Knowledge

Silvering

Source đź“ť

260: 35: 117: 382:
The "silvering" on infrared instruments is usually gold. It has the best reflectivity in the infrared spectrum, and has high resistance to oxidation and corrosion. Conversely, a thin gold coating is used to create optical filters which block infrared (by mirroring it back towards the source) while
294:
material requires the deposition of a thin layer of conductive but transparent material, such as carbon. This layer tends to reduce the adhesion between the metal and the substrate. Chemical deposition can result in better adhesion, directly or by pre-treatment of the surface.
190:
developed a process for depositing silver on the rear surface of a piece of glass; this technique gained wide acceptance after Liebig improved it in 1856. The process was further refined and made easier by the chemist Tony Petitjean (1856). This reaction is a variation of the
692: 80:
is usually applied to protect the back side of the reflective surface . This arrangement protects the fragile reflective layer from corrosion, scratches, and other damage. However, the glass layer may absorb some of the light and cause distortions and
335:
The "silvering" on precision optical instruments such as telescopes is usually aluminum. Although aluminum also oxidizes quickly, the thin aluminum oxide (sapphire) layer is transparent, and so the high-reflectivity underlying aluminum stays visible.
104:", meaning that the reflective layer is on the surface towards the incoming light. The substrate normally provides only physical support, and need not be transparent. A hard, protective, transparent overcoat may be applied to prevent 315:
to improve the bonding between silver and glass. An activator is applied after the silver has been deposited to harden the tin and silver coatings. A layer of copper may be added for long-term durability.
319:
Silver would be ideal for telescope mirrors and other demanding optical applications, since it has the best initial front-surface reflectivity in the visible spectrum. However, it quickly
76:
Most common household mirrors are "back-silvered" or "second-surface", meaning that the light reaches the reflective layer after passing through the glass. A protective layer of
311:
The reflective layer on a second surface mirror such as a household mirror is often actual silver. A modern "wet" process for silver coating treats the glass with
347:
coils that can evaporate aluminum. In a vacuum, the hot aluminum atoms travel in straight lines. When they hit the surface of the mirror, they cool and stick.
780: 199:
solution is mixed with a sugar and sprayed onto the glass surface. The sugar is oxidized by silver(I), which is itself reduced to silver(0), i.e. elemental
161:
in the 15th century. The thin tinfoil used to silver mirrors was known as "tain". When glass mirrors first gained widespread usage in Europe during the
374:
The first tin-coated glass mirrors were produced by applying a tin-mercury amalgam to the glass and heating the piece to evaporate the mercury.
19:
This article is about the process of applying a metallic surface to glass. For the application of silver to a metal surface using mercury, see
214:
introduced the process of depositing an ultra-thin layer of silver on the front surface of a piece of glass, making the first optical-quality
89:
at the front surface, and multiple additional reflections on it, giving rise to "ghost images" (although some optical mirrors such as
706: 687: 397: 868: 242: 529: 580: 728: 233:, led to most reflecting telescopes shifting to aluminum. Nevertheless, some modern telescopes use silver, such as the 711: 483: 447: 108:
of the reflective layer and scratching of the metal. Front-coated mirrors achieve reflectivities of 90–95% when new.
279:(metallic glass), with no visible artifacts from grain boundaries. The most common methods in current use are 28: 143: 792: 121: 884: 507: 128: 560: 207: 852: 754:"Ball Aerospace completes primary mirror and detector array assembly milestones for Kepler Mission" 565: 837: 690:, Petitjean, Tony, "Silvering, Gilding, and Platinizing Glass", issued 1856-01-12 298:
Vacuum deposition can produce very uniform coating with very precisely controlled thickness.
625: 229:
An aluminum vacuum-deposition process invented in 1930 by Caltech physicist and astronomer
223: 215: 101: 8: 234: 192: 166: 629: 733: 263:
To speed up the reaction process of the silver, the ornaments are shaken in hot water,
