Knowledge

Solar desalination

Source đź“ť

215: 232:
energy and evaporates, leaving behind salt and other impurities. An example of this is solar stills, where an enclosed environment allows for the collection and condensation of pure water vapor. On the other hand, indirect solar desalination involves the use of solar collectors that capture and transfer solar energy to saline water. This energy is then used to power desalination processes such as Humidification-Dehumidification (HDH) and diffusion-driven methods.
608:
the space between the membranes (channels). The configuration of this stack can be either horizontal or vertical. The feed water passes in parallel through all the cells, providing a continuous flow of permeate and brine. Although this is a well-known process electrodialysis is not commercially suited for seawater desalination, because it can be used only for brackish water (TDS < 1000 ppm). Due to the complexity for modeling
2385: 448:, Texas a similar project produces 19 m/day. In Kuwait a MSF facility uses parabolic trough collectors to provide solar thermal energy to produce 100 m of fresh water a day. And in Northern China an experimental, automatic, unmanned operation uses 80 m of vacuum tube solar collectors coupled with a 1 kW wind turbine (to drive several small pumps) to produce 0.8 m/day. 360:(MD) utilizes pressure difference from two sides of a microporous hydrophobic membrane. Fresh water can be extracted through four MD methods: Direct Contact (DCMD), Air Gap (AGMD), Sweeping Gas (SGMD) and Vacuum (VMD). An estimated water cost of $ 15/m and $ 18/m support medium-scale solar-MD plants. Energy consumption ranges from 200 to 300 kWh/m. 551:(ED). Single phase desalination is predominantly accomplished with photovoltaics that produce electricity to drive RO pumps. Over 15,000 desalination plants operate around the world. Nearly 70% use RO, yielding 44% of desalination. Alternative methods that use solar thermal collection to provide mechanical energy to drive RO are in development. 452:
result, solar applications require some form of thermal energy storage to deal with cloud interference, varying solar patterns, nocturnal operation, and seasonal temperature changes. As thermal energy storage capacity increases a more continuous process can be achieved and production rates approach maximum efficiency.
473:
should be cheaper in terms of energy cost. Furthermore, the corrosion risk is lower too. There is however a disadvantage related with the difficulties of mechanically moving mixtures of ice and liquid. The process has not been commercialized yet due to cost and difficulties with refrigeration systems.
559:
RO is the most common desalination process due to its efficiency compared to thermal desalination systems, despite the need for water pre-treatment. Economic and reliability considerations are the main challenges to improving PV powered RO desalination systems. However, plummeting PV panel costs make
607:
In ED, an electrical force is applied to the electrodes; the cations travel toward the cathode and anions travel toward the anode. The exchange membranes only allow the passage of its permeable type (cation or anion), hence with this arrangement, diluted and concentrated salt solutions are placed in
451:
MSF solar distillation has an output capacity of 6–60 L/m/day versus the 3-4 L/m/day standard output of a solar still. MSF experience poor efficiency during start-up or low energy periods. Achieving highest efficiency requires controlled pressure drops across each stage and steady energy input. As a
256:
This uses the same process as rainfall. A transparent cover encloses a pan where saline water is placed. The latter traps solar energy, evaporating the seawater. The vapor condenses on the inner face of a sloping transparent cover, leaving behind salts, inorganic and organic components and microbes.
193:
Solar desalination in the United States began in the early 1950s when Congress passed the Conversion of Saline Water Act, which led to the establishment of the Office of Saline Water (OSW) in 1955. OSW's main function was to administer funds for desalination research and development projects. One of
431:
Reheating and repetition: The brine from each stage is reheated, usually by steam extracted from the turbine that drives the process, and then introduced into the subsequent stage. This process is repeated in subsequent stages, with the number of stages determined by the desired level of freshwater
231:
Solar desalination is a technique that harnesses solar energy to convert saline water into fresh water, making it suitable for human consumption and irrigation. The process can be categorized based on the type of solar energy source utilized. In direct solar desalination, saline water absorbs solar
615:
The basic ED process could be modified and turned into RED, in which the polarity of the electrodes changes periodically, reversing the flow through the membranes. This limits the deposition of colloidal substances, which makes this a self-cleaning process, almost eliminating the need for chemical
472:
Although it has only been used on demonstration projects, this indirect method based on crystallization of the saline water has the advantage of the low energy required. Since the latent heat of fusion of water is 6,01 kJ/mole and the latent heat of vaporization at 100 Â°C is 40,66 kJ/mole, it
327:
Large solar desalination plants typically use indirect methods. Indirect solar desalination processes are categorized into single-phase processes (membrane based) and phase change processes (non-membrane based). Single-phase desalination use photovoltaics to produce electricity that drive pumps.
1873:
Task 21 - Evaluation of Artificial Freeze Crystallization and Natural Freeze-Thaw Processes for the Treatment of Contaminated Groundwater at the Strachan Gas Plant in Alberta, Canada - Sour Gas Remediation Technology R{ampersand}D (Report). Office of Scientific and Technical Information (OSTI).
298:
Direct methods use thermal energy to vaporize the seawater as part of a 2-phase separation. Such methods are relatively simple and require little space so they are normally used on small systems. However, they have a low production rate due to low operating temperature and pressure, so they are
222:
Of the estimated 22 million m daily freshwater produced through desalination worldwide, less than 1% uses solar energy. The prevailing methods of desalination, MSF and RO, are energy-intensive and rely heavily on fossil fuels. Because of inexpensive methods of freshwater delivery and abundant
476:
The most studied way of using this process is the refrigeration freezing. A refrigeration cycle is used to cool the water stream to form ice, and after that those crystals are separated and melted to obtain fresh water. There are some recent examples of this solar powered processes: the unit
247:
Water production is proportional to the area of the solar surface and solar incidence angle and has an average estimated value of 3–4 litres per square metre (0.074–0.098 US gal/sq ft). Because of this proportionality and the relatively high cost of property and material for
202:
issues in remote desert and coastal communities. In the 1960s and 1970s several distillation plants were constructed on the Greek isles with capacities ranging from 2000 to 8500 m/day. In 1984 a plant was constructed in Abu-Dhabi with a capacity of 120 m/day that is still in operation. In
356:(RO) made up about 52% of indirect methods. Pumps push salt water through RO modules at high pressure. RO systems depend on pressure differences. A pressure of 55–65 bar is required to purify seawater. An average of 5 kWh/m of energy is typically required to run a large-scale RO plant. 508:
One solution is to reduce the pressure within the reservoir. This can be accomplished using a vacuum pump, and significantly decreases the required heat energy. For example, water at a pressure of 0.1 atmospheres boils at 50 Â°C (122 Â°F) rather than 100 Â°C (212 Â°F).
