Knowledge

Response spectrum

Source đź“ť

566: 419: 465: 378: 366: 477: 528: 453: 354: 501: 554: 542: 578: 489: 602: 518: 441: 342: 590: 390: 25: 17: 137:), which may be identified from the response spectrum. This was observed in the 1985 Mexico City Earthquake where the oscillation of the deep-soil lake bed was similar to the natural frequency of mid-rise concrete buildings, causing significant damage. Shorter (stiffer) and taller (more flexible) buildings suffered less damage. 157:
combination of the results for many modes (calculated through modal analysis) is often required. In extreme cases, where structures are either too irregular, too tall or of significance to a community in disaster response, the response spectrum approach is no longer appropriate, and more complex analysis is required, such as
124:
of the structure, then the peak response of the building can be estimated by reading the value from the ground response spectrum for the appropriate frequency. In most building codes in seismic regions, this value forms the basis for calculating the forces that a structure must be designed to resist
152:
Monograph on "Earthquake Design and Spectra", Newmark and Hall describe how they developed an "idealized" seismic response spectrum based on a range of response spectra generated for available earthquake records. This was then further developed into a design response spectrum for use in structural
83:
is performed to identify the modes, and the response in that mode can be picked from the response spectrum. These peak responses are then combined to estimate a total response. A typical combination method is the square root of the sum of the squares (SRSS) if the modal frequencies are not close.
156:
For "regular" low-rise buildings, the structural response to earthquakes is characterized by the fundamental mode (a "waving" back-and-forth), and most building codes permit design forces to be calculated from the design spectrum on the basis of that frequency, but for more complex structures,
71:
If the input used in calculating a response spectrum is steady-state periodic, then the steady-state result is recorded. Damping must be present, or else the response will be infinite. For transient input (such as seismic ground motion), the peak response is reported. Some level of damping is
153:
design, and this basic form (with some modifications) is now the basis for structural design in seismic regions throughout the world (typically plotted against structural "period", the inverse of frequency). A nominal level of damping is assumed (5% of critical damping).
95:
systems, but are only applicable to systems with the same non-linearity, although attempts have been made to develop non-linear seismic design spectra with wider structural application. The results of this cannot be directly combined for multi-mode response.
132:
As mentioned earlier, the ground response spectrum is the response plot done at the free surface of the earth. Significant seismic damage may occur if the building response is 'in tune' with components of the ground motion
84:
The result is typically different from that which would be calculated directly from an input, since phase information is lost in the process of generating the response spectrum.
248:
Newmark, N. M., and Hall, W. J. 1982. “Earthquake Spectra and Design,” Engineering Monographs on Earthquake Criteria, Structural Design, and Strong Motion Records, Vol 3,
117: 369: 480: 456: 265:– Appendix B of "Engineering and Design – Response Spectra and Seismic Analysis for Concrete Hydraulic Structures (EM 1110-2-6050)", US Army Corps of Engineers 504: 290: 557: 262: 444: 1255: 228: 206: 149: 1300: 283: 710: 308: 276: 56:
system, given its natural frequency of oscillation. One such use is in assessing the peak response of buildings to
1431: 1426: 1421: 64:
may use some values from the ground response spectrum (calculated from recordings of surface ground motion from
165: 126: 958: 839: 381: 161: 238: 169: 1271: 227:
Report on 1985 Mexico City Earthquake] from "EQ Facts & Lists: Large Historical Earthquakes", USGS. (
871: 316: 36:
is a plot of the peak or steady-state response (displacement, velocity or acceleration) of a series of
1174: 569: 75:
Response spectra can also be used in assessing the response of linear systems with multiple modes of
1250: 1240: 1112: 1102: 932: 670: 468: 299: 229:
https://web.archive.org/web/20070206063939/http://neic.usgs.gov/neis/eq_depot/world/1985_09_19.html
181: 1090: 1065: 1005: 685: 626: 1353: 1164: 978: 814: 789: 640: 619: 511: 105: 79:(multi-degree of freedom systems), although they are only accurate for low levels of damping. 1040: 849: 357: 207:"Earthquake Hazards Program: Michoacan, Mexico 1985 September 19 13:17:47 UTC, Magnitude 8.0" 186: 210: 1393: 1245: 1202: 1095: 1020: 403: 61: 8: 1169: 1159: 715: 700: 660: 633: 408: 398: 87:
The main limitation of response spectra is that they are only universally applicable for
1120: 829: 612: 531: 963: 854: 824: 675: 141: 121: 49: 41: 1267: 1154: 1045: 1010: 985: 844: 665: 492: 1383: 1207: 1125: 1060: 1055: 953: 819: 690: 545: 1330: 1222: 1139: 943: 705: 695: 581: 80: 1260: 1415: 1358: 1197: 1075: 1070: 1025: 794: 263:"Illustration of Newmark-Hall Approach to Developing Design Response Spectra" 145: 565: 418: 1378: 1373: 1363: 1343: 1030: 973: 804: 521: 464: 377: 268: 430: 365: 1388: 1085: 968: 907: 476: 76: 65: 37: 527: 452: 353: 1212: 1192: 1080: 892: 887: 809: 799: 680: 425: 345: 158: 113: 109: 92: 57: 112:
and equipment in earthquakes, since many behave principally as simple
72:
generally assumed, but a value will be obtained even with no damping.
