1727:Transmission-line resonators 279:with each other, and at its 7: 2057: 1880: 1841:and watches, to create the 1619: 10: 2477: 2074:Nuclear magnetic resonance 1884: 1798: 1792: 1715: 1693: 1623: 1600: 1536: 1464: 947:LiĂ©nard–Wiechert potential 378:{\displaystyle \lambda \,} 332:. To cause resonance, the 32:Resonator (disambiguation) 29: 2446:Electromagnetism concepts 1977:acoustic cavity resonator 1212:Mathematical descriptions 922:Electromagnetic radiation 912:Electromagnetic induction 852:Magnetic vector potential 847:Magnetic scalar potential 167:or mechanical (including 2224:10.1109/TASC.2005.850084 2022:style, or without it in 1815:piezoelectric resonators 2254:(11): 113904–113904–8. 2079:Optical ring resonators 762:Electrostatic induction 757:Electrostatic discharge 2011: 1967:Percussion instruments 1957:after-market suppliers 1944: 1907:, and the pipes in an 1666: 1659:Australian Synchrotron 1593: 1523:parasitic oscillations 1192:Electromagnetic tensor 592: 511: 476: 452: 379: 358: 326: 302: 195: 2456:Mechanical vibrations 2108:Microwave Engineering 2106:Pozar, David (1998). 2002: 1942: 1875:dimensional metrology 1817:, commonly made from 1779:electromagnetic waves 1712:Dielectric resonators 1652: 1591: 1583:microwave oscillators 1549:electromagnetic waves 1519:parasitic capacitance 1500:distributed-parameter 1483:component, or due to 1185:Covariant formulation 977:Synchrotron radiation 917:Electromagnetic pulse 907:Electromagnetic field 611:fundamental frequency 593: 512: 477: 453: 380: 359: 327: 303: 252:resonant transformers 193: 2427:at Wikimedia Commons 2371:. 19 February 2001. 2090:References and notes 1995:Stringed instruments 1905:stringed instruments 1861:to track changes in 1795:mechanical resonance 1718:Dielectric resonator 1636:particle accelerator 1553:resonant frequencies 1467:electrical resonance 1227:Stress–energy tensor 1152:Reluctance (complex) 897:Displacement current 524: 486: 465: 392: 368: 357:{\displaystyle 2d\,} 344: 325:{\displaystyle 2d\,} 312: 291: 281:resonant frequencies 224:resonant frequencies 212:Helmholtz resonators 161:resonant frequencies 61:improve this article 30:For other uses, see 2365:"How Mufflers Work" 2313:2005RScI...76i5112B 2270:2008JAP...104k3904G 2216:2005ITAS...15..860F 2155:2014RScI...85a4702H 1973:keyboard percussion 1893:musical instruments 1835:crystal oscillators 1807:electronic circuits 1653:RF cavities in the 1142:Magnetomotive force 1027:Electromotive force 997:Alternating current 932:Jefimenko equations 892:Cyclotron radiation 482:, the frequency is 475:{\displaystyle c\,} 301:{\displaystyle d\,} 232:harmonic oscillator 2084:Superconducting RF 2012: 1945: 1887:Acoustic resonance 1847:radio transmitters 1732:Transmission lines 1702:loop-gap resonator 1696:loop-gap resonator 1690:Loop-gap resonator 1667: 1594: 990:Electrical network 827:Gauss magnetic law 792:Static electricity 752:Electric potential 588: 507: 472: 448: 375: 354: 322: 298: 228:degrees of freedom 204:microwave cavities 196: 181:radio transmitters 2423:Media related to 2369:howstuffworks.com 2339:www.insitutec.com 2321:10.1063/1.2052027 2278:10.1063/1.3010859 2163:10.1063/1.4856475 2133:Rev. Sci. Instrum 2039:ten-string guitar 