436:
The multi-stage flash (MSF) method, known for its high energy efficiency through the utilization of latent heat of vaporization during the flashing process, accounted for approximately 45% of the world's desalination capacity and a dominant 93% of thermal systems as recorded in 2009.
336:
Indirect solar desalination systems using photovoltaic (PV) panels and reverse osmosis (RO) have been in use since 2009. Output by 2013 reached 1,600 litres (420 US gal) per hour per system, and 200 litres (53 US gal) per day per square metre of PV panel.
496:
is valuable because it takes large amounts of solar energy to evaporate water and generate saturated, vapor-laden hot air. This energy is, by definition, transferred to the condenser's surface during condensation. With most solar stills, this heat is emitted as waste heat.
619:
The use ED systems began in 1954, while RED was developed in the 1970s. These processes are used in over 1100 plants worldwide. The main advantages of PV in desalination plants is due to its suitability for small-scale plants. One example is in Japan, on Oshima Island
480:
Nevertheless, there is a recent study for the saline groundwater concluding that a plant capable of producing 1 million gal/day would produce water at a cost of $ 1.30/1000 gallons. Being this true, it would be a cost-competitive device with the reverse osmosis ones.
388:
requires seawater to travel through a series of vacuumed reactors held at successively lower pressures. Heat is added to capture the latent heat of the vapor. As seawater flows through the reactors, steam is collected and is condensed to produce fresh water. In
411:
In the MSF desalination process, seawater is heated and subjected to a series of flashings or rapid depressurizations in multiple stages. Each stage consists of a series of heat exchangers and flash chambers. The process typically involves the following steps:
407:
The multi-stage flash (MSF) method is a widely used technology for desalination, particularly in large-scale seawater desalination plants. It is based on the principle of utilizing the evaporation and condensation process to separate saltwater from freshwater.
177:
Solar distillation has been used for thousands of years. Early Greek mariners and Persian alchemists produced both freshwater and medicinal distillates. Solar stills were the first method used on a large scale to convert contaminated water into a potable form.
571:(DC) electricity, which powers the RO unit. The intermittent nature of sunlight and its variable intensity throughout the day complicates PV efficiency prediction and limits night-time desalination. Batteries can store solar energy for later use. Similarly, 181:
In 1870 the first US patent was granted for a solar distillation device to Norman Wheeler and Walton Evans. Two years later in Las Salinas, Chile, Swedish engineer Charles Wilson began building a solar distillation plant to supply freshwater to workers at a
744: 423:
Condensation: The steam produced in the flash chamber is then condensed on the surfaces of heat exchanger tubes. The condensation occurs as the steam comes into contact with colder seawater or with tubes carrying cool freshwater from previous
419:
Flashing: In each stage, the preheated seawater is passed through a flash chamber, where its pressure is rapidly reduced. This sudden drop in pressure causes the water to flash into steam, leaving behind concentrated brine with high salt
563:
Solar-powered RO desalination is common in demonstration plants due to the modularity and scalability of both PV and RO systems. An economic analysis that explored an optimisation strategy of PV-powered RO reported favorable results.
223:
low-cost energy resources, solar distillation has been viewed as cost-prohibitive and impractical. It is estimated that desalination plants powered by conventional fuels consume the equivalent of 203 million tons of fuel a year.
1546:
Banat, Fawzi; Jwaied, Nesreen; Rommel, Matthias; Koschikowski, Joachim; Wieghaus, Marcel (2007). "Performance evaluation of the "large SMADES" autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan".
393:, seawater flows through successively low pressure vessels and reuses latent heat to evaporate seawater for condensation. MED desalination requires less energy than MSF due to higher efficiency in thermodynamic transfer rates. 273:
In a wick still, feed water flows slowly through a porous radiation-absorbing pad. This requires less water to be heated and is easier to change the angle towards the sun which saves time and achieves higher temperatures.
311:
and/or fluid-based thermal collectors, and a separate conventional desalination plant. Many arrangements have been analyzed, experimentally tested and deployed. Categories include multiple-effect humidification (MEH),
427:
Collection and extraction: The condensed freshwater is collected and collected as product water. It is then extracted from the system for storage and distribution, while the remaining brine is removed and disposed of
1636:
Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B. (2014). "Characterization of phase change materials for thermal control of photovoltaics using Differential Scanning Calorimetry and Temperature History Method".
663:
Report of a Workshop Conducted at the Massachusetts Institute of Technology in Association with the Global Clean Water Desalination Alliance, MIT Abdul Latif Jameel World Water and Food Security Lab, Cambridge,
2127: 1696:
Chen, Zhili; Xie, Guo; Chen, Ziqian; Zheng, Hongfei; Zhuang, Chunlong (2012). "Field test of a solar seawater desalination unit with triple-effect falling film regeneration in northern China".
588:
Reported average cost of RO desalination is US$ 0.56/m. Using renewable energy, that cost could increase up to US$ 16/m. Although renewable energy costs are greater, their use is increasing.
523:
The solar humidification–dehumidification (HDH) process (also called the multiple-effect humidification–dehumidification process, solar multistage condensation evaporation cycle (SMCEC) or
489:
Inherent design problems face thermal solar desalination projects. First, the system's efficiency is governed by competing heat and mass transfer rates during evaporation and condensation.
1893: 2261:
Tedesco, M.; Hamelers, H.V.M.; Biesheuvel, P.M. (2017). "Nernst-Planck transport theory for (reverse) electrodialysis: II. Effect of water transport through ion-exchange membranes".
1731:
Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany; Deng, Shuguang; Maganti, Anand (2012). "Low temperature desalination using solar collectors augmented by thermal energy storage".
