Knowledge

Single-unit recording

Source đź“ť

296:. A charge distribution occurs across the electrode, which creates a potential which can be measured against a reference electrode. The method of neuronal potential recording is dependent on the type of electrode used. Non-polarizable electrodes are reversible (ions in the solution are charged and discharged). This creates a current flowing through the electrode, allowing for voltage measurement through the electrode with respect to time. Typically, non-polarizable electrodes are glass micropipettes filled with an ionic solution or metal. Alternatively, ideal polarized electrodes do not have the transformation of ions; these are typically metal electrodes. Instead, the ions and electrons at the surface of the metal become polarized with respect to the potential of the solution. The charges orient at the interface to create an electric double layer; the metal then acts like a capacitor. The change in capacitance with respect to time can be measured and converted to voltage using a bridge circuit. Using this technique, when neurons fire an action potential they create changes in potential fields that can be recorded using microelectrodes. Single unit recordings from the cortical regions of rodent models have been shown to dependent on the depth at which the microelectrode sites were located. When comparing anestheized vs. awake states, single unit activity in rodent models under 2% isoflurane has shown to lower the noise level in the neurological recordings; eventhough the awake state recordings showed an 14% increase in peak-to-peak voltage magnitude. 371:(KCl) solution. With Ag-AgCl electrodes, ions react with it to produce electrical gradients at the interface, creating a voltage change with respect to time. Electrically, glass microelectrode tips have high resistance and high capacitance. They have a tip size of approximately 0.5-1.5 ÎĽm with a resistance of about 10-50 MΩ. The small tips make it easy to penetrate the cell membrane with minimal damage for intracellular recordings. Micropipettes are ideal for measurement of resting membrane potentials and with some adjustments can record action potentials. There are some issues to consider when using glass micropipettes. To offset high resistance in glass micropipettes, a 107:, postsynaptic potentials and spikes through the soma (or axon). Alternatively, when the microelectrode is close to the cell surface extracellular recordings measure the voltage change (with respect to time) outside the cell, giving only spike information. Different types of microelectrodes can be used for single-unit recordings; they are typically high-impedance, fine-tipped and conductive. Fine tips allow for easy penetration without extensive damage to the cell, but they also correlate with high impedance. Additionally, electrical and/or ionic conductivity allow for recordings from both non-polarizable and 94:(fMRI)—but these do not allow for single-neuron resolution. Neurons are the basic functional units in the brain; they transmit information through the body using electrical signals called action potentials. Currently, single-unit recordings provide the most precise recordings from a single neuron. A single unit is defined as a single, firing neuron whose spike potentials are distinctly isolated by a recording microelectrode. 423:
for information assessing the relationship between brain structure, function, and behavior. By looking at brain activity at the neuron level, researchers can link brain activity to behavior and create neuronal maps describing flow of information through the brain. For example, Boraud et al. report the use of single unit recordings to determine the structural organization of the basal ganglia in patients with
404:
electrodes are very rugged and provide very stable recordings. This allows manufacturing of tungsten electrodes with very small tips to isolate high-frequencies. Tungsten, however, is very noisy at low frequencies. In mammalian nervous system where there are fast signals, noise can be removed with
456:
pilot clinical trial was initiated to "test the safety and feasibility of a neural interface system based on an intracortical 100-electrode silicon recording array". This initiative has been successful in advancement of BCIs and in 2011, published data showing long term computer control in a patient
349:
There are two main types of microelectrodes used for single-unit recordings: glass micropipettes and metal electrodes. Both are high-impedance electrodes, but glass micropipettes are highly resistive and metal electrodes have frequency-dependent impedance. Glass micropipettes are ideal for resting-
299:
Intracellularly, the electrodes directly record the firing of action, resting and postsynaptic potentials. When a neuron fires, current flows in and out through excitable regions in the axons and cell body of the neuron. This creates potential fields around the neuron. An electrode near a neuron can
422:
Noninvasive tools to study the CNS have been developed to provide structural and functional information, but they do not provide very high resolution. To offset this problem invasive recording methods have been used. Single unit recording methods give high spatial and temporal resolution to allow
320:
of microelectrode used will depend on the application. The high resistance of these electrodes creates a problem during signal amplification. If it were connected to a conventional amplifier with low input resistance, there would be a large potential drop across the microelectrode and the amplifier
111:
electrodes. The two primary classes of electrodes are glass micropipettes and metal electrodes. Electrolyte-filled glass micropipettes are mainly used for intracellular single-unit recordings; metal electrodes (commonly made of stainless steel, platinum, tungsten or iridium) and used for both types
384:
Metal electrodes are made of various types of metals, typically silicon, platinum, and tungsten. They "resemble a leaky electrolytic capacitor, having a very high low-frequency impedance and low high-frequency impedance". They are more suitable for measurement of extracellular action potentials,
451:
or neurological disease. This technology has potential to reach a wide variety of patients but is not yet available clinically due to lack of reliability in recording signals over time. The primary hypothesis regarding this failure is that the chronic inflammatory response around the electrode
120:
patients to determine the position of epileptic foci. More recently, single-unit recordings have been used in brain machine interfaces (BMI). BMIs record brain signals and decode an intended response, which then controls the movement of an external device (such as a computer cursor or prosthetic
366:
characteristics of the different ions within the electrode should be similar. The ion must also be able to "provide current carrying capacity adequate for the needs of the experiment". And importantly, it must not cause biological changes in the cell it is recording from. Ag-AgCl electrodes are
102:
regions. This current creates a measurable, changing voltage potential within (and outside) the cell. This allows for two basic types of single-unit recordings. Intracellular single-unit recordings occur within the neuron and measure the voltage change (with respect to time) across the membrane
133:
has electrical properties. Since then, single unit recordings have become an important method for understanding mechanisms and functions of the nervous system. Over the years, single unit recording continued to provide insight on topographical mapping of the cortex. Eventual development of
115:
Single-unit recordings have provided tools to explore the brain and apply this knowledge to current technologies. Cognitive scientists have used single-unit recordings in the brains of animals and humans to study behaviors and functions. Electrodes can also be inserted into the brain of
413:
Single-unit recordings have allowed the ability to monitor single-neuron activity. This has allowed researchers to discover the role of different parts of the brain in function and behavior. More recently, recording from single neurons can be used to engineer "mind-controlled" devices.