52:. The resulting plot can then be used to pick off the response of any 1368: 1348: 1234: 1050: 1035: 651: 593: 393: 134: 45: 1398: 1285: 1015: 990: 917: 834: 500: 553: 541: 239:"Historic Developments in the Evolution of Earthquake Engineering" 28:
A plot of the peak acceleration for the mixed vertical oscillators
1338: 1310: 995: 922: 912: 902: 897: 605: 577: 488: 1320: 1315: 1305: 1295: 1227: 1000: 948: 758: 601: 517: 440: 88: 53: 341: 773: 589: 389: 241:, illustrated essays by Robert Reitherman, CUREE, 1997, p10. 768: 763: 753: 748: 743: 728: 24: 16: 249: 144:
began to publish calculations of response spectra from
1413: 91:systems. Response spectra can be generated for 44:, that are forced into motion by the same base 284: 298: 99: 291: 277: 104:Response spectra are very useful tools of 250:Earthquake Engineering Research Institute 120:systems). Thus, if you can find out the 23: 15: 68:) for correlation with seismic damage. 1414: 20:A series of mixed vertical oscillators 272: 244: 234: 13: 14: 1443: 309:Offshore geotechnical engineering 256: 108:for analyzing the performance of 600: 588: 576: 564: 552: 540: 526: 516: 499: 487: 475: 463: 451: 439: 417: 388: 376: 364: 352: 340: 221: 199: 1: 959:Mechanically stabilized earth 192: 711:Hydraulic conductivity tests 170:seismic performance analysis 7: 1272:Stress distribution in soil 175: 10: 1448: 422:Pore pressure measurement 1329: 1284: 1183: 1175:Preconsolidation pressure 1147: 1138: 1111: 931: 880: 867: 782: 736: 727: 650: 570:Standard penetration test 328: 315: 306: 671:California bearing ratio 469:Rotary-pressure sounding 300:Geotechnical engineering 182:Peak ground acceleration 118:single degree of freedom 100:Seismic response spectra 1091:Geosynthetic clay liner 1066:Expanded clay aggregate 686:Proctor compaction test 627:Crosshole sonic logging 613:Nuclear densometer test 370:Geo-electrical sounding 1432:Earthquake engineering 1427:Seismology measurement 1422:Structural engineering 1354:Earthquake engineering 1165:Lateral earth pressure 790:Hydraulic conductivity 641:Wave equation analysis 620:Exploration geophysics 512:Deformation monitoring 481:Rotary weight sounding 106:earthquake engineering 29: 21: 532:Settlement recordings 457:Rock control drilling 358:Cone penetration test 187:Spectral acceleration 27: 19: 1394:Agricultural science 1096:Cellular confinement 140:In 1941 at Caltech, 62:strong ground motion 1286:Numerical analysis 1170:Overburden pressure 1160:Pore water pressure 940:Shoring structures 815:Reynolds' dilatancy 716:Water content tests 701:Triaxial shear test 661:Soil classification 634:Pile integrity test 213:on 6 February 2007. 1261:Slab stabilisation 1241:Stability analysis 60:. The science of 30: 22: 1409: 1408: 1280: 1279: 1256:Sliding criterion 1218:Response spectrum 1134: 1133: 964:Pressure grouting 863: 862: 723: 722: 676:Direct shear test 382:Permeability test 142:George W. Housner 122:natural frequency 42:natural frequency 34:response spectrum 1439: 1268:Bearing capacity 1155:Effective stress 1145: 1144: 1046:Land reclamation 986:Land development 881:Natural features 878: 877: 845:Specific storage 734: 733: 666:Atterberg limits 604: 592: 580: 568: 556: 544: 530: 520: 505:Screw plate test 503: 491: 479: 467: 455: 443: 421: 392: 380: 368: 356: 344: 326: 325: 293: 286: 279: 270: 269: 247: 237: 215: 214: 209:. Archived from 203: 166:dynamic analysis 127:seismic analysis 1447: 1446: 