543:
In indirect, or single phase, solar-powered desalination, two systems are combined: a solar energy collection system (e.g. photovoltaic panels) and a desalination system such as
2099:
Laborde, H.M.; França, K.B.; Neff, H.; Lima, A.M.N. (February 2001). "Optimization strategy for a small-scale reverse osmosis water desalination system based on solar energy".
384:(PCMs) to maximize latent heat storage and high temperatures. MSF phase change temperatures range 80–120 Â°C, 40–100 Â°C for VC, and 50–90 Â°C for the MED method. 1258:
Sarwar, J.; Mansoor, B. (2016). "Characterization of thermophysical properties of phase change materials for non-membrane based indirect solar desalination application".
922:
GarcĂ­a-RodrĂ­guez, Lourdes; Palmero-Marrero, Ana I.; GĂłmez-Camacho, Carlos (2002). "Comparison of solar thermal technologies for applications in seawater desalination".
282:
A diffusion still is composed of a hot storage tank coupled to a solar collector and the distillation unit. Heating is produced by the thermal diffusion between them.
416:
Preheating: Seawater is initially preheated to reduce the energy required for subsequent stages. The preheated seawater then enters the first stage of the MSF system.
604:(RED) use selective ion transport through ion exchange membranes (IEMs) due either to the influence of concentration difference (RED) or electrical potential (ED). 1293: 260:
The direct method achieves values of 4-5 L/m/day and efficiency of 30-40%. Efficiency can be improved to 45% by using a double slope or an additional condenser.
992:
Fath, Hassan E.S. (1998). "Solar distillation: a promising alternative for water provision with free energy, simple technology and a clean environment".
190:. It operated continuously for 40 years and distilled an average of 22.7 m of water a day using the effluent from mining operations as its feed water. 531:
on a shorter time frame by distilling water. Thermal energy produces water vapor that is condensed in a separate chamber. In sophisticated systems,
677: 244:
of this type are described in survival guides, provided in marine survival kits, and employed in many small desalination and distillation plants.
2317:
Al-Karaghouli, Ali; Renne, David; Kazmerski, Lawrence L. (2010). "Technical and economic assessment of photovoltaic-driven desalination systems".
1511:
Banat, Fawzi; Jwaied, Nesreen (2008). "Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units".
1897: 1374:
Ali, Muhammad Tauha; Fath, Hassan E.S.; Armstrong, Peter R. (2011). "A comprehensive techno-economical review of indirect solar desalination".
1341: 1206:
Attia, Ahmed A.A. (2012). "Thermal analysis for system uses solar energy as a pressure source for reverse osmosis (RO) water desalination".
1070:"Techno-enviro-economic assessment of novel hybrid inclined-multi-effect vertical diffusion solar still for sustainable water distillation" 2224:"Principles of reverse electrodialysis and development of integrated-based system for power generation and water treatment: a review" 585:
Batteries remain expensive and require ongoing maintenance. Also, storing and retrieving energy from the battery lowers efficiency.
493: 612:
phenomena in the channels, performance could be affected, considering the non-ideal behavior presented by the exchange membranes.
2072:
Fiorenza, G.; Sharma, V.K.; Braccio, G. (August 2003). "Techno-economic evaluation of a solar powered water desalination plant".
1766:
Ghazouani, Nejib; El-Bary, Alaa A.; Hassan, Gasser E.; Becheikh, Nidhal; Bawadekji, Abdulhakim; Elewa, Mahmoud M. (2022-10-27).
248:
construction, distillation tends to favor plants with production capacities less than 200 m/d (53,000 US gal/d).
742:, Wheeler, N. & Evans, W., "Improvements in Evaporating and Distilling by Solar Heat", published 1870 717: 477:
constructed in Saudi Arabia by Chicago Bridge and Iron Inc. in the late 1980s, which was shut down for its inefficiency.
1300: 825: 2048: 633: 1324: 2179:
Lienhard, John; Antar, Mohamed A.; Bilton, Amy; Blanco, Julian; Zaragoza, Guillermo (2012). "Solar Desalination".
1849: 624:), which has operated since 1986 with 390 PV panels producing 10 m/day with dissolved solids (TDS) about 400 ppm. 535:
is minimized by collecting the heat from the condensing water vapor and pre-heating the incoming water source.
524: 402: 385: 377: 369: 313: 123: 52: 40: 949:
Mink, György; Aboabboud, Mohamed M.; Karmazsin, Étienne (1998). "Air-blown solar still with heat recycling".
2356: 441: 317: 46: 2420: 2415: 1930:
Rajvanshi, A. K. (April 30, 1980). "A scheme for large scale desalination of sea water by solar energy".
2027:
Mohammad Abutayeh; Chennan Li, D; Yogi Goswami; Elias K. Stefanakos (January 2014). Kucera, Jane (ed.).
1672: 2375: 842:
Ahmadi, Esmaeil; McLellan, Benjamin; Ogata, Seiichi; Mohammadi-Ivatloo, Behnam; Tezuka, Tetsuo (2020).
578:
Batteries allow continuous operation. Studies have indicated that intermittent operations can increase
2223: 806: 2410: 1589: 1421: 739: 390: 373: 148: 1349: 2405: 601: 70: 1131:
GarcĂ­a-RodrĂ­guez, Lourdes (2002). "Seawater desalination driven by renewable energies: a review".
107: 572: 240:
In the direct (distillation) method, a solar collector is coupled with a distilling mechanism.
195: 290:
Increasing the internal temperature using an external energy source can improve productivity.
2192: 2026: 671: 381: 357: 349: 102: 88: 2142: 1991: 1939: 1740: 1705: 1475: 1215: 1081: 958: 772: 518: 117: 892:
Qiblawey, Hazim Mohameed; Banat, Fawzi (2008). "Solar thermal desalination technologies".
505:
Heat recovery allows the same heat input to be reused, providing several times the water.
460:
Indirect solar desalination by a form of humidification/dehumidification is in use in the
8: 2128:"Low temperature desalination using solar collectors augmented by thermal energy storage" 461: 129: 65: 2146: 2126:
Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany; Deng, Shuguang; Maganti, Anand (2012).
1995: 1943: 1744: 1709: 1590:"Energy efficient multi-effect distillation powered by a solar linear Fresnel collector" 1479: 1219: 1085: 962: 776: 211:
called "the Eliodomestico" by Gabriele Diamanti was developed for personal costing $ 50.