431:
provide a method to couple behavior to brain function. By stimulating different responses, one can visualize what portion of the brain is activated. This method has been used to explore cognitive functions such as perception, memory, language, emotions, and motor control.
362:(Ag-AgCl) electrode is dipped into the filling solution as an electrical terminal. Ideally, the ionic solutions should have ions similar to ionic species around the electrode; the concentration inside the electrode and surrounding fluid should be the same. Additionally, the 394:
electrodes are platinum black plated and insulated with glass. "They normally give stable recordings, a high signal-to-noise ratio, good isolation, and they are quite rugged in the usual tip sizes". The only limitation is that the tips are very fine and fragile.
231:
1978: Schmidt et al. implanted chronic recording micro-cortical electrodes into the cortex of monkeys and showed that they could teach them to control neuronal firing rates, a key step to the possibility of recording neuronal signals and using them for
375:
must be used as the first-stage amplifier. Additionally, high capacitance develops across the glass and conducting solution which can attenuate high-frequency responses. There is also electrical interference inherent in these electrodes and amplifiers.
325:
device to collect the voltage and feed it to a conventional amplifier. To record from a single neuron, micromanipulators must be used to precisely insert an electrode into the brain. This is especially important for intracellular single-unit recording.
149:, a Spanish neuroscientist, revolutionized neuroscience with his neuron theory, describing the structure of the nervous system and presence of basic functional units— neurons. He won the Nobel Prize in Physiology or Medicine for this work in 1906. 389:
due to lower impedance for the frequency range of spike signals. They also have better mechanical stiffness for puncturing through brain tissue. Lastly, they are more easily fabricated into different tip shapes and sizes at large quantities.
399:
electrodes are alloy electrodes doped with silicon and an insulating glass cover layer. Silicon technology provides better mechanical stiffness and is a good supporting carrier to allow for multiple recording sites on a single electrode.
443:(BMIs) have been developed within the last 20 years. By recording single unit potentials, these devices can decode signals through a computer and output this signal for control of an external device such as a computer cursor or 1833:
Boraud T.; Bezard E.; et al. (2002). "From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control".
97:
The ability to record signals from neurons is centered around the electric current flow through the neuron. As an action potential propagates through the cell, the electric current flows in and out of the soma and axons at
227:
1967: The first record of multi-electrode arrays for recording was published by Marg and Adams. They applied this method to record many units at a single time in a single patient for diagnostic and therapeutic brain
221:. They used single neuron recordings to map the visual cortex in unanesthesized, unrestrained cats using tungsten electrodes. This work won them the Nobel Prize in 1981 for information processing in the visual system. 350:
and action-potential measurement, while metal electrodes are best used for extracellular spike measurements. Each type has different properties and limitations, which can be beneficial in specific applications.
256:(ALS), a neurological condition affecting the ability to control voluntary movement, they were able to successfully record action potentials using microelectrode arrays to control a computer cursor. 51:
matching; they are primarily glass micro-pipettes, metal microelectrodes made of platinum, tungsten, iridium or even iridium oxide. Microelectrodes can be carefully placed close to the
245:
1994: The Michigan array, a silicon planar electrode with multiple recording sites, was developed. NeuroNexus, a private neurotechnology company, is formed based on this technology.
2273: 875:
LĂłpez-Muñoz F.; Boya J.; et al. (2006). "Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago RamĂłn y Cajal".
47:. A microelectrode is inserted into the brain, where it can record the rate of change in voltage with respect to time. These microelectrodes must be fine-tipped, 235:
1981: Kruger and Bach assemble 30 individual microelectrodes in a 5x6 configuration and implant the electrodes for simultaneous recording of multiple units.
329:
Finally, the signals must be exported to a recording device. After amplification, signals are filtered with various techniques. They can be recorded by an
1994:
Baker S. N.; Philbin N.; et al. (1999). "Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes".
1661:
Usoro, Joshua O.; Dogra, Komal; Abbott, Justin R.; Radhakrishna, Rahul; Cogan, Stuart F.; Pancrazio, Joseph J.; Patnaik, Sourav S. (October 2021).
156:
in his 1928 publication "The Basis of Sensation". In this, he describes his recordings of electrical discharges in single nerve fibers using a
1712:
Sturgill, Brandon; Radhakrishna, Rahul; Thai, Teresa Thuc Doan; Patnaik, Sourav S.; Capadona, Jeffrey R.; Pancrazio, Joseph J. (2022-03-20).
267:, which aims to develop ultra-high bandwidth BMIs. In 2019, he and Neuralink published their work followed by a live-stream press conference. 1936:"Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array" 659:"High-charge-capacity sputtered iridium oxide neural stimulation electrodes deposited using water vapor as a reactive plasma constituent" 2074:
BeMent S. L.; Wise K. D.; et al. (1986). "Solid-State Electrodes for Multichannel Multiplexed Intracortical Neuronal Recording".