1442: 1441: 1440: 1438: 1437: 1436: 1412: 1411: 1410: 1405: 1384:Earth materials 1325: 1287: 1276: 1185: 1179: 1130: 1107: 1061:Earth structure 1056:Erosion control 954:Ground freezing 944:Retaining walls 927: 869: 859: 820:Angle of repose 778: 719: 653: 646: 645: 606:Visible bedrock 558:Simple sounding 546:Shear vane test 322:instrumentation 321: 319: 311: 302: 297: 259: 224: 219: 218: 205: 204: 200: 195: 178: 116:(also known as 102: 12: 11: 5: 1445: 1435: 1434: 1429: 1424: 1407: 1406: 1404: 1403: 1402: 1401: 1391: 1386: 1381: 1376: 1371: 1366: 1361: 1356: 1351: 1346: 1341: 1335: 1333: 1331:Related fields 1327: 1326: 1324: 1323: 1318: 1313: 1308: 1303: 1298: 1292: 1290: 1282: 1281: 1278: 1277: 1275: 1274: 1265: 1264: 1263: 1258: 1253: 1251:Classification 1248: 1243: 1232: 1231: 1230: 1225: 1223:Seismic hazard 1220: 1210: 1205: 1200: 1195: 1189: 1187: 1181: 1180: 1178: 1177: 1172: 1167: 1162: 1157: 1151: 1149: 1142: 1136: 1135: 1132: 1131: 1129: 1128: 1123: 1117: 1115: 1109: 1108: 1106: 1105: 1100: 1099: 1098: 1093: 1088: 1083: 1073: 1068: 1063: 1058: 1053: 1048: 1043: 1038: 1033: 1028: 1023: 1018: 1013: 1008: 1003: 998: 993: 988: 983: 982: 981: 976: 971: 966: 961: 956: 951: 946: 937: 935: 929: 928: 926: 925: 920: 915: 910: 905: 900: 895: 890: 884: 882: 875: 865: 864: 861: 860: 858: 857: 852: 850:Shear strength 847: 842: 837: 832: 827: 825:Friction angle 822: 817: 812: 807: 802: 797: 792: 786: 784: 780: 779: 777: 776: 771: 766: 761: 756: 751: 746: 740: 738: 731: 725: 724: 721: 720: 718: 713: 708: 706:Oedometer test 703: 698: 696:Sieve analysis 693: 688: 683: 678: 673: 668: 663: 658: 656: 648: 647: 644: 643: 637: 636: 630: 629: 623: 622: 616: 615: 609: 608: 597: 596: 585: 584: 582:Total sounding 573: 572: 561: 560: 549: 548: 537: 536: 535: 534: 524: 508: 507: 496: 495: 484: 483: 472: 471: 460: 459: 448: 447: 436: 435: 434: 433: 428: 414: 413: 412: 411: 406: 401: 385: 384: 373: 372: 361: 360: 349: 348: 337: 336: 334: 323: 313: 312: 307: 304: 303: 296: 295: 288: 281: 273: 267: 266: 258: 257:External links 255: 254: 253: 252:, Oakland, CA. 242: 232: 223: 220: 217: 216: 197: 196: 194: 191: 190: 189: 184: 177: 174: 148:. In the 1982 146:accelerographs 101: 98: 81:Modal analysis 9: 6: 4: 3: 2: 1444: 1433: 1430: 1428: 1425: 1423: 1420: 1419: 1417: 1400: 1397: 1396: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1359:Geomorphology 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1336: 1334: 1332: 1328: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1293: 1291: 1289: 1283: 1273: 1269: 1266: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1238: 1236: 1233: 1229: 1226: 1224: 1221: 1219: 1216: 1215: 1214: 1211: 1209: 1206: 1204: 1203:Consolidation 1201: 1199: 1198:Frost heaving 1196: 1194: 1191: 1190: 1188: 1182: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1152: 1150: 1146: 1143: 1141: 1137: 1127: 1124: 1122: 1119: 1118: 1116: 1114: 1110: 1104: 1101: 1097: 1094: 1092: 1089: 1087: 1084: 1082: 1079: 1078: 1077: 1076:Geosynthetics 1074: 1072: 1071:Crushed stone 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1027: 1026:Cut-and-cover 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 999: 997: 994: 992: 989: 987: 984: 980: 977: 975: 972: 970: 967: 965: 962: 960: 957: 955: 952: 950: 947: 945: 942: 941: 939: 938: 936: 934: 930: 924: 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 885: 883: 879: 876: 873: 866: 856: 853: 851: 848: 846: 