2296: 2270: 2204: 2054: 1955: 1618: 1113: 1069: 547:(RO). The main single-phase processes, generally membrane processes, consist of RO and 208: 2112: 2085: 1144: 1005: 970: 935: 2334: 2288: 2243: 2196: 2158: 2058: 2044: 2028: 2009: 1951: 1830: 1809:"Water desalination technologies utilizing conventional and renewable energy sources" 1789: 1654: 1622: 1610: 1564: 1528: 1493: 1441: 1391: 1275: 1231: 1188: 1184: 1148: 1117: 1105: 1097: 1050: 1009: 974: 788: 713: 2300: 1959: 763:
Delyannis, E. (2003). "Historic background of desalination and renewable energies".
659:"Low Carbon Desalination: Status and Research, Development, and Demonstration Needs" 2326: 2280: 2235: 2208: 2188: 2154: 2150: 2108: 2081: 2036: 1999: 1947: 1875: 1820: 1779: 1752: 1748: 1713: 1650: 1646: 1606: 1602: 1556: 1520: 1483: 1433: 1383: 1271: 1267: 1223: 1180: 1140: 1089: 1040: 1001: 966: 931: 901: 865: 855: 780: 656: 1717: 1227: 784: 2330: 2284: 707: 597: 548: 544: 455: 353: 345: 321: 143: 136: 94: 76: 1560: 1524: 905: 2040: 1437: 1387: 1093: 568: 445: 199: 82: 2004: 1979: 1488: 1463: 2399: 2338: 2292: 2247: 2200: 2162: 2013: 1919:
Solar Desalination using the MEH method, Diss. Technical University of Munich
1918: 1834: 1793: 1658: 1614: 1568: 1532: 1497: 1445: 1395: 1279: 1235: 1192: 1152: 1101: 1054: 1013: 978: 792: 609: 341:
in the Pacific Ocean has been supplied with fresh water this way since 2010.
320:(MED), multiple-effect boiling (MEB), humidification–dehumidification (HDH), 2239: 921: 2389: 1825: 1808: 1171:
Delyannis, E.-E (1987). "Status of solar assisted desalination: A review".
1109: 338: 169:. The two common methods are direct (thermal) and indirect (photovoltaic). 166: 162: 60: 22: 1029:"Recent Developments in Solar Thermal Desalination Technologies: A Review" 844:"An Integrated Planning Framework for Sustainable Water and Energy Supply" 528: 308: 241: 214: 187: 2357:"Efficient solar desalination unit uses titanium-coated diaper material" 444:, Italy a 50–60 m/day MSF plant uses a salinity gradient solar pond. In 328:
Phase-change (or multi-phase) solar desalination is not membrane-based.
1673:"Multi Stage Flash evaporator (MSF) - onboard desalination of seawater" 1587:
Alhaj, Mohamed; Mabrouk, Abdelnasser; Al-Ghamdi, Sami G. (2018-09-01).
1045: 1028: 870: 860: 843: 579: 532: 1784: 1767: 307:
Indirect desalination employs a solar collection array, consisting of
616:
pre-treatment, making it economically attractive for brackish water.
575:
systems ensure constant performance after sunset and on cloudy days.
183: 841: 2275: 1879: 621: 1894:"Large scale Solar Desalination using Multi Effect Humidification" 2384: 1768:"Solar Desalination by Humidification–Dehumidification: A Review" 1462:
Zaragoza, G.; Andrés-Mañas, J. A; Ruiz-Aguirre, A. (2018-10-30).
1461: 658: 2222:
Othman, Nur Hidayati; Kabay, Nalan; Guler, Enver (2022-11-25).
1464:"Commercial scale membrane distillation for solar desalination" 1765: 456:
Indirect Solar Desalination by Humidification/Dehumidification
2125: 1730: 1545: 352:, where membranes filter water from contaminants. As of 2014 204: 1420:
Li, Chennan; Goswami, Yogi; Stefanakos, Elias (2013-03-01).
657:
J H Lienhard, G P Thiel, D M Warsinger, L D Banchik (2016).
2316: 368:
Phase-change (or multi-phase) solar desalination includes
218:
The status of renewable-powered desalination technologies.
2260: 2178: 1635: 823: 512: 1850:"Inside this giant 'solar dome' coming to Saudi Arabia" 396: 948: 2373: 2098: 2071: 1586: 738: 432:
production and the overall efficiency of the system.