1444:
Rousche P. J.; Normann R. A. (1998). "Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex".
582:
Cogan, Stuart F.; Ehrlich, Julia; Plante, Timothy D.; Smirnov, Anton; Shire, Douglas B.; Gingerich, Marcus; Rizzo, Joseph F. (2009).
181:
1952: Li and Jasper applied the Renshaw, Forbes, & Morrison method to study electrical activity in the cerebral cortex of a cat.
2111:
Kennedy P. R.; Bakay R. A. E. (1997). "Activity of single action potentials in monkey motor cortex during long-term task learning".
657:
Maeng, Jimin; Chakraborty, Bitan; Geramifard, Negar; Kang, Tong; Rihani, Rashed T.; Joshi-Imre, Alexandra; Cogan, Stuart F. (2019).
39:, the signal propagates down the neuron as a current which flows in and out of the cell through excitable membrane regions in the 321:
would only measure a small portion of the true potential. To solve this problem, a cathode follower amplifier must be used as an
1305:
Schmidt E. M.; McIntosh J. S.; et al. (1978). "Fine control of operantly conditioned firing patterns of cortical neurons".
203:
used intracellular single-unit recording to study synaptic mechanisms in motoneurons (for which he won the Nobel Prize in 1963).
2177:
Schiller P. H.; Stryker M. (1972). "Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey".
967:
Renshaw B.; Forbes A.; et al. (1939). "Activity of Isocortex and Hippocampus: Electrical Studies with Micro-Electrodes".
2148:
Lewicki M. S. (1998). "A review of methods for spike sorting: the detection and classification of neural action potentials".
91: 1530:
Kennedy P. R.; Bakay R. A. E. (1998). "Restoration of neural output from a paralyzed patient by a direct brain connection".
142:
in the 1790s with his studies on dissected frogs. He discovered that you can induce a dead frog leg to twitch with a spark.
527: 452:
causes neurodegeneration that reduces the number of neurons it is able to record from (Nicolelis, 2001). In 2004, the
292:
to react with the electrode creating an electrode-electrolyte interface. The forming of this layer has been termed the
242:
which can access the columnar structure of the cerebral cortex for neurophysiological or neuroprosthetic applications".
832:
Piccolino M (1997). "Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology".
405:
a high-pass filter. Slow signals are lost if filtered so tungsten is not a good choice for recording these signals.
385:
although glass micropipettes can also be used. Metal electrodes are beneficial in some cases because they have high
1773:
Geddes, L. A. (1972). Electrodes and the Measurement of Bioelectric Events. New York, John Wiley & Sons, Inc.
27:(also, single-neuron recordings) provide a method of measuring the electro-physiological responses of a single 1487:
Hoogerwerf A. C.; Wise K. D. (1994). "A three dimensional microelectrode array for chronic neural recording".
2308: 253: 492: 467: 440: 71: 1072:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 1401:
Jones K. E.; Huber R. B.; et al. (1992). "A glass:silicon composite intracortical electrode array".
334: 482: 1784: 1348:
Kruger J.; Bach M. (1981). "Simultaneous recording with 30 microelectrodes in monkey visual cortex".
359: 276:
The basis of single-unit recordings relies on the ability to record electrical signals from neurons.
1362: 146: 2298: 338: 182: 1219:
Wolbarsht M. L.; MacNichol E. F.; et al. (1960). "Glass Insulated Platinum Microelectrode".
1357: 502: 487: 424: 249: 87: 83: 1714:"Characterization of Active Electrode Yield for Intracortical Arrays: Awake versus Anesthesia" 994:
Woldring S, Dirken MN (1950). "Spontaneous unit-activity in the superficial cortical layers".
174:
1950: Woldring and Dirken report the ability to obtain spike activity from the surface of the
2303: 386: 157: 560: 1947: 1890: 1663:"Influence of Implantation Depth on the Performance of Intracortical Probe Recording Sites" 1586: 1228: 1175: 1128: 517: 497: 239: 48: 284:
When a microelectrode is inserted into an aqueous ionic solution, there is a tendency for
152:
1928: One of the earliest accounts of being able to record from the nervous system was by
8: 363: 1951: 1894: 1232: 1179: 1132: 248:
1998: A key breakthrough for BMIs was achieved by Kennedy and Bakay with development of
2240: 2215: 2202: 2136: 2099: 2062: 2019: 1968: 1959: 1935: 1916: 1859: 1815: 1748: 1713: 1689: 1662: 1611: 1555: 1512: 1469: 1426: 1383: 1330: 1252: 1201: 1096: 1071: 1047: 1022: 944: 919: 900: 888: 857: 814: 729: 704: 608: 583: 368: 322: 163:
1940: Renshaw, Forbes & Morrison performed original studies recording discharge of
138:
1790s: The first evidence of electrical activity in the nervous system was observed by
99: 2124: 2007: 1847: 1457: 845: 2245: 2194: 2165: 2128: 2091: 2054: 2011: 1973: 1908: 1851: 1807: 1753: 1735: 1694: 1616: 1547: 1543: 1504: 1461: 1418: 1375: 1322: 1318: 1287: 1283: 1244: 1193: 1144: 1101: 1052: 1023:"Microelectrode Studies of the Electrical Activity of the Cerebral Cortex in the Cat" 1003: 949: 892: 849: 734: 680: 613: 564: 507: 200: 104: 63: 2278: 2206: 2140: 2103: 2066: 2023: 1863: 1819: 1473: 1430: 1334: 904: 861: 818: 2235: 2227: 2186: 2157: 2120: 2083: 2044: 2003: 1963: 1955: 1920: 1898: 1843: 1799: 1743: 1725: 1684: 1674: 1643: 1606: 1596: 1574: 1559: 1539: 1516: 1496: 1453: 1410: 1367: 1314: 1279: 1236: 1205: 1183: 1136: 1091: 1087: 1083: 1042: 1038: 1034: 976: 939: 931: 884: 841: 806: 724: 716: 670: 603: 595: 556: 512: 428: 372: 313: 186: 36: 1270:
Marg E.; Adams J. E. (1967). "Indwelling Multiple Micro-Electrodes in the Brain".