843: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 795:Water content 793: 791: 788: 787: 785: 781: 775: 772: 770: 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 741: 739: 735: 732: 730: 726: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 655: 649: 642: 639: 638: 635: 632: 631: 628: 625: 624: 621: 618: 617: 614: 611: 610: 607: 603: 599: 598: 595: 591: 587: 586: 583: 579: 575: 574: 571: 567: 563: 562: 559: 555: 551: 550: 547: 543: 539: 538: 533: 529: 525: 523: 519: 515: 514: 513: 510: 509: 506: 502: 498: 497: 494: 493:Sample series 490: 486: 485: 482: 478: 474: 473: 470: 466: 462: 461: 458: 454: 450: 449: 446: 442: 438: 437: 432: 429: 427: 424: 423: 420: 416: 415: 410: 407: 405: 402: 400: 397: 396: 395: 391: 387: 386: 383: 379: 375: 374: 371: 367: 363: 362: 359: 355: 351: 350: 347: 343: 339: 338: 335: 332: 327: 324: 318: 317:Investigation 314: 310: 305: 301: 294: 289: 287: 282: 280: 275: 274: 271: 264: 261: 260: 251: 246: 243: 240: 236: 233: 230: 226: 225: 222:Other sources 212: 208: 202: 198: 188: 185: 183: 180: 179: 173: 171: 167: 163: 160: 154: 151: 147: 143: 138: 136: 130: 128: 123: 119: 115: 111: 107: 97: 94: 90: 85: 82: 78: 73: 69: 67: 63: 59: 55: 51: 47: 43: 39: 35: 26: 18: 1379:Biogeography 1374:Hydrogeology 1364:Soil science 1344:Geochemistry 1217: 1103:Infiltration 1031:Cut and fill 974:Soil nailing 840:Permeability 805:Bulk density 522:Inclinometer 445:Ram sounding 330: 245: 235: 211:the original 201: 155: 139: 131: 103: 86: 74: 70: 66:seismographs 33: 31: 1389:Archaeology 1113:Foundations 1086:Geomembrane 969:Slurry wall 908:Water table 872:Interaction 868:Structures 855:Sensitivity 652:Laboratory 172:technique. 114:oscillators 77:oscillation 58:earthquakes 40:of varying 38:oscillators 1416:Categories 1246:Mitigation 1228:Shear wave 1213:Earthquake 1208:Compaction 1193:Permafrost 1184:Phenomena/ 1081:Geotextile 1006:Embankment 996:Excavation 933:Earthworks 893:Vegetation 888:Topography 810:Thixotropy 800:Void ratio 783:Properties 681:Hydrometer 426:Piezometer 346:Core drill 193:References 159:non-linear 110:structures 93:non-linear 1369:Hydrology 1349:Petrology 1237:analysis 1235:Landslide 1140:Mechanics 1051:Track bed 1036:Fill dirt 1021:Terracing 594:Trial pit 409:Statnamic 394:Load test 135:resonance 46:vibration 1399:Agrology 1288:software 1186:problems 1016:Causeway 991:Landfill 918:Subgrade 835:Porosity 830:Cohesion 176:See also 168:like in 1339:Geology 1311:SVSlope 1121:Shallow 1041:Grading 979:Tieback 923:Subsoil 913:Bedrock 903:Topsoil 898:Terrain 691:R-value 654:testing 404:Dynamic 331:in situ 329:Field ( 1321:Plaxis 1316:UTEXAS 1306:SVFlux 1296:SEEP2D 1148:Forces 1001:Trench 949:Gabion 759:Gravel 399:Static 162:static 89:linear 54:linear 1301:STABL 774:Loess 737:Types 50:shock 1126:Deep 769:Loam 764:Peat 754:Sand 749:Silt 744:Clay 729:Soil 431:Well 150:EERI 1011:Cut 320:and 164:or 129:). 48:or 1418:: 1270:* 32:A 874:) 870:( 333:) 292:e 285:t 278:v 231:) 133:( 125:(

Index



oscillators
natural frequency
vibration
shock
linear
earthquakes
strong ground motion
seismographs
oscillation
Modal analysis
linear
non-linear
earthquake engineering
structures
oscillators
single degree of freedom
natural frequency
seismic analysis
resonance
George W. Housner
accelerographs
EERI
non-linear
static
dynamic analysis
seismic performance analysis
Peak ground acceleration
Spectral acceleration

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