1419: 1980:"Hybrid renewable energy systems for desalination" 1917:The MEH-method (in German with english abstract): 1588: 538: 1422:"Solar assisted sea water desalination: A review" 2397: 2221: 1813:International Journal of Low-Carbon Technologies 1695: 1373: 1130: 484: 18: 709:Solar Energy Engineering: Processes and Systems 299:appropriate for systems that yield 200 m/day. 16:Desalination technique powered by solar energy 1257: 891: 198:. Many of the projects were aimed at solving 1806: 1074:Environmental Science and Pollution Research 1027:Ullah, Ihsan; Rasul, Mohammad (2018-12-30). 676:: CS1 maint: multiple names: authors list ( 344:Single-phase desalination processes include 1510: 758: 756: 754: 701: 699: 697: 695: 693: 691: 689: 687: 652: 650: 648: 1977: 1325:""Container size solar desalination unit"" 1067: 1026: 887: 885: 883: 881: 560:solar-powered desalination more feasible. 2274: 2003: 1929: 1824: 1783: 1487: 1170: 1044: 869: 859: 762: 705: 285: 194:five demonstration plants was located in 2193:10.1615/annualrevheattransfer.2012004659 1847: 1807:Shatat, M.; Riffat, S. B. (2014-03-01). 1426:Renewable and Sustainable Energy Reviews 1376:Renewable and Sustainable Energy Reviews 917: 915: 751: 684: 645: 331: 213: 878: 807:"Records of the office of Saline Water" 363: 2398: 2354: 1294:""Trunk size solar desalination unit"" 1253: 1251: 1249: 1247: 1245: 1166: 1164: 1162: 826:Solar Distillation in Rajasthan, India 324:(RO), and freeze-effect distillation. 2312: 2310: 2174: 2172: 1973: 1971: 1969: 1582: 1580: 1578: 1457: 1455: 1415: 1413: 1411: 1409: 1407: 1405: 1369: 1367: 1365: 1363: 1361: 1359: 1205: 912: 513:Solar humidification–dehumidification 991: 397:Multi-stage flash distillation (MSF) 2119: 1629: 1242: 1159: 13: 2307: 2169: 1966: 1575: 1452: 1402: 1356: 1348:. January 17, 2014. Archived from 591: 554: 277: 263: 14: 2432: 2348: 1978:Esmaeilion, Farbod (March 2020). 1068:Hilarydoss, Sharon (2022-10-04). 634:Point Paterson Desalination Plant 567:PV converts solar radiation into 2383: 2074:Energy Conversion and Management 1639:Energy Conversion and Management 1595:Energy Conversion and Management 1260:Energy Conversion and Management 824:Eric Spooner; Lisa VanBladeren. 251: 2254: 2228:Reviews in Chemical Engineering 2215: 2092: 2065: 2020: 1923: 1911: 1886: 1866: 1841: 1800: 1759: 1724: 1689: 1665: 1539: 1504: 1334: 1317: 1286: 1199: 1124: 1061: 1020: 985: 942: 539:Single-phase solar desalination 391:Multi-effect distillation (MED) 2355:Irving, Michael (2021-04-28). 2181:Annual Review of Heat Transfer 2155:10.1016/j.apenergy.2011.10.018 1753:10.1016/j.apenergy.2011.10.018 1651:10.1016/j.enconman.2014.02.042 1607:10.1016/j.enconman.2018.05.082 1272:10.1016/j.enconman.2016.05.002 835: 817: 799: 732: 525:multiple-effect humidification 403:Multi-stage flash distillation 380:. It is accomplished by using 378:thermal vapor compression (VC) 314:multi-stage flash distillation 293: 124:Multiple-effect humidification 41:Multi-stage flash distillation 1: 2187:(15). Begell House: 277–347. 2113:10.1016/S0011-9164(01)00078-9 2086:10.1016/S0196-8904(02)00247-9 1718:10.1016/j.solener.2011.08.037 1519:(1–3). Elsevier BV: 566–573. 1382:(8). Elsevier BV: 4187–4199. 1342:"Utrik RO unit a big success" 1228:10.1016/j.solener.2012.05.018 1214:(9). Elsevier BV: 2486–2493. 1145:10.1016/s0011-9164(02)00232-1 1006:10.1016/s0011-9164(98)00056-3 971:10.1016/s0038-092x(97)00121-7 936:10.1016/S0011-9164(01)00432-5 785:10.1016/j.solener.2003.08.002 639: 485:Problems with thermal systems 268: 2331:10.1016/j.renene.2009.05.018 2285:10.1016/j.memsci.2017.02.031 1952:10.1016/0038-092X(80)90354-0 1848:Flanagan, Ben (2020-07-17). 1185:10.1016/0011-9164(87)90227-x 500: 318:multiple-effect distillation 47:Multiple-effect distillation 7: 2325:(2). Elsevier BV: 323–328. 2263:Journal of Membrane Science 2141:(1). Elsevier BV: 466–474. 1561:10.1016/j.desal.2006.11.027 1555:(1–3). Elsevier BV: 17–28. 1525:10.1016/j.desal.2007.01.057 1139:(2). Elsevier BV: 103–113. 957:(4). Elsevier BV: 309–317. 906:10.1016/j.desal.2007.01.059 771:(5). Elsevier BV: 357–366. 627: 467: 302: 10: 2437: 2041:10.1002/9781118904855.ch13 1438:10.1016/j.rser.2012.04.059 1388:10.1016/j.rser.2011.05.012 1346:marshallislandsjournal.com 1094:10.1007/s11356-022-23286-0 516: 400: 226: 172: 2005:10.1007/s13201-020-1168-5 1489:10.1038/s41545-018-0020-z 1000:(1). Elsevier BV: 45–56. 527:(MEH) mimics the natural 374:multi-effect distillation 235: 149:Wave-powered desalination 2269:. Elsevier BV: 172–182. 1645:. Elsevier BV: 322–329. 1266:. Elsevier BV: 247–256. 706:Kalogirou, S.A. (2013). 