1903:, the strings in 1533:Cavity resonators 1508:helical resonator 1489:resonant circuits 1461:Resonant circuits 1458: 1457: 1157:Reluctance (real) 1127:Gyrator–capacitor 1072:Resonant cavities 962:Maxwell equations 617:or a cylindrical 551: 248:coupled pendulums 244:LC tuned circuits 137: 136: 129: 111: 16:(Redirected from 2468: 2422: 2406: 2404: 2399:. United States 2391: 2385: 2384: 2382: 2380: 2361: 2355: 2354: 2352: 2350: 2331: 2325: 2323: 2296: 2290: 2289: 2263: 2242: 2236: 2235: 2209: 2207:cond-mat/0411708 2189: 2183: 2182: 2148: 2128: 2122: 2121: 2103: 2047:guitar resonator 2032:resonator guitar 2026:style. The term 2009:resonator guitar 1927:, the bodies of 1899:, the head of a 1763:Optical cavities 1609:cavity magnetron 1603:cavity magnetron 1597:Cavity magnetron 1579:bandpass filters 1573:; that is their 1545:cavity resonator 1539:Microwave cavity 1491:are also called 1450: 1443: 1436: 1117:Electric machine 1100:Magnetic circuit 1062:Parallel circuit 1052:Network analysis 1017:Electric current 952:London equations 797:Triboelectricity 787:Potential energy 656: 646:Electromagnetism 637: 636: 633:Electromagnetics 619:microwave cavity 597: 595: 594: 589: 552: 550: 542: 534: 516: 514: 513: 508: 502: 481: 479: 478: 473: 457: 455: 454: 449: 384: 382: 381: 376: 363: 361: 360: 355: 331: 329: 328: 323: 307: 305: 304: 299: 200:cavity resonator 132: 125: 121: 118: 112: 110: 69: 45: 37: 21: 2476: 2475: 2471: 2470: 2469: 2467: 2466: 2465: 2431: 2430: 2415: 2410: 2409: 2393: 2392: 2388: 2378: 2376: 2363: 2362: 2358: 2348: 2346: 2333: 2332: 2328: 2297: 2293: 2243: 2239: 2190: 2186: 2129: 2125: 2118: 2104: 2097: 2092: 2060: 1997: 1969: 1949:exhaust systems 1937: 1889: 1883: 1813:. For example, 1803: 1797: 1791: 1765: 1729: 1720: 1714: 1698: 1692: 1680:radio frequency 1672: 1643:reflex klystron 1628: 1622: 1605: 1599: 1541: 1535: 1469: 1463: 1454: 1425: 1424: 1240: 1232: 1231: 1187: 1177: 1176: 1132:Induction motor 1102: 1092: 1091: 1007:Current density 992: 982: 981: 972:Poynting vector 882: 880:Electrodynamics 872: 871: 867:Right-hand rule 832:Magnetic dipole 822:Biot–Savart law 812: 802: 801: 737:Electric dipole 732:Electric charge 707: 635: 543: 535: 533: 525: 522: 521: 498: 487: 484: 483: 466: 463: 462: 393: 390: 389: 369: 366: 365: 345: 342: 341: 313: 310: 309: 292: 289: 288: 256:crystal lattice 220: 177:quartz crystals 165:electromagnetic 133: 122: 116: 113: 70: 68: 58: 46: 35: 28: 23: 22: 15: 12: 11: 5: 2474: 2464: 2463: 2458: 2453: 2448: 2443: 2429: 2428: 2414: 2413:External links 2411: 2408: 2407: 2386: 2356: 2326: 2291: 2248:J. Appl. Phys. 2237: 2200:(2): 860–863. 2184: 2123: 2116: 2094: 2093: 2091: 2088: 2087: 2086: 2081: 2076: 2071: 2066: 2059: 2056: 2041:, invented by 1996: 1993: 1968: 1965: 1936: 1933: 1885:Main article: 1882: 1879: 1793:Main article: 1790: 1787: 1774:optical cavity 1764: 1761: 1728: 1725: 1716:Main article: 1713: 1710: 1694:Main article: 1691: 1688: 1671: 1668: 1624:Main article: 1621: 1618: 1601:Main article: 1598: 1595: 1557:standing waves 1537:Main article: 1534: 1531: 1465:Main article: 1462: 1459: 1456: 1455: 1453: 1452: 1445: 1438: 1430: 1427: 1426: 1423: 1422: 1417: 1412: 1407: 1402: 1397: 1392: 1387: 