1256: 1240: 1387: 358:
Glass micropipettes are filled with an ionic solution to make them conductive; a
293: 207: 175: 160:. He won the Nobel Prize in 1932 for his work revealing the function of neurons. 2268: 1140: 781:
Bioelectric Recording Techniques: Part A Cellular Processes and Brain Potentials
810: 218: 214: 164: 130: 108: 103:
during action potentials. This outputs as a trace with information on membrane
32: 2161: 1803: 1634:
Robinson, D. A. (1968). "The Electrical Properties of Metal Microelectrodes".
2292: 2190: 2087: 1739: 472: 139: 56: 52: 129:
The ability to record from single units started with the discovery that the
2249: 2169: 2015: 1977: 1912: 1855: 1757: 1698: 1647: 1620: 1575:"An integrated brain-machine interface platform with thousands of channels" 1465: 1248: 1197: 1148: 1105: 1056: 1007: 980: 953: 935: 896: 757:
Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience
738: 684: 617: 568: 330: 153: 67: 20: 2198: 2132: 2095: 2058: 2033:"Single units and sensation: A neuron doctrine for perceptual psychology?" 1811: 1551: 1508: 1422: 1379: 1291: 853: 1326: 522: 168: 720: 675: 658: 599: 547:
Cogan, Stuart F. (2008). "Neural Stimulation and Recording Electrodes".
1730: 1679: 1414: 1371: 1164:"A Simple Microelectrode for recording from the Central Nervous System" 444: 238:
1992: Development of the "Utah Intracortical Electrode Array (UIEA), a
224:
1960: Glass-insulated platinum microelectrodes developed for recording.
134:
microelectrode arrays allowed recording from multiple units at a time.
82:
There are many techniques available to record brain activity—including
40: 1500: 308:
The basic equipment needed to record single units is microelectrodes,
1903: 1878: 1188: 1163: 797:
Gesteland, R. C.; Howland, B. (1959). "Comments on Microelectrodes".
663:
Journal of Biomedical Materials Research Part B: Applied Biomaterials
588:
Journal of Biomedical Materials Research Part B: Applied Biomaterials
477: 453: 448: 309: 264: 260: 2231: 2049: 2032: 1591: 401: 391: 117: 1601: 1119:
Dowben R. M.; Rose J. E. (1953). "A Metal-Filled Microelectrode".
341:
techniques can allow for separation and analysis of single units.
333:
and camera, but more modern techniques convert the signal with an
1785:"An Integrated-Circuit Approach to Extracellular Microelectrodes" 584:"Sputtered iridium oxide films for neural stimulation electrodes" 396: 193: 447:. BMIs have the potential to restore function in patients with 1711: 300:
detect these extracellular potential fields, creating a spike.
285: 28: 2269:
American College of Neuropsychopharmacology: Electrophysiology
1218: 656: 644:
Neurophysiological techniques: applications to neural systems
289: 2283: 2263: 2213: 1660: 2110: 1529: 1304: 44: 1486: 1443: 792: 790: 705:"Human Intracranial Recordings and Cognitive Neuroscience" 74:(BMI) technologies for brain control of external devices. 1069: 581: 2176: 2216:"How advances in neural recording affect data analysis" 787: 66:, where it permits the analysis of human cognition and 2073: 1933: 1782: 1400: 1118: 189:
to determine the exact mechanism of action potentials.
1993: 874: 279: 796: 1272:
Electroencephalography and Clinical Neurophysiology
966: 1876: 1832: 1269: 1020: 2290: 1347: 774: 772: 770: 768: 766: 1934:Simeral J. D.; Kim S. P.; et al. (2011). 1783:Wise K. D.; Angell J. B.; et al. (1970). 993: 698: 696: 694: 637: 635: 633: 631: 629: 627: 2147: 317: 2030: 763: 750: 748: 2076:IEEE Transactions on Biomedical Engineering 1792:IEEE Transactions on Biomedical Engineering 1489:IEEE Transactions on Biomedical Engineering 1161: 831: 691: 624: 435: 344: 263:co-founded and invested $ 100 million for 70:. This information can then be applied to 62:Single-unit recordings are widely used in 2239: 2048: 1967: 1902: 1769: 1767: 1747: 1729: 1688: 1678: 1610: 1600: 1590: 1361: 1187: 1095: 1046: 943: 745: 728: 674: 607: 1633: 778: 210:microelectrodes developed for recording. 196:microelectrodes developed for recording. 2214:Stevenson I. H.; Kording K. P. (2011). 