259: 82: 753: 479: 443: 412: 392: 284: 254: 196: 187: 174: 20: 537: 889: 818: 781:"Advanced Large Area Deposition Technology for Astronomical and Space Applications" 669: 633: 475: 312: 211: 894: 660: 616: 499: 469: 437: 402: 355: 276: 739: 363: 324: 280: 230: 219: 24: 878: 822: 673: 651: 637: 607: 500:"Daily events and images of the installation of the BBSO New Solar Telescope" 407: 90: 320: 291: 162: 57: 417: 34: 86: 23:. For the use of electricity to apply metal coating to an object, see 581:"Historic mercury amalgam mirrors: History, safety, and preservation" 105: 49: 39: 655: 611: 828: 344: 139: 116: 264: 226:. These techniques soon became standard for technical equipment. 184: 181: 151: 147: 27:. For the formation of metallic silver in photographic film, see 68:, the term is used for the application of any reflective metal. 362:
or air in an oven so that it will form a tough, clear layer of
359: 351: 340: 200: 158: 97: 65: 61: 339:
In modern aluminum silvering, a sheet of glass is placed in a
131: 77: 53: 729:"Mirror, mirror: Keeping the Hale Telescope optically sharp" 530:"The Origins of Mirrors and their uses in the Ancient World" 614:[Regarding the products of oxidation of alcohols]. 154:, but this was not done for the purpose of making mirrors. 135: 760:. Ball Aerospace and Technologies Corp. 25 September 2007 170: 658:[Regarding the silvering and gilding of glass]. 275:
Silvering aims to produce a non-crystalline coating of
52:
process of coating a non-conductive substrate such as
746: 463: 461: 459: 290:
Electroplating of a substrate of glass or other non-
142:. In the early 10th century, the Persian scientist 772: 699: 456: 876: 807: 572: 557: 779:Fulton, L. Michael; Dummer, Richard S. (2011). 612:"Ueber die Producte der Oxydation des Alkohols" 134:had manufactured small glass mirrors backed by 720: 680: 492: 429: 248: 29:Photographic printing § Silver mirroring 778: 738:. PF mag article 030805. Archived from 656:"Ueber Versilberung und Vergoldung von Glas" 521: 327:to create a dark, low-reflectivity tarnish. 644: 600: 100:mirrors normally are "front-silvered" or " 726: 686: 579:de Chavez, Kathleen Payne (Spring 2010). 578: 283:, chemical "wet process" deposition, and 398:List of telescope parts and construction 358:on the mirror; others expose it to pure 350:Some mirror makers evaporate a layer of 258: 115: 33: 877: 650: 606: 467: 435: 157:Tin-coated mirrors were first made in 124:used for re-coating telescope mirrors. 707:"Era of huge reflectors, page 2" 871:, Diy mirror / mirroring / silvering 527: 439:Construction Materials and Processes 270: 241:mirror's silver was deposited using 218:glass mirrors, replacing the use of 436:Watson, Don Arthur (January 1986). 38:Silvering on the inside of a glass 13: 534:L'Antiquaire & the Connoisseur 14: 906: 862: 791:(December): 43–47. Archived from 712:Space Telescope Science Institute 343:chamber with electrically heated 661:Annalen der Chemie und Pharmacie 203:, and deposited onto the glass. 146:described ways of silvering and 785:Vacuum & Coating Technology 716:. Amazing-space. Baltimore, MD. 442:. Gregg Division. McGraw-Hill. 551: 1: 727:Destefani, Jim (March 2008). 423: 165:, most were silvered with an 64:. While the metal is often 7: 827:Episode 305 filmed at 468:Pulker, H.K. (1999-03-29). 386: 330: 10: 911: 508:Big Bear Solar Observatory 252: 249:Modern silvering processes 111: 71: 18: 561:Oxford English Dictionary 452:– via Google Books. 306: 301: 208:Karl August von Steinheil 122:Mont MĂ©gantic Observatory 93:, take advantage of it). 674:10.1002/jlac.18560980112 638:10.1002/jlac.18350140202 323:and absorbs atmospheric 243:ion assisted evaporation 60:substance, to produce a 566:Oxford University Press 383:passing visible light. 377: 369: 267: 235:Kepler Space Telescope 125: 42: 262: 224:reflecting telescopes 119: 96:Therefore, precision 37: 120:Aluminising tank at 16:Silvering in mirrors 630:1835AnP...112..275L 83:optical aberrations 885:Chemical processes 734:Products Finishing 688:GB patent 1681 617:Annalen der Chemie 268: 126: 43: 845:External link in 528:Fioratti, Helen. 504:www.bbso.njit.edu 471:Coatings on Glass 413:Mercury silvering 393:Dielectric mirror 285:vacuum deposition 271:General processes 255:Vacuum deposition 197:diamminesilver(I) 195:for aldehydes. A 188:Justus von Liebig 21:mercury silvering 902: 857: 856: 850: 849: 843: 841: 833: 815:Episode 305 811: 805: 804: 802: 800: 776: 770: 769: 767: 765: 750: 744: 743: 724: 718: 717: 703: 697: 696: 695: 691: 684: 678: 677: 648: 642: 641: 604: 598: 597: 595: 594: 588:Williamstown Art 585: 576: 570: 569: 564:(1st ed.). 