1382: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1342: 1337: 1332: 1327: 1322: 1317: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1277: 1272: 1267: 1262: 1257: 1252: 1247: 1241: 1238: 1237: 1234: 1233: 1230: 1229: 1224: 1219: 1214: 1209: 1207:Four-potential 1204: 1199: 1194: 1188: 1183: 1182: 1179: 1178: 1175: 1174: 1169: 1164: 1159: 1154: 1149: 1144: 1139: 1134: 1129: 1124: 1122:Electric motor 1119: 1114: 1109: 1103: 1098: 1097: 1094: 1093: 1090: 1089: 1084: 1079: 1077:Series circuit 1074: 1069: 1064: 1059: 1054: 1049: 1047:Kirchhoff laws 1044: 1039: 1034: 1029: 1024: 1019: 1014: 1012:Direct current 1009: 1004: 999: 993: 988: 987: 984: 983: 980: 979: 974: 969: 967:Maxwell tensor 964: 959: 954: 949: 944: 939: 937:Larmor formula 934: 929: 924: 919: 914: 909: 904: 899: 894: 889: 887:Bremsstrahlung 883: 878: 877: 874: 873: 870: 869: 864: 859: 854: 849: 844: 839: 837:Magnetic field 834: 829: 824: 819: 813: 810:Magnetostatics 808: 807: 804: 803: 800: 799: 794: 789: 784: 779: 774: 769: 764: 759: 754: 749: 744: 742:Electric field 739: 734: 729: 724: 719: 714: 712:Charge density 708: 705:Electrostatics 703: 702: 699: 698: 697: 696: 691: 686: 681: 676: 671: 666: 658: 657: 649: 648: 642: 641: 640:Articles about 634: 631: 599: 598: 587: 584: 581: 578: 575: 572: 569: 566: 563: 560: 557: 549: 546: 541: 538: 532: 529: 505: 501: 497: 494: 491: 470: 459: 458: 447: 444: 441: 438: 435: 432: 429: 426: 423: 420: 417: 412: 409: 406: 403: 400: 397: 373: 352: 349: 320: 317: 296: 285:standing waves 240:balance wheels 219: 216: 208:tuned circuits 185:quartz watches 135: 134: 49: 47: 40: 26: 9: 6: 4: 3: 2: 2473: 2462: 2459: 2457: 2454: 2452: 2449: 2447: 2444: 2442: 2439: 2438: 2436: 2426: 2421: 2417: 2416: 2402: 2398: 2397: 2390: 2374: 2370: 2366: 2360: 2344: 2340: 2336: 2330: 2322: 2318: 2314: 2310: 2306: 2302: 2295: 2287: 2283: 2279: 2275: 2271: 2267: 2262: 2257: 2253: 2250: 2249: 2241: 2233: 2229: 2225: 2221: 2217: 2213: 2208: 2203: 2199: 2195: 2188: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2147: 2142: 2139:(1): 014702. 2138: 2134: 2127: 2119: 2117:9780470631553 2113: 2109: 2102: 2100: 2095: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2061: 2055: 2053: 2048: 2044: 2043:Narciso Yepes 2040: 2035: 2033: 2029: 2025: 2021: 2017: 2010: 2006: 2001: 1992: 1990: 1986: 1982: 1978: 1974: 1964: 1962: 1961:tuned exhaust 1958: 1954: 1950: 1941: 1932: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1888: 1878: 1876: 1872: 1868: 1864: 1860: 1856: 1855:standing wave 1850: 1848: 1844: 1840: 1839:quartz clocks 1836: 1832: 1828: 1827:piezoelectric 1824: 1820: 1816: 1812: 1808: 1802: 1796: 1786: 1784: 1780: 1776: 1775: 1770: 1760: 1757: 1753: 1749: 1744: 1742: 1741:short circuit 1738: 1737:resonant stub 1733: 1724: 1719: 1709: 1705: 1703: 1697: 1687: 1685: 1681: 1677: 1664: 1660: 1656: 1651: 1647: 1644: 1639: 1637: 1633: 1627: 1617: 1615: 1610: 1604: 1590: 1586: 1584: 1580: 1576: 1572: 1567: 1565: 1560: 1558: 1554: 1550: 1546: 1540: 1530: 1528: 1524: 1520: 1516: 1511: 1509: 1505: 1501: 1496: 1494: 1490: 1486: 1482: 1478: 1474: 1468: 1451: 1446: 1444: 1439: 1437: 1432: 1431: 1429: 1428: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1242: 1236: 