641: 561:10.1146/annurev.bioeng.10.061807.160518 549:Annual Review of Biomedical Engineering 16:Method to measure responses of a neuron 2291: 2150:Network: Computation in Neural Systems 1764: 917: 353: 337:and output to a computer to be saved. 754: 546: 303: 92:functional magnetic resonance imaging 1579:Journal of Medical Internet Research 1572: 1070:Hodgkin A. L.; Huxley A. F. (1952). 702: 646:. Clifton, New Jersey: Humana Press. 417: 271: 171:using glass microelectrodes in cats. 35:system. When a neuron generates an 13: 889:10.1016/j.brainresbull.2006.07.010 528:Responsive neurostimulation device 457:with tetraplegia (Simeral, 2011). 280:Neuronal potentials and electrodes 14: 2320: 2257: 55:, allowing the ability to record 1544:10.1097/00001756-199806010-00007 1403:Annals of Biomedical Engineering 185:was revealed, where they used a 2264:Electrophysiology of the Neuron 1996:Journal of Neuroscience Methods 1927: 1870: 1826: 1776: 1705: 1654: 1627: 1566: 1523: 1480: 1446:Journal of Neuroscience Methods 1437: 1394: 1341: 1298: 1263: 1212: 1155: 1112: 1063: 1014: 987: 960: 911: 868: 408: 1088:10.1113/jphysiol.1952.sp004764 1039:10.1113/jphysiol.1953.sp004935 825: 650: 575: 540: 1: 2125:10.1016/s0006-8993(97)00051-6 2008:10.1016/s0165-0270(99)00121-1 1987: 1940:Journal of Neural Engineering 1848:10.1016/s0301-0082(01)00033-8 1458:10.1016/s0165-0270(98)00031-4 1241:10.1126/science.132.3436.1309 846:10.1016/s0166-2236(97)01101-6 254:amyotrophic lateral sclerosis 1960:10.1088/1741-2560/8/2/025027 1319:10.1016/0014-4886(78)90252-2 1284:10.1016/0013-4694(67)90126-5 1021:Li C.-L.; Jasper H. (1952). 996:Acta Physiol Pharmacol Neerl 493:Electrical brain stimulation 7: 2279:Scholarpedia- Voltage Clamp 1877:Nicolelis M. A. L. (2001). 1350:Experimental Brain Research 1141:10.1126/science.118.3053.22 783:. New York: Academic Press. 460: 335:analog-to-digital converter 316:and recording devices. The 77: 10: 2325: 2179:Journal of Neurophysiology 969:Journal of Neurophysiology 811:10.1109/jrproc.1959.287156 483:Chronic electrode implants 124: 2162:10.1088/0954-898x_9_4_001 1804:10.1109/tbme.1970.4502738 1076:The Journal of Physiology 2191:10.1152/jn.1972.35.6.915 2088:10.1109/tbme.1986.325895 1836:Progress in Neurobiology 920:"The Basis of Sensation" 779:Thompson, R. F. (1973). 534: 468:Brain–computer interface 441:Brain–machine interfaces 436:Brain–machine interfaces 379: 345:Types of microelectrodes 240:multiple-electrode array 1879:"Actions from thoughts" 1636:Proceedings of the IEEE 924:British Medical Journal 877:Brain Research Bulletin 834:Trends in Neurosciences 642:Boulton, A. A. (1990). 250:neurotrophic electrodes 72:brain–machine interface 1648:10.1109/proc.1968.6458 1307:Experimental Neurology 981:10.1152/jn.1940.3.1.74 936:10.1136/bmj.1.4857.287 918:Adrian, E. D. (1954). 799:Proceedings of the IRE 503:Electroencephalography 488:Deep brain stimulation 367:primarily used with a 360:silver-silver chloride 147:Santiago RamĂłn y Cajal 88:magnetoencephalography 84:electroencephalography 25:single-unit recordings 2031:Barlow H. B. (1972). 1027:Journal of Physiology 755:Baars, B. J. (2010). 158:Lippmann electrometer 2309:Neurology procedures 1162:Green J. D. (1958). 518:Multielectrode array 498:Electrocorticography 183:Hodgkin–Huxley model 178:with platinum wires. 1952:2011JNEng...8b5027S 1895:2001Natur.409..403N 1573:Musk, Elon (2019). 1233:1960Sci...132.1309W 1227:(3436): 1309–1310. 1180:1958Natur.182..962G 1133:1953Sci...118...22D 759:. Oxford: Elsevier. 721:10.1038/nature09510 715:(7319): 1104–1108. 676:10.1002/jbm.b.34442 600:10.1002/jbm.b.31223 425:Parkinson's disease 354:Glass micropipettes 252:. In patients with 1731:10.3390/mi13030480 1680:10.3390/mi12101158 1415:10.1007/bf02368134 1372:10.1007/bf00236609 369:potassium chloride 323:impedance matching 304:Experimental setup 100:excitable membrane 2274:Neural Recordings 1889:(6818): 403–407. 1501:10.1109/10.335862 930:(4857): 287–290. 805:(11): 1856–1862. 