Knowledge

Source–sink dynamics

Source 📝

329:
populations respond to habitat loss or change. Because a large proportion of a species' population could exist in sink habitat, conservation efforts may misinterpret the species' habitat requirements. Similarly, without considering the presence of a trap, conservationists might mistakenly preserve trap habitat under the assumption that an organism's preferred habitat was also good quality habitat. Simultaneously, source habitat may be ignored or even destroyed if only a small proportion of the population resides there. Degradation or destruction of the source habitat will, in turn, impact the sink or trap populations, potentially over large distances. Finally, efforts to restore degraded habitat may unintentionally create an ecological trap by giving a site the appearance of quality habitat, but which has not yet developed all of the functional elements necessary for an organism's survival and reproduction. For an already threatened species, such mistakes might result in a rapid population decline toward extinction.
312:, a group of populations residing in patches of habitat. Though some patches may go extinct, the regional persistence of the metapopulation depends on the ability of patches to be re-colonized. As long as there are source patches present for successful reproduction, sink patches may allow the total number of individuals in the metapopulation to grow beyond what the source could support, providing a reserve of individuals available for re-colonization. Source–sink dynamics also has implications for studies of the coexistence of species within habitat patches. Because a patch that is a source for one species may be a sink for another, coexistence may actually depend on immigration from a second patch rather than the interactions between the two species. Similarly, source–sink dynamics may influence the regional coexistence and demographics of species within a 256:
individuals. Note that in all of these systems, source patches are capable of supporting stable or growing populations and are net exporters of individuals. The major difference between them is that in the ecological trap model, the source patch is avoided (or at least not preferred to the low quality trap patch). All of the low quality patches (whether sinks, pseudo-sinks, or traps) are net importers of dispersing individuals, and in the absence of dispersal, would show a population decline. However, pseudo-sinks would not decline to extinction as they are capable of supporting a smaller population. The other major difference between these low quality patch types is in their attractiveness; sink populations are avoided while trap patches are preferred (or at least not avoided).
288:(survival rate or reproductive success) of the individuals in the patch drops below the average fitness in a second, lower quality patch, individuals are expected to move to the second patch. However, as soon as the second patch becomes sufficiently crowded, individuals are expected to move back to the first patch. Eventually, the patches should become balanced so that the average fitness of the individuals in each patch and the rates of dispersal between the two patches are even. In this balanced dispersal model, the probability of leaving a patch is inversely proportional to the carrying capacity of the patch. In this case, individuals should not remain in sink habitat for very long, where the carrying capacity is zero and the probability of leaving is therefore very high. 292:
site can be preempted if it has already been occupied. For example, the dominant, older individuals in a population may occupy all of the best territories in the source so that the next best territory available may be in the sink. As the subordinate, younger individuals age, they may be able to take over territories in the source, but new subordinate juveniles from the source will have to move to the sink. Pulliam argued that such a pattern of dispersal can maintain a large sink population indefinitely. Furthermore, if good breeding sites in the source are rare and poor breeding sites in the sink are common, it is even possible that the majority of the population resides in the sink.
340:). Either way, determining which areas are sources or sinks for any one species may be very difficult, and an area that is a source for one species may be unimportant to others. Finally, areas that are sources or sinks currently may not be in the future as habitats are continually altered by human activity or climate change. Few areas can be expected to be universal sources, or universal sinks. While the presence of source, sink, or trap patches must be considered for short-term population survival, especially for very small populations, long-term survival may depend on the creation of networks of reserves that incorporate a variety of habitats and allow populations to interact. 273:
relying on other agents such as wind or water currents to move seeds to another patch. Passive dispersal can result in source–sink dynamics whenever the seeds land in a patch that cannot support the plant's growth or reproduction. Winds may continually deposit seeds there, maintaining a population even though the plants themselves do not successfully reproduce. Another good example for this case are soil protists. Soil protists also disperse passively, relying mainly on wind to colonize other sites. As a result, source–sink dynamics can arise simply because external agents dispersed protist propagules (e.g., cysts, spores), forcing individuals to grow in a poor habitat.
305:
species could successfully occupy. In contrast, the "realized niche", was described as all of the places a species actually did occupy, and was expected to be less than the extent of the fundamental niche as a result of competition with other species. However, the source–sink model demonstrated that the majority of a population could occupy a sink which, by definition, did not meet the niche requirements of the species, and was therefore outside the fundamental niche (see Figure 2). In this case, the realized niche was actually larger than the fundamental niche, and ideas about how to define a species' niche had to change.