555: 549: 548: 546: 545: 536:. Archived from 525: 519: 518: 516: 514: 496: 490: 489: 476:Elsevier Science 465: 454: 453: 433: 313:tin(II) chloride 193:Tollens' reagent 910: 909: 905: 904: 903: 901: 900: 899: 875: 874: 865: 860: 847: 846: 844: 835: 834: 829:Verrerie-Walker 813: 812: 808: 798: 796: 777: 773: 763: 761: 752: 751: 747: 725: 721: 705: 704: 700: 693: 685: 681: 649: 645: 605: 601: 592: 590: 583: 577: 573: 556: 552: 543: 541: 526: 522: 512: 510: 498: 497: 493: 486: 466: 457: 450: 434: 430: 426: 403:Optical coating 389: 380: 372: 333: 309: 304: 277:amorphous metal 273: 257: 251: 114: 74: 32: 17: 12: 11: 5: 908: 898: 897: 892: 887: 873: 872: 864: 863:External links 861: 859: 858: 806: 795:on 12 May 2013 771: 745: 742:on 2009-10-11. 719: 698: 679: 668:(1): 132–139. 652:Liebig, Justus 643: 624:(2): 133–167. 608:Liebig, Justus 599: 571: 550: 520: 491: 484: 455: 448: 427: 425: 422: 421: 420: 415: 410: 405: 400: 395: 388: 385: 379: 376: 371: 368: 364:aluminum oxide 332: 329: 308: 305: 303: 300: 281:electroplating 272: 269: 253:Main article: 250: 247: 220:speculum metal 113: 110: 73: 70: 25:electroplating 15: 9: 6: 4: 3: 2: 907: 896: 893: 891: 888: 886: 883: 882: 880: 870: 867: 866: 854: 839: 838:cite AV media 832: 830: 824: 823:Anjou, Quebec 820: 819:How It's Made 816: 810: 794: 790: 786: 782: 775: 759: 755: 749: 741: 737: 735: 730: 723: 715: 713: 708: 702: 689: 683: 675: 671: 667: 664:(in German). 663: 662: 657: 653: 647: 639: 635: 631: 627: 623: 620:(in German). 619: 618: 613: 609: 603: 589: 582: 575: 567: 563: 562: 554: 540:on 2011-02-03 539: 535: 531: 524: 509: 505: 501: 495: 487: 485:9780080525556 481: 477: 473: 472: 464: 462: 460: 451: 449:9780070684768 445: 441: 440: 432: 428: 419: 416: 414: 411: 409: 408:Mercury glass 406: 404: 401: 399: 396: 394: 391: 390: 384: 375: 367: 365: 361: 357: 353: 348: 346: 342: 337: 328: 326: 322: 317: 314: 299: 296: 293: 288: 286: 282: 278: 266: 261: 256: 246: 244: 240: 236: 232: 227: 225: 221: 217: 216:first surface 213: 212:LĂ©on Foucault 209: 206:In 1856-1857 204: 202: 198: 194: 189: 186: 183: 178: 176: 172: 168: 164: 160: 155: 153: 150:in a book on 149: 145: 141: 137: 133: 130: 123: 118: 109: 107: 103: 102:first-surface 99: 94: 92: 88: 84: 79: 69: 67: 63: 59: 55: 51: 47: 41: 36: 30: 26: 22: 848:|quote= 826: 814: 809: 797:. Retrieved 793:the original 788: 784: 774: 762:. Retrieved 758:spaceref.com 757: 748: 740:the original 732: 722: 710: 701: 682: 665: 659: 646: 621: 615: 602: 591:. Retrieved 587: 574: 559: 553: 542:. Retrieved 538:the original 533: 523: 511:. Retrieved 503: 494: 470: 438: 431: 381: 373: 349: 338: 334: 318: 310: 297: 289: 274: 238: 228: 205: 179: 163:16th century 156: 127: 95: 75: 45: 44: 714:(stsci.edu) 418:Metallizing 231:John Strong 222:mirrors in 879:Categories 825:, Canada. 593:2014-03-11 544:2009-08-14 424:References 292:conductive 138:, tin, or 87:refraction 58:reflective 869:Tions.net 513:6 January 129:Ptolemaic 106:oxidation 46:Silvering 40:test tube 736:Magazine 654:(1856). 610:(1835). 558:"tain". 506:(blog). 387:See also 356:beryllia 345:nichrome 331:Aluminum 321:oxidizes 180:In 1835 140:antimony 50:chemical 890:Mirrors 799:6 April 764:6 April 626:Bibcode 568:. 1933. 265:Lauscha 185:chemist 175:mercury 167:amalgam 152:alchemy 148:gilding 144:al-Razi 112:History 98:optical 91:Mangins 85:due to 72:Process 56:with a 48:is the 895:Silver 694:  482:  446:  360:oxygen 352:quartz 341:vacuum 325:sulfur 307:Silver 302:Metals 239:Kepler 237:. The 201:silver 182:German 159:Europe 66:silver 62:mirror 584:(PDF) 132:Egypt 78:paint 54:glass 853:help 801:2013 789:2011 766:2013 515:2020 480:ISBN 444:ISBN 378:Gold 210:and 173:and 136:lead 670:doi 634:doi 370:Tin 354:or 171:tin 169:of 881:: 842:: 840:}} 836:{{ 821:. 817:. 787:. 783:. 756:. 731:. 709:. 666:98 632:. 622:14 586:. 532:. 502:. 478:. 474:. 458:^ 366:. 287:. 245:. 177:, 855:) 851:( 831:. 803:. 768:. 676:. 672:: 640:. 636:: 628:: 596:. 547:. 517:. 488:. 31:.

Index

mercury silvering
electroplating
Photographic printing § Silver mirroring

test tube
chemical
glass
reflective
mirror
silver
paint
optical aberrations
refraction
Mangins
optical
first-surface
oxidation

Mont MĂ©gantic Observatory
Ptolemaic
Egypt
lead
antimony
al-Razi
gilding
alchemy
Europe
16th century
amalgam
tin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