71:Electrodialysis reversal 2240:10.1515/revce-2020-0070 602:reverse electrodialysis 386:Multi-stage flash (MSF) 120:–dehumidification (HDH) 108:Geothermal desalination 573:thermal energy storage 382:phase change materials 286:Improving Productivity 219: 196:Daytona Beach, Florida 1984:Applied Water Science 1179:. Elsevier BV: 3–19. 358:Membrane distillation 350:membrane distillation 332:Indirect single-phase 217: 165:technique powered by 103:Freezing desalination 89:Membrane distillation 2029:"Solar Desalination" 1826:10.1093/ijlct/cts025 740:US patent 102633 712:. Elsevier Science. 519:Solar humidification 494:heat of condensation 442:Margherita di Savoia 364:Indirect multi-phase 118:Solar humidification 2147:2012ApEn...91..466G 1996:2020ApWS...10...84E 1944:1980SoEn...24..551R 1745:2012ApEn...91..466G 1710:2012SoEn...86...31C 1480:2018npjCW...1...20Z 1220:2012SoEn...86.2486A 1086:2022ESPR...3017280H 963:1998SoEn...62..309M 777:2003SoEn...75..357D 462:seawater greenhouse 130:Seawater greenhouse 2421:Water desalination 2416:Water conservation 1080:(7): 17280–17315. 1046:10.3390/en12010119 861:10.3390/su12104295 220: 209:open source design 159:Solar desalination 113:Solar desalination 66:Membrane processes 23:Water desalination 2080:(14): 2217–2240. 1854:WIRED Middle East 1785:10.3390/w14213424 811:National Archives 719:978-0-12-397256-9 370:multi-stage flash 156: 155: 53:Vapor-compression 2428: 2411:Water technology 2388: 2387: 2379: 2370: 2368: 2367: 2343: 2342: 2319:Renewable Energy 2314: 2305: 2304: 2278: 2258: 2252: 2251: 2219: 2213: 2212: 2176: 2167: 2166: 2132: 2123: 2117: 2116: 2096: 2090: 2089: 2069: 2063: 2062: 2024: 2018: 2017: 2007: 1975: 1964: 1963: 1927: 1921: 1915: 1909: 1908: 1906: 1905: 1896:. Archived from 1890: 1884: 1883: 1870: 1864: 1863: 1861: 1860: 1845: 1839: 1838: 1828: 1804: 1798: 1797: 1787: 1763: 1757: 1756: 1728: 1722: 1721: 1693: 1687: 1686: 1684: 1683: 1669: 1663: 1662: 1633: 1627: 1626: 1592: 1584: 1573: 1572: 1543: 1537: 1536: 1508: 1502: 1501: 1491: 1459: 1450: 1449: 1417: 1400: 1399: 1371: 1354: 1353: 1338: 1332: 1331: 1329: 1321: 1315: 1314: 1312: 1311: 1305: 1299:. Archived from 1298: 1290: 1284: 1283: 1255: 1240: 1239: 1203: 1197: 1196: 1168: 1157: 1156: 1128: 1122: 1121: 1065: 1059: 1058: 1048: 1024: 1018: 1017: 989: 983: 982: 946: 940: 939: 919: 910: 909: 889: 876: 875: 873: 863: 839: 833: 832: 830: 821: 815: 814: 803: 797: 796: 760: 749: 748: 747: 743: 736: 730: 729: 727: 726: 703: 682: 681: 675: 667: 654: 19: 2436: 2435: 2431: 2430: 2429: 2427: 2426: 2425: 2406:Water treatment 2396: 2395: 2394: 2382: 2374: 2365: 2363: 2351: 2346: 2315: 2308: 2259: 2255: 2220: 2216: 2177: 2170: 2130: 2124: 2120: 2097: 2093: 2070: 2066: 2051: 2025: 2021: 1976: 1967: 1928: 1924: 1916: 1912: 1903: 1901: 1892: 1891: 1887: 1872: 1871: 1867: 1858: 1856: 1846: 1842: 1805: 1801: 1764: 1760: 1729: 1725: 1694: 1690: 1681: 1679: 1671: 1670: 1666: 1634: 1630: 1585: 1576: 1544: 1540: 1509: 1505: 1468:npj Clean Water 1460: 1453: 1418: 1403: 1372: 1357: 1340: 1339: 1335: 1327: 1323: 1322: 1318: 1309: 1307: 1303: 1296: 1292: 1291: 1287: 1256: 1243: 1204: 1200: 1169: 1160: 1129: 1125: 1066: 1062: 1025: 1021: 990: 986: 947: 943: 920: 913: 900:(1–3): 633–44. 890: 879: 840: 836: 828: 822: 818: 805: 804: 800: 761: 752: 745: 737: 733: 724: 722: 720: 704: 685: 669: 668: 655: 646: 642: 630: 598:electrodialysis 594: 592:Electrodialysis 557: 555:Reverse osmosis 549:electrodialysis 545:reverse osmosis 541: 521: 515: 503: 487: 470: 458: 405: 399: 366: 354:reverse osmosis 346:reverse osmosis 334: 322:reverse osmosis 305: 296: 288: 280: 278:Diffusion Still 271: 266: 264:Types of Stills 254: 238: 229: 175: 144:water recycling 139:crystallization 137:Methane hydrate 95:Forward osmosis 77:Reverse osmosis 25: 17: 12: 11: 5: 2434: 2424: 2423: 2418: 2413: 2408: 2393: 2392: 2372: 2371: 2350: 2349:External links 2347: 2345: 2344: 2306: 2253: 2234:(8): 921–958. 2214: 2168: 2135:Applied Energy 2118: 2091: 2064: 2049: 2019: 1965: 1938:(6): 551–560. 1922: 1910: 1885: 1880:10.2172/637784 1865: 1840: 1799: 1758: 1733:Applied Energy 1723: 1688: 1664: 1628: 1574: 1538: 1503: 1451: 1401: 1355: 1352:on 2014-03-03. 