97:(the number of individuals it can support). However, in the absence of immigration, the patches are able to support a smaller population. Since true sinks cannot support any population, the authors called these patches "pseudo-sinks". Definitively distinguishing between true sinks and pseudo-sinks requires cutting off immigration to the patch in question and determining whether the patch is still able to maintain a population. Thomas et al. were able to do just that, taking advantage of an unseasonable frost that killed off the host plants for a source population of 152:, an annual survey of North American birds, they looked for relationships between survey sites showing such a one-year time lag. They found several pairs of sites showing significant relationships 60–80 km apart. Several appeared to be sources to more than one sink, and several sinks appeared to receive individuals from more than one source. In addition, some sites appeared to be a sink to one site and a source to another (see Figure 1). The authors concluded that source–sink dynamics may occur on continental scales. 156:
ignored, then individuals that emigrate may be treated as mortalities, thus causing sources to be classified as sinks. This issue is important if the source–sink concept is viewed in terms of habitat quality (as it is in Table 1) because classifying high-quality habitat as low-quality may lead to mistakes in ecological management. Runge et al. showed how to integrate the theory of source–sink dynamics with population projection matrices and ecological statistics in order to differentiate sources and sinks.
137:. Following the frost, the butterflies had difficulty recolonizing the former source patches. Boughton found that the host plants in the former sources senesced much earlier than in the former pseudo-sink patches. As a result, immigrants regularly arrived too late to successfully reproduce. He found that the former pseudo-sinks had become sources, and the former sources had become true sinks. 284:", which describes a population in which individuals distribute themselves evenly among habitat patches according to how many individuals the patch can support. When there are patches of varying quality available, the ideal free distribution predicts a pattern of "balanced dispersal". In this model, when the preferred habitat patch becomes crowded enough that the average 85:
in a sink patch, death rates were greater than birth rates, resulting in a population decline toward extinction unless enough individuals emigrated from the source patch. Immigration rates were expected to be greater than emigration rates, so that sinks were a net importer of individuals. As a result, there would be a net flow of individuals from the source to the sink
320:, a model in which organisms prefer sink habitat over source habitat. Besides being ecological trap sink habitat may vary in their response i major disturbance and colonization of sink habitat may allow species survival even if population in source habitat extinct due to some catastrophic event which may substantially increase metapopulational stability. 148:) survey data for evidence of source and sink populations on a large scale. The authors reasoned that emigrants from sources would likely be the juveniles produced in one year dispersing to reproduce in sinks in the next year, producing a one-year time lag between population changes in the source and in the sink. Using data from the 105:). Without the host plants, the supply of immigrants to other nearby patches was cut off. Although these patches had appeared to be sinks, they did not become extinct without the constant supply of immigrants. They were capable of sustaining a smaller population, suggesting that they were in fact pseudo-sinks. 120:
Dias also argued that an inversion between source and sink habitat is possible so that the sinks may actually become the sources. Because reproduction in source patches is much higher than in sink patches, natural selection is generally expected to favor adaptations to the source habitat. However,
108:
Watkinson and Sutherland's caution about identifying pseudo-sinks was followed by Dias, who argued that differentiating between sources and sinks themselves may be difficult. She asserted that a long-term study of the demographic parameters of the populations in each patch is necessary. Otherwise,
84:
rates). In the source patch, birth rates were greater than death rates, causing the population to grow. The excess individuals were expected to leave the patch, so that emigration rates were greater than immigration rates. In other words, sources were a net exporter of individuals. In contrast,
304:
was originally described as the environmental factors required by a species to carry out its life history, and a species was expected to be found only in areas that met these niche requirements. This concept of a niche was later termed the "fundamental niche", and described as all of the places a
37:
Since quality is likely to vary among patches of habitat, it is important to consider how a low quality patch might affect a population. In this model, organisms occupy two patches of habitat. One patch, the source, is a high quality habitat that on average allows the population to increase. The
291:
An alternative to the ideal free distribution and balanced dispersal models is when fitness can vary among potential breeding sites within habitat patches and individuals must select the best available site. This alternative has been called the "ideal preemptive distribution", because a breeding
155:
One of the more confusing issues involves identifying sources and sinks in the field. Runge et al. point out that in general researchers need to estimate per capita reproduction, probability of survival, and probability of emigration to differentiate source and sink habitats. If emigration is
328:
Land managers and conservationists have become increasingly interested in preserving and restoring high quality habitat, particularly where rare, threatened, or endangered species are concerned. As a result, it is important to understand how to identify or create high quality habitat, and how
272:
Why would individuals ever leave high quality source habitat for a low quality sink habitat? This question is central to source–sink theory. Ultimately, it depends on the organisms and the way they move and distribute themselves between habitat patches. For example, plants disperse passively,
255:
Habitat patches are represented in terms of their (1) inherent abilities to maintain a population (in the absence of immigration), (2) their attractiveness to organisms that are actively dispersing and choosing habitat patches, and (3) whether they are net exporters or importers of dispersing
92:
Pulliam's work was followed by many others who developed and tested the source–sink model. Watkinson and Sutherland presented a phenomenon in which high immigration rates could cause a patch to appear to be a sink by raising the patch's population above its
117:). During the floods, these patches became sinks, but at other times they were no different from other patches. If researchers had not considered what happened during the floods, they would not have understood the full complexity of the system. 121:
if the proportion of source to sink habitat changes so that sink habitat becomes much more available, organisms may begin to adapt to it instead. Once adapted, the sink may become a source habitat. This is believed to have occurred for the
42:
produced in the source frequently moves to the sink, the sink population can persist indefinitely. Organisms are generally assumed to be able to distinguish between high and low quality habitat, and to prefer high quality habitat. However,
63:
Although the seeds of a source–sink model had been planted earlier, Pulliam is often recognized as the first to present a fully developed source–sink model. He defined source and sink patches in terms of their demographic parameters, or
336:, protecting source habitat is often assumed to be the goal, although if the cause of a sink is human activity, simply designating an area as a reserve has the potential to convert current sink patches to source patches (e.g. 109:
temporary variations in those parameters, perhaps due to climate fluctuations or natural disasters, may result in a misclassification of the patches. For example, Johnson described periodic flooding of a river in
51:. Finally, the source–sink model implies that some habitat patches may be more important to the long-term survival of the population, and considering the presence of source–sink dynamics will help inform 276:
In contrast, many organisms that disperse actively should have no reason to remain in a sink patch, provided the organisms are able to recognize it as a poor quality patch (see discussion of
1092:
Manlik O, Chabanne D, Daniel C, Bejder L, Allen SJ, Sherwin WB (2018). "Demography and genetics suggest reversal of dolphin source-sink dynamics, with implications for conservation".