508:Electrophysiology 429:Evoked potentials 418:Cognitive science 314:micromanipulators 272:Electrophysiology 213:1959: Studies by 105:resting potential 64:cognitive science 2316: 2253: 2243: 2210: 2173: 2144: 2119:(1–2): 251–254. 2107: 2070: 2052: 2027: 1982: 1981: 1971: 1931: 1925: 1924: 1906: 1904:10.1038/35053191 1874: 1868: 1867: 1830: 1824: 1823: 1789: 1780: 1774: 1771: 1762: 1761: 1751: 1733: 1709: 1703: 1702: 1692: 1682: 1658: 1652: 1651: 1642:(6): 1065–1071. 1631: 1625: 1624: 1614: 1604: 1594: 1570: 1564: 1563: 1538:(8): 1707–1711. 1527: 1521: 1520: 1484: 1478: 1477: 1441: 1435: 1434: 1398: 1392: 1391: 1365: 1345: 1339: 1338: 1302: 1296: 1295: 1267: 1261: 1260: 1216: 1210: 1209: 1191: 1189:10.1038/182962a0 1159: 1153: 1152: 1116: 1110: 1109: 1099: 1067: 1061: 1060: 1050: 1018: 1012: 1011: 991: 985: 984: 964: 958: 957: 947: 915: 909: 908: 883:(4–6): 391–405. 872: 866: 865: 829: 823: 822: 794: 785: 784: 776: 761: 760: 752: 743: 742: 732: 703:Cerf, M (2010). 700: 689: 688: 678: 654: 648: 647: 639: 622: 621: 611: 579: 573: 572: 544: 513:Intracranial EEG 373:cathode follower 187:squid giant axon 68:cortical mapping 37:action potential 2324: 2323: 2319: 2318: 2317: 2315: 2314: 2313: 2299:Neurophysiology 2289: 2288: 2260: 2232:10.1038/nn.2731 2050:10.1068/p010371 1990: 1985: 1932: 1928: 1875: 1871: 1831: 1827: 1787: 1781: 1777: 1772: 1765: 1710: 1706: 1659: 1655: 1632: 1628: 1571: 1567: 1528: 1524: 1495:(12): 1136–46. 1485: 1481: 1442: 1438: 1399: 1395: 1363:10.1.1.320.7615 1346: 1342: 1303: 1299: 1268: 1264: 1217: 1213: 1160: 1156: 1127:(3053): 22–24. 1117: 1113: 1068: 1064: 1019: 1015: 992: 988: 965: 961: 916: 912: 873: 869: 840:(10): 443–448. 830: 826: 795: 788: 777: 764: 753: 746: 701: 692: 655: 651: 640: 625: 580: 576: 545: 541: 537: 532: 463: 445:prosthetic limb 438: 420: 411: 387:signal-to-noise 382: 356: 347: 339:Data-processing 306: 294:Helmholtz layer 282: 274: 208:Stainless steel 176:cerebral cortex 165:pyramidal cells 127: 112:of recordings. 80: 57:extracellularly 17: 12: 11: 5: 2322: 2312: 2311: 2306: 2301: 2287: 2286: 2281: 2276: 2271: 2266: 2259: 2258:External links 2256: 2255: 2254: 2226:(2): 139–142. 2211: 2185:(6): 915–924. 2174: 2145: 2113:Brain Research 2108: 2082:(2): 230–241. 2071: 2043:(4): 371–394. 2028: 1989: 1986: 1984: 1983: 1926: 1869: 1842:(4): 265–283. 1825: 1798:(3): 238–246. 1775: 1763: 1704: 1653: 1626: 1592:10.1101/703801 1585:(10): e16194. 1565: 1522: 1479: 1436: 1393: 1340: 1313:(2): 349–369. 1297: 1278:(3): 277–280. 1262: 1211: 1154: 1111: 1082:(4): 500–544. 1062: 1033:(1): 117–140. 1013: 986: 959: 910: 867: 824: 786: 762: 744: 690: 669:(3): 880–891. 649: 623: 594:(2): 353–361. 574: 538: 536: 533: 531: 530: 525: 520: 515: 510: 505: 500: 495: 490: 485: 480: 475: 470: 464: 462: 459: 437: 434: 419: 416: 410: 407: 381: 378: 355: 352: 346: 343: 305: 302: 281: 278: 273: 270: 269: 268: 257: 246: 243: 236: 233: 229: 225: 222: 219:Torsten Wiesel 215:David H. Hubel 211: 204: 197: 190: 179: 172: 161: 150: 143: 131:nervous system 126: 123: 79: 76: 33:microelectrode 15: 9: 6: 4: 3: 2: 2321: 2310: 2307: 2305: 2302: 2300: 2297: 2296: 2294: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2261: 2251: 2247: 2242: 2237: 2233: 2229: 2225: 2221: 2217: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2175: 2171: 2167: 2163: 2159: 2156:(4): R53–78. 2155: 2151: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2118: 2114: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2072: 2068: 2064: 2060: 2056: 2051: 2046: 2042: 2038: 2034: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1992: 1991: 1979: 1975: 1970: 1965: 1961: 1957: 1953: 1949: 1946:(2): 025027. 1945: 1941: 1937: 1930: 1922: 1918: 1914: 1910: 1905: 1900: 1896: 1892: 1888: 1884: 1880: 1873: 1865: 1861: 1857: 1853: 1849: 1845: 1841: 1837: 1829: 1821: 1817: 1813: 1809: 1805: 1801: 1797: 1793: 1786: 1779: 1770: 1768: 1759: 1755: 1750: 1745: 1741: 1737: 1732: 1727: 1723: 1719: 1718:Micromachines 1715: 1708: 1700: 1696: 1691: 1686: 1681: 1676: 1672: 1668: 1667:Micromachines 1664: 1657: 1649: 1645: 1641: 1637: 1630: 1622: 1618: 1613: 1608: 1603: 1602:10.2196/16194 1598: 1593: 1588: 1584: 1580: 1576: 1569: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1526: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1483: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1440: 1432: 1428: 1424: 1420: 1416: 1412: 1409:(4): 423–37. 