1333: 1316: 1285: 1241: 1198: 1158: 1123: 1060: 1019: 984: 941: 911: 877: 848:Sustainability 834: 816: 798: 750: 731: 718: 683: 643: 641: 638: 637: 636: 629: 626: 593: 590: 569:direct-current 556: 553: 540: 537: 517:Main article: 514: 511: 502: 499: 486: 483: 469: 466: 457: 454: 434: 433: 429: 425: 421: 417: 401:Main article: 398: 395: 365: 362: 333: 330: 304: 301: 295: 292: 287: 284: 279: 276: 270: 267: 265: 262: 253: 250: 237: 234: 228: 225: 200:water scarcity 174: 171: 154: 153: 152: 151: 146: 140: 134: 133: 132: 127: 121: 110: 105: 100: 99: 98: 92: 86: 83:Nanofiltration 80: 74: 63: 58: 57: 56: 50: 44: 32: 31: 27: 26: 15: 9: 6: 4: 3: 2: 2433: 2422: 2419: 2417: 2414: 2412: 2409: 2407: 2404: 2403: 2401: 2391: 2386: 2381: 2380: 2377: 2362: 2358: 2353: 2352: 2340: 2336: 2332: 2328: 2324: 2320: 2313: 2311: 2302: 2298: 2294: 2290: 2286: 2282: 2277: 2272: 2268: 2264: 2257: 2249: 2245: 2241: 2237: 2233: 2229: 2225: 2218: 2210: 2206: 2202: 2198: 2194: 2190: 2186: 2182: 2175: 2173: 2164: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2129: 2122: 2114: 2110: 2106: 2102: 2095: 2087: 2083: 2079: 2075: 2068: 2060: 2056: 2052: 2050:9781118904855 2046: 2042: 2038: 2034: 2030: 2023: 2015: 2011: 2006: 2001: 1997: 1993: 1989: 1985: 1981: 1974: 1972: 1970: 1961: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1926: 1920: 1914: 1900:on 2008-12-21 1899: 1895: 1889: 1881: 1877: 1869: 1855: 1851: 1844: 1836: 1832: 1827: 1822: 1818: 1814: 1810: 1803: 1795: 1791: 1786: 1781: 1777: 1773: 1769: 1762: 1754: 1750: 1746: 1742: 1739:(1): 466–74. 1738: 1734: 1727: 1719: 1715: 1711: 1707: 1703: 1699: 1692: 1678: 1674: 1668: 1660: 1656: 1652: 1648: 1644: 1640: 1632: 1624: 1620: 1616: 1612: 1608: 1604: 1600: 1596: 1591: 1583: 1581: 1579: 1570: 1566: 1562: 1558: 1554: 1550: 1542: 1534: 1530: 1526: 1522: 1518: 1514: 1507: 1499: 1495: 1490: 1485: 1481: 1477: 1473: 1469: 1465: 1458: 1456: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1416: 1414: 1412: 1410: 1408: 1406: 1397: 1393: 1389: 1385: 1381: 1377: 1370: 1368: 1366: 1364: 1362: 1360: 1351: 1347: 1343: 1337: 1326: 1320: 1306:on 2016-03-03 1302: 1295: 1289: 1281: 1277: 1273: 1269: 1265: 1261: 1254: 1252: 1250: 1248: 1246: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1202: 1194: 1190: 1186: 1182: 1178: 1174: 1167: 1165: 1163: 1154: 1150: 1146: 1142: 1138: 1134: 1127: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1064: 1056: 1052: 1047: 1042: 1038: 1034: 1030: 1023: 1015: 1011: 1007: 1003: 999: 995: 988: 980: 976: 972: 968: 964: 960: 956: 952: 945: 937: 933: 930:(2): 135–42. 929: 925: 918: 916: 907: 903: 899: 895: 888: 886: 884: 882: 872: 867: 862: 857: 853: 849: 845: 838: 827: 820: 813:. 2016-10-12. 812: 808: 802: 794: 790: 786: 782: 778: 774: 770: 766: 759: 757: 755: 741: 735: 721: 715: 711: 710: 702: 700: 698: 696: 694: 692: 690: 688: 679: 673: 665: 664:Massachusetts 660: 653: 651: 649: 644: 635: 632: 631: 625: 623: 617: 613: 611: 610:ion transport 605: 603: 599: 589: 586: 583: 581: 576: 574: 570: 565: 561: 552: 550: 546: 536: 534: 530: 526: 520: 510: 506: 498: 495: 490: 482: 478: 474: 465: 463: 453: 449: 447: 443: 438: 430: 426: 422: 418: 415: 414: 413: 409: 404: 394: 392: 387: 383: 379: 375: 371: 361: 359: 355: 351: 347: 342: 340: 329: 325: 323: 319: 315: 310: 300: 291: 283: 275: 261: 258: 252:Single-effect 249: 245: 243: 233: 224: 216: 212: 210: 206: 201: 197: 191: 189: 185: 179: 170: 168: 164: 160: 150: 147: 145: 141: 138: 135: 131: 128: 125: 122: 119: 116: 115: 114: 111: 109: 106: 104: 101: 96: 93: 90: 87: 84: 81: 78: 75: 72: 69: 68: 67: 64: 62: 59: 54: 51: 48: 45: 42: 39: 38: 37:Distillation 36: 35: 34: 33: 29: 28: 24: 21: 20: 2364:. Retrieved 2360: 2322: 2318: 2266: 2262: 2256: 2231: 2227: 2217: 2184: 2180: 2138: 2134: 2121: 2104: 2101:Desalination 2100: 2094: 2077: 2073: 2067: 2033:Desalination 2032: 2022: 1987: 1983: 1935: 1932:Solar Energy 1931: 1925: 1913: 1902:. Retrieved 1898:the original 1888: 1874:1997-03-01. 1868: 1857:. Retrieved 1853: 1843: 1816: 1812: 1802: 1778:(21): 3424. 1775: 1771: 1761: 1736: 1732: 1726: 1701: 1698:Solar Energy 1697: 1691: 1680:. Retrieved 1677:Wartsila.com 1676: 1667: 1642: 1638: 1631: 1598: 1594: 1552: 1549:Desalination 1548: 1541: 1516: 1513:Desalination 1512: 1506: 1471: 1467: 1429: 1425: 1379: 1375: 1350:the original 1345: 1336: 1319: 1308:. Retrieved 1301:the original 1288: 1263: 1259: 1211: 1208:Solar Energy 1207: 1201: 1176: 1173:Desalination 1172: 1136: 1133:Desalination 1132: 1126: 1077: 1073: 1063: 1036: 1032: 1022: 997: 994:Desalination 993: 987: 954: 951:Solar Energy 950: 944: 927: 924:Desalination 923: 897: 894:Desalination 893: 854:(10): 4295. 851: 847: 837: 819: 810: 801: 768: 765:Solar Energy 764: 734: 723:. Retrieved 708: 672:cite journal 662: 618: 614: 606: 595: 587: 584: 577: 566: 562: 558: 542: 522: 507: 504: 492:Second, the 491: 488: 479: 475: 471: 459: 450: 439: 435: 410: 406: 367: 343: 339:Utirik Atoll 335: 326: 309:photovoltaic 306: 297: 289: 281: 272: 259: 255: 246: 242:Solar stills 239: 230: 221: 192: 180: 176: 167:solar energy 163:desalination 158: 157: 112: 61:Ion exchange 2107:(1): 1–12. 