1235: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1189: 1186: 1181: 1180: 1173: 1170: 1168: 1165: 1163: 1160: 1158: 1155: 1153: 1150: 1148: 1145: 1143: 1140: 1138: 1135: 1133: 1130: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1104: 1101: 1096: 1095: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1068: 1065: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1043: 1042:Joule heating 1040: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 998: 995: 994: 991: 986: 985: 978: 975: 973: 970: 968: 965: 963: 960: 958: 957:Lorentz force 955: 953: 950: 948: 945: 943: 940: 938: 935: 933: 930: 928: 925: 923: 920: 918: 915: 913: 910: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 884: 881: 876: 875: 868: 865: 863: 860: 858: 857:Magnetization 855: 853: 850: 848: 845: 843: 842:Magnetic flux 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 814: 811: 806: 805: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 753: 750: 748: 747:Electric flux 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 709: 706: 701: 700: 695: 692: 690: 687: 685: 684:Computational 682: 680: 677: 675: 672: 670: 667: 665: 662: 661: 660: 659: 655: 651: 650: 647: 644: 643: 639: 638: 630: 628: 624: 620: 616: 612: 608: 604: 582: 579: 576: 573: 570: 567: 564: 558: 555: 547: 544: 539: 536: 530: 527: 520: 519: 518: 503: 499: 495: 492: 489: 468: 442: 439: 436: 433: 430: 427: 424: 418: 415: 410: 407: 404: 401: 398: 395: 388: 387: 386: 385:of the wave: 371: 350: 347: 339: 335: 318: 315: 294: 286: 282: 278: 273: 268: 265: 261: 257: 253: 249: 245: 241: 237: 233: 229: 225: 215: 213: 209: 205: 201: 192: 188: 186: 182: 178: 174: 170: 166: 162: 158: 154: 151:with greater 150: 146: 142: 131: 128: 120: 109: 106: 102: 99: 95: 92: 88: 85: 81: 78: â€“  77: 73: 72:Find sources: 66: 62: 56: 55: 50:This article 48: 44: 39: 38: 33: 19: 2395: 2389: 2377:. Retrieved 2368: 2359: 2347:. Retrieved 2338: 2329: 2304: 2300: 2294: 2251: 2246: 2240: 2197: 2193: 2187: 2136: 2132: 2126: 2107: 2036: 2027: 2013: 1987:effect of a 1970: 1946: 1890: 1851: 1843:clock signal 1837:are used in 1804: 1772: 1766: 1745: 1730: 1721: 1706: 1699: 1673: 1640: 1629: 1606: 1568: 1561: 1544: 1542: 1512: 1497: 1493:RLC circuits 1470: 1202:Four-current 1137:Linear motor 1022:Electrolysis 902:Eddy current 862:Permeability 782:Polarization 777:Permittivity 603:normal modes 600: 460: 271: 269: 263: 259: 258:composed of 221: 199: 197: 140: 138: 123: 117:January 2008 114: 104: 97: 90: 83: 71: 59:Please help 54:verification 51: 2069:Crab cavity 2037:The modern 1935:Automobiles 1925:Organ pipes 1823:tuning fork 1172:Transformer 1002:Capacitance 927:Faraday law 722:Coulomb law 664:Electricity 625:instead of 218:Explanation 157:frequencies 76:"Resonator" 2435:Categories 2425:Resonators 2024:folk music 1989:vibraphone 1799:See also: 1789:Mechanical 1756:microstrip 1527:Tesla coil 1485:resistance 1239:Scientists 1087:Waveguides 1067:Resistance 1037:Inductance 817:AmpĂšre law 338:sinusoidal 226:as it has 149:oscillates 87:newspapers 18:Resonators 2461:Resonance 2441:Acoustics 2261:0807.4094 2146:1309.5331 2028:resonator 2020:bluegrass 1981:resonates 1929:woodwinds 1913:sound box 1897:xylophone 1871:resonance 1863:frequency 1811:frequency 1752:stripline 