1408: 1404: 1397: 1389: 1385: 1381: 1377: 1373: 1369: 1364: 1359: 1355: 1351: 1344: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1301: 1293: 1289: 1285: 1281: 1277: 1273: 1266: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1215: 1207: 1203: 1199: 1195: 1190: 1185: 1181: 1177: 1174:(4640): 962. 1173: 1169: 1165: 1158: 1150: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1115: 1107: 1103: 1098: 1093: 1089: 1085: 1081: 1077: 1073: 1066: 1058: 1054: 1049: 1044: 1040: 1036: 1032: 1028: 1024: 1017: 1009: 1005: 1002:(3): 369–79. 1001: 997: 990: 982: 978: 975:(1): 74–105. 974: 970: 963: 955: 951: 946: 941: 937: 933: 929: 925: 921: 914: 906: 902: 898: 894: 890: 886: 882: 878: 871: 863: 859: 855: 851: 847: 843: 839: 835: 828: 820: 816: 812: 808: 804: 800: 793: 791: 782: 775: 773: 771: 769: 767: 758: 751: 749: 740: 736: 731: 726: 722: 718: 714: 710: 706: 699: 697: 695: 686: 682: 677: 672: 668: 664: 660: 653: 645: 638: 636: 634: 632: 630: 628: 619: 615: 610: 605: 601: 597: 593: 589: 585: 578: 570: 566: 562: 558: 554: 550: 543: 539: 529: 526: 524: 521: 519: 516: 514: 511: 509: 506: 504: 501: 499: 496: 494: 491: 489: 486: 484: 481: 479: 476: 474: 473:Brain implant 471: 469: 466: 465: 458: 455: 450: 446: 442: 433: 430: 426: 415: 406: 403: 398: 393: 388: 377: 374: 370: 365: 361: 351: 342: 340: 336: 332: 327: 324: 319: 315: 311: 301: 297: 295: 291: 287: 277: 266: 262: 258: 255: 251: 247: 244: 241: 237: 234: 230: 226: 223: 220: 216: 212: 209: 205: 202: 198: 195: 191: 188: 184: 180: 177: 173: 170: 166: 162: 159: 155: 151: 148: 144: 141: 140:Luigi Galvani 137: 136: 135: 132: 122: 119: 113: 110: 106: 101: 95: 93: 89: 85: 75: 73: 69: 65: 60: 58: 54: 53:cell membrane 50: 46: 42: 38: 34: 30: 26: 22: 2304:Neuroimaging 2223: 2220:Nat Neurosci 2219: 2182: 2178: 2153: 2149: 2116: 2112: 2079: 2075: 2040: 2036: 1999: 1995: 1943: 1939: 1929: 1886: 1882: 1872: 1839: 1835: 1828: 1795: 1791: 1778: 1721: 1717: 1707: 1673:(10): 1158. 1670: 1666: 1656: 1639: 1635: 1629: 1582: 1578: 1568: 1535: 1531: 1525: 1492: 1488: 1482: 1449: 1445: 1439: 1406: 1402: 1396: 1356:(2): 191–4. 1353: 1349: 1343: 1310: 1306: 1300: 1275: 1271: 1265: 1224: 1220: 1214: 1171: 1167: 1157: 1124: 1120: 1114: 1079: 1075: 1065: 1030: 1026: 1016: 999: 995: 989: 972: 968: 962: 927: 923: 913: 880: 876: 870: 837: 833: 827: 802: 798: 780: 756: 712: 708: 666: 662: 652: 643: 591: 587: 577: 552: 548: 542: 439: 421: 412: 409:Applications 383: 357: 348: 331:oscilloscope 328: 307: 298: 283: 275: 154:Edgar Adrian 128: 114: 96: 81: 61: 24: 21:neuroscience 18: 2002:(1): 5–17. 1532:NeuroReport 1452:(1): 1–15. 555:: 275–309. 523:Patch clamp 201:John Eccles 169:hippocampus 109:polarizable 90:(MEG), and 2293:Categories 2037:Perception 1988:References 1724:(3): 480. 310:amplifiers 2284:BrainGate 1740:2072-666X 1358:CiteSeerX 478:BrainGate 454:BrainGate 449:paralysis 364:diffusive 265:Neuralink 261:Elon Musk 118:epileptic 49:impedance 31:using a 2250:21270781 2207:18323877 2170:10221571 2141:20139805 2104:26878763 2067:17487970 2024:12846443 2016:10638811 1978:21436513 1913:11201755 1864:23389986 1856:11960681 1820:11414381 1758:35334770 1699:34683209 1621:31642810 1474:24981753 1466:10223510 1431:11214935 1335:37539476 1249:17753062 1198:13590200 1149:13076162 1106:12991237 1057:13085304 1008:14789543 954:13115699 905:11273256 897:17027775 862:23394494 819:51641398 739:20981100 685:31353822 618:18837458 569:18429704 461:See also 402:Tungsten 392:Platinum 228:surgery. 78:Overview 2241:3410539 2199:4631839 2133:9237542 2096:3957372 2059:4377168 1969:3715131 1948:Bibcode 1921:4386663 1891:Bibcode 1812:5431636 1749:8955818 1690:8539313 1612:6914248 1587:bioRxiv 1560:5681602 1552:9665587 1517:6694261 1509:7851915 1423:1510294 1380:7202614 1292:4167928 1229:Bibcode 1221:Science 1206:4256169 1176:Bibcode 1129:Bibcode 1121:Science 1097:1392413 1048:1366060 945:2093300 854:9347609 730:3010923 609:7442142 397:Silicon 286:cations 194:Iridium 167:in the 125:History 121:limb). 