2035:: 551–582. 1819:(1): 1–19. 1704:(1): 31–9. 1601:: 576–586. 1432:: 136–163. 871:2433/259701 529:water cycle 376:(MED), and 294:Limitations 188:silver mine 142:High grade 2400:Categories 2366:2021-05-03 2276:1610.02833 1904:2008-11-05 1859:2024-01-12 1682:2024-01-12 1310:2014-02-27 1039:(1): 119. 725:2023-10-05 640:References 580:biofouling 533:waste heat 269:Wick Still 2361:New Atlas 2339:0960-1481 2293:0376-7388 2248:0167-8299 2201:1049-0787 2163:0306-2619 2059:243368304 2014:2190-5487 1990:(3): 84. 1835:1748-1317 1794:2073-4441 1659:0196-8904 1623:102703212 1615:0196-8904 1569:0011-9164 1533:0011-9164 1498:2059-7037 1474:(1): 20. 1446:1364-0321 1396:1364-0321 1280:0196-8904 1236:0038-092X 1193:0011-9164 1153:0011-9164 1118:252694730 1102:1614-7499 1055:1996-1073 1014:0011-9164 979:0038-092X 831:(Report). 793:0038-092X 600:(ED) and 501:Solutions 428:properly. 184:saltpeter 2301:99780515 1960:17580673 1110:36194327 1033:Energies 628:See also 622:Nagasaki 468:Freezing 420:content. 303:Indirect 30:Methods 2209:7845704 2143:Bibcode 1992:Bibcode 1940:Bibcode 1741:Bibcode 1706:Bibcode 1476:Bibcode 1216:Bibcode 1082:Bibcode 959:Bibcode 773:Bibcode 446:El Paso 424:stages. 316:(MSF), 227:Methods 173:History 2376:Portal 2337:  2299:  2291:  2246:  2207:  2199:  2161:  2057:  2047:  2012:  1958:  1833:  1792:  1657:  1621:  1613:  1567:  1531:  1496:  1444:  1394:  1278:  1234:  1191:  1151:  1116:  1108:  1100:  1053:  1012:  977:  791:  746:  716:  236:Direct 2390:Water 2297:S2CID 2271:arXiv 2205:S2CID 2131:(PDF) 2055:S2CID 1956:S2CID 1772:Water 1619:S2CID 1328:(PDF) 1304:(PDF) 1297:(PDF) 1114:S2CID 829:(PDF) 596:Both 207:, an 205:Italy 161:is a 126:(MEH) 73:(EDR) 49:(MED) 43:(MSF) 2335:ISSN 2289:ISSN 2244:ISSN 2197:ISSN 2159:ISSN 2045:ISBN 2010:ISSN 1831:ISSN 1790:ISSN 1655:ISSN 1611:ISSN 1565:ISSN 1529:ISSN 1494:ISSN 1442:ISSN 1392:ISSN 1276:ISSN 1232:ISSN 1189:ISSN 1149:ISSN 1106:PMID 1098:ISSN 1051:ISSN 1010:ISSN 975:ISSN 789:ISSN 714:ISBN 678:link 348:and 186:and 97:(FO) 91:(MD) 85:(NF) 79:(RO) 55:(VC) 2327:doi 2281:doi 2267:531 2236:doi 2189:doi 2151:doi 2109:doi 2105:133 2082:doi 2037:doi 2000:doi 1948:doi 1876:doi 1821:doi 1780:doi 1749:doi 1714:doi 1647:doi 1603:doi 1599:171 1557:doi 1553:217 1521:doi 1517:220 1484:doi 1434:doi 1384:doi 1268:doi 1264:120 1224:doi 1181:doi 1141:doi 1137:143 1090:doi 1041:doi 1002:doi 998:116 967:doi 932:doi 928:142 902:doi 898:220 866:hdl 856:doi 781:doi 440:In 2402:: 2359:. 2333:. 2323:35 2321:. 2309:^ 2295:. 2287:. 2279:. 2265:. 2242:. 2232:38 2230:. 2226:. 2203:. 2195:. 2185:15 2183:. 2171:^ 2157:. 2149:. 2139:91 2137:. 2133:. 2103:. 2078:44 2076:. 2053:. 2043:. 2031:. 2008:. 1998:. 1988:10 1986:. 1982:. 1968:^ 1954:. 1946:. 1936:24 1934:. 1852:. 1829:. 1815:. 1811:. 1788:. 1776:14 1774:. 1770:. 1747:. 1737:91 1735:. 1712:. 1702:86 1700:. 1675:. 1653:. 1643:81 1641:. 1617:. 1609:. 1597:. 1593:. 1577:^ 1563:. 1551:. 1527:. 1515:. 1492:. 1482:. 1470:. 1466:. 1454:^ 1440:. 1430:19 1428:. 1424:. 1404:^ 1390:. 1380:15 1378:. 1358:^ 1344:. 1274:. 1262:. 1244:^ 1230:. 1222:. 1212:86 1210:. 1187:. 1177:67 1175:. 1161:^ 1147:. 1135:. 1112:. 1104:. 1096:. 1088:. 1078:30 1076:. 1072:. 1049:. 1037:12 1035:. 1031:. 1008:. 996:. 973:. 965:. 955:62 953:. 926:. 914:^ 896:. 880:^ 864:. 852:12 850:. 846:. 809:. 787:. 779:. 769:75 767:. 753:^ 686:^ 674:}} 670:{{ 661:. 647:^ 582:. 464:. 372:, 2378:: 2369:. 2341:. 2329:: 2303:. 2283:: 2273:: 2250:. 2238:: 2211:. 2191:: 2165:. 2153:: 2145:: 2115:. 2111:: 2088:. 2084:: 2061:. 2039:: 2016:. 2002:: 1994:: 1962:. 1950:: 1942:: 1907:. 1882:. 1878:: 1862:. 1837:. 1823:: 1817:9 1796:. 1782:: 1755:. 1751:: 1743:: 1720:. 1716:: 1708:: 1685:. 1661:. 1649:: 1625:. 1605:: 1571:. 1559:: 1535:. 1523:: 1500:. 1486:: 1478:: 1472:1 1448:. 1436:: 1398:. 1386:: 1330:. 1313:. 1282:. 1270:: 1238:. 1226:: 1218:: 1195:. 1183:: 1155:. 1143:: 1120:. 1092:: 1084:: 1057:. 1043:: 1016:. 1004:: 981:. 969:: 961:: 938:. 934:: 908:. 904:: 874:. 868:: 858:: 795:. 783:: 775:: 728:. 680:) 666:. 620:(

Index

Water desalination
Multi-stage flash distillation
Multiple-effect distillation
Vapor-compression
Ion exchange
Membrane processes
Electrodialysis reversal
Reverse osmosis
Nanofiltration
Membrane distillation
Forward osmosis
Freezing desalination
Geothermal desalination
Solar desalination
Solar humidification
Multiple-effect humidification
Seawater greenhouse
Methane hydrate
water recycling
Wave-powered desalination
desalination
solar energy
saltpeter
silver mine
Daytona Beach, Florida
water scarcity
Italy
open source design

Solar stills

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