1663:electrons 1614:waveguide 1575:bandwidth 1571:Q factors 1564:microwave 1506:, is the 1504:filtering 1477:capacitor 1395:Steinmetz 1325:Kirchhoff 1310:Jefimenko 1305:Hopkinson 1290:Helmholtz 1285:Heaviside 1147:Permeance 1032:Impedance 772:Insulator 767:Gauss law 717:Conductor 694:Phenomena 689:Textbooks 669:Magnetism 627:harmonics 623:overtones 607:harmonics 583:… 559:∈ 504:λ 443:… 419:∈ 408:λ 372:λ 277:interfere 272:resonator 270:The term 236:pendulums 159:, called 153:amplitude 145:resonance 141:resonator 2373:Archived 2343:Archived 2286:56398614 2232:12789596 2179:16234011 2171:24517793 2058:See also 1971:In many 1881:Acoustic 1748:coplanar 1676:beamline 1632:klystron 1626:klystron 1620:Klystron 1515:inductor 1481:resistor 1473:inductor 1420:Wiechert 1375:Poynting 1265:Einstein 1112:DC motor 1107:AC motor 942:Lenz law 727:Electret 615:drumhead 173:acoustic 169:acoustic 155:at some 2309:Bibcode 2266:Bibcode 2212:Bibcode 2151:Bibcode 2052:sustain 2007:-style 1985:tremolo 1953:muffler 1869:of the 1831:voltage 1674:On the 1657:of the 1405:Thomson 1380:Ritchie 1370:Poisson 1355:Neumann 1350:Maxwell 1345:Lorentz 1340:LiĂ©nard 1270:Faraday 1255:Coulomb 1082:Voltage 1057:Ohm law 679:History 101:scholar 2284:  2230:  2177:  2169:  2114:  1921:violin 1917:guitar 1859:sensor 1819:quartz 1781:(i.e. 1754:, and 1390:Singer 1385:Savart 1365:Ørsted 1330:Larmor 1320:Kelvin 1275:Fizeau 1245:AmpĂšre 1167:Stator 674:Optics 242:, and 103:  96:  89:  82:  74:  2379:7 May 2349:7 May 2282:S2CID 2256:arXiv 2228:S2CID 2202:arXiv 2175:S2CID 2141:arXiv 2016:banjo 2005:Dobro 1915:of a 1909:organ 1867:phase 1783:light 1769:laser 1767:In a 1655:linac 1415:Weber 1410:Volta 1400:Tesla 1315:Joule 1300:Hertz 1295:Henry 1280:Gauss 1162:Rotor 336:of a 334:phase 108:JSTOR 94:books 2381:2018 2351:2018 2167:PMID 2112:ISBN 1901:drum 1700:The 1641:The 1630:The 1607:The 1475:and 1335:Lenz 1260:Davy 1250:Biot 250:and 183:and 80:news 2317:doi 2274:doi 2252:104 2220:doi 2159:doi 1923:. 1919:or 1865:or 1513:An 1360:Ohm 63:by 2437:: 2367:. 2341:. 2337:. 2315:, 2305:76 2303:, 2280:. 2272:. 2264:. 2226:. 2218:. 2210:. 2198:15 2196:. 2173:. 2165:. 2157:. 2149:. 2137:85 2135:. 2098:^ 2054:. 2034:. 2003:A 1877:. 1849:. 1750:, 1543:A 1529:. 1510:. 1498:A 238:, 214:. 198:A 139:A 2405:. 2383:. 2353:. 2324:. 2319:: 2311:: 2288:. 2276:: 2268:: 2258:: 2234:. 2222:: 2214:: 2204:: 2181:. 2161:: 2153:: 2143:: 2120:. 1449:e 1442:t 1435:v 586:} 580:, 577:3 574:, 571:2 568:, 565:1 562:{ 556:N 548:d 545:2 540:c 537:N 531:= 528:f 500:/ 496:c 493:= 490:f 469:c 446:} 440:, 437:3 434:, 431:2 428:, 425:1 422:{ 416:N 411:, 405:N 402:= 399:d 396:2 351:d 348:2 319:d 316:2 295:d 264:N 260:N 130:) 124:( 119:) 115:( 105:· 98:· 91:· 84:· 57:. 34:. 20:)

Index

Resonators
Resonator (disambiguation)

verification
improve this article
adding citations to reliable sources
"Resonator"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
resonance
oscillates
amplitude
frequencies
resonant frequencies
electromagnetic
acoustic
acoustic
quartz crystals
radio transmitters
quartz watches

microwave cavities
tuned circuits
Helmholtz resonators
resonant frequencies
degrees of freedom

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