86:(EEG), 2248:  2238:  2205:  2197:  2168:  2139:  2131:  2102:  2094:  2065:  2057:  2022:  2014:  1976:  1966:  1919:  1911:  1883:Nature 1862:  1854:  1818:  1810:  1756:  1746:  1738:  1697:  1687:  1619:  1609:  1589:  1558:  1550:  1515:  1507:  1472:  1464:  1429:  1421:  1386:  1378:  1360:  1333:  1327:101388 1325:  1290:  1257:112759 1255:  1247:  1204:  1196:  1168:Nature 1147:  1104:  1094:  1055:  1045:  1006:  952:  942:  903:  895:  860:  852:  817:  737:  727:  709:Nature 683:  616:  606:  567:  290:anions 259:2016: 206:1958: 199:1957: 192:1953: 145:1888: 29:neuron 2203:S2CID 2137:S2CID 2100:S2CID 2063:S2CID 2020:S2CID 1917:S2CID 1860:S2CID 1816:S2CID 1788:(PDF) 1556:S2CID 1513:S2CID 1470:S2CID 1427:S2CID 1388:61329 1384:S2CID 1331:S2CID 1253:S2CID 1202:S2CID 901:S2CID 858:S2CID 815:S2CID 535:Notes 380:Metal 232:BMIs. 2246:PMID 2195:PMID 2166:PMID 2129:PMID 2092:PMID 2055:PMID 2012:PMID 1974:PMID 1909:PMID 1852:PMID 1808:PMID 1754:PMID 1736:ISSN 1695:PMID 1617:PMID 1548:PMID 1505:PMID 1462:PMID 1419:PMID 1376:PMID 1323:PMID 1288:PMID 1245:PMID 1194:PMID 1145:PMID 1102:PMID 1053:PMID 1004:PMID 950:PMID 893:PMID 850:PMID 735:PMID 681:PMID 614:PMID 565:PMID 318:type 288:and 217:and 45:axon 43:and 41:soma 2236:PMC 2228:doi 2187:doi 2158:doi 2121:doi 2117:760 2084:doi 2045:doi 2004:doi 1964:PMC 1956:doi 1899:doi 1887:409 1844:doi 1800:doi 1744:PMC 1726:doi 1685:PMC 1675:doi 1644:doi 1607:PMC 1597:doi 1540:doi 1497:doi 1454:doi 1411:doi 1368:doi 1315:doi 1280:doi 1237:doi 1225:132 1184:doi 1172:182 1137:doi 1125:118 1092:PMC 1084:doi 1080:117 1043:PMC 1035:doi 1031:121 977:doi 940:PMC 932:doi 885:doi 842:doi 807:doi 725:PMC 717:doi 713:467 671:doi 667:108 604:PMC 596:doi 592:89B 557:doi 427:. 19:In 2295:: 2244:. 2234:. 2224:14 2222:. 2218:. 2201:. 2193:. 2183:35 2181:. 2164:. 2152:. 2135:. 2127:. 2115:. 2098:. 2090:. 2080:33 2078:. 2061:. 2053:. 2039:. 2035:. 2018:. 2010:. 2000:94 1998:. 1972:. 1962:. 1954:. 1942:. 1938:. 1915:. 1907:. 1897:. 1885:. 1881:. 1858:. 1850:. 1840:66 1838:. 1814:. 1806:. 1796:17 1794:. 1790:. 1766:^ 1752:. 1742:. 1734:. 1722:13 1720:. 1716:. 1693:. 1683:. 1671:12 1669:. 1665:. 1640:56 1638:. 1615:. 1605:. 1595:. 1583:21 1581:. 1577:. 1554:. 1546:. 1534:. 1511:. 1503:. 1493:41 1491:. 1468:. 1460:. 1450:82 1448:. 1425:. 1417:. 1407:20 1405:. 1382:. 1374:. 1366:. 1354:41 1352:. 1329:. 1321:. 1311:61 1309:. 1286:. 1276:23 1274:. 1251:. 1243:. 1235:. 1223:. 1200:. 1192:. 1182:. 1170:. 1166:. 1143:. 1135:. 1123:. 1100:. 1090:. 1078:. 1074:. 1051:. 1041:. 1029:. 1025:. 998:. 971:. 948:. 938:. 926:. 922:. 899:. 891:. 881:70 879:. 856:. 848:. 838:20 836:. 813:. 803:47 801:. 789:^ 765:^ 747:^ 733:. 723:. 711:. 707:. 693:^ 679:. 665:. 661:. 626:^ 612:. 602:. 590:. 586:. 563:. 553:10 551:. 312:, 59:. 23:, 2252:. 2230:: 2209:. 2189:: 2172:. 2160:: 2154:9 2143:. 2123:: 2106:. 2086:: 2069:. 2047:: 2041:1 2026:. 2006:: 1980:. 1958:: 1950:: 1944:8 1923:. 1901:: 1893:: 1866:. 1846:: 1822:. 1802:: 1760:. 1728:: 1701:. 1677:: 1650:. 1646:: 1623:. 1599:: 1562:. 1542:: 1536:9 1519:. 1499:: 1476:. 1456:: 1433:. 1413:: 1390:. 1370:: 1337:. 1317:: 1294:. 1282:: 1259:. 1239:: 1231:: 1208:. 1186:: 1178:: 1151:. 1139:: 1131:: 1108:. 1086:: 1059:. 1037:: 1010:. 1000:1 983:. 979:: 973:3 956:. 934:: 928:1 907:. 887:: 864:. 844:: 821:. 809:: 741:. 719:: 687:. 673:: 620:. 598:: 571:. 559::

Index

neuroscience
neuron
microelectrode
action potential
soma
axon
impedance
cell membrane
extracellularly
cognitive science
cortical mapping
brain–machine interface
electroencephalography
magnetoencephalography
functional magnetic resonance imaging
excitable membrane
resting potential
polarizable
epileptic
nervous system
Luigi Galvani
Santiago RamĂłn y Cajal
Edgar Adrian
Lippmann electrometer
pyramidal cells
hippocampus
cerebral cortex
Hodgkin–Huxley model
squid giant axon
Iridium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