1250:
Frouz J, Kindlmann P (2001). "The role of sink to source re-colonisation in the population dynamics of insects living in unstable habitats: an example of terrestrial chironomids".
858:
Foissner W (1987). "Soil protozoa: fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature".
674:
Tittler R, Fahrig L, Villard MA (December 2006). "Evidence of large-scale source-sink dynamics and long-distance dispersal among Wood Thrush populations".
714:
Runge JP, Runge MC, Nichols JD (June 2006). "The role of local populations within a landscape context: defining and classifying sources and sinks".
337: 2466: 1719: 316:, a group of communities connected by the dispersal of potentially interacting species. Finally, the source–sink model has greatly influenced 877:
Fernández LD (February 2015). "Source–sink dynamics shapes the spatial distribution of soil protists in an arid shrubland of northern Chile".
38:
second patch, the sink, is a very low quality habitat that, on its own, would not be able to support a population. However, if the excess of
644:
Boughton DA (December 1999). "Empirical evidence for complex source–sink dynamics with alternative states in a butterfly metapopulation".
2610: 418:
Holt RD (October 1985). "Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution".
1589:
Misenhelter MD, Rotenberry JT (October 2000). "Choices and consequences of habitat occupancy and nest site selection in Sage Sparrows".
2680: 2252: 2217: 536:
Thomas CD, Singer MC, Boughton DA (December 1996). "Catastrophic extinction of population sources in a butterfly metapopulation".
2690: 2418: 999:
Pulliam HR, Danielson BJ (June 1991). "Sources, sinks, and habitat selection: a landscape perspective on population dynamics".
1484:
Battin J (December 2004). "When good animals love bad habitats: ecological traps and the conservation of animal populations".
1521:
Delibes M, Gaona P, Ferreras P (September 2001). "Effects of an attractive sink leading into maladaptive habitat selection".
791: 766: 2695: 133:
changed, but few modern examples are known. Boughton described a source—pseudo-sink inversion in butterfly populations of
2883: 1204: 2636: 2459: 2300: 1712: 300:
The source–sink model of population dynamics has made contributions to many areas in ecology. For example, a species'
1972: 1668:
Weldon AJ, Haddad NM (June 2005). "The effects of patch shape on Indigo Buntings: evidence for an ecological trap".
3301: 2433: 2715: 2428: 2295: 2007: 1602: 657: 3100: 2973: 1426: 1220: 687: 3286: 3146: 2745: 2700: 2452: 1705: 394: 2232: 807:
Keddy PA (January 1982). "Population ecology on an environmental gradient: Cakile edentula on a sand dune".
3276: 2578: 3296: 2935: 1826: 280:). The reasoning behind this argument is that organisms are often expected to behave according to the " 3271: 3000: 2720: 2207: 1924: 1821: 48: 3181: 2793: 2685: 2543: 2528: 2523: 2202: 1914: 1354:"Forbidden fruit: human settlement and abundant fruit create an ecological trap for an apex omnivore" 1697: 3291: 3171: 3166: 3136: 2403: 2285: 65: 2444: 2075: 1568:
Dwernychuk LW, Boag DA (May 1972). "Ducks nesting in association with gulls—an ecological trap?".
140:
One of the most recent additions to the source–sink literature is by Tittler et al., who examined
3015: 2878: 2788: 2656: 2538: 2508: 2365: 2330: 2050: 2017: 1992: 281: 1127:
Howe RW, Davis GJ, Mosca V (January 1991). "The demographic significance of 'sink'populations".
3161: 3105: 3040: 2903: 2838: 2773: 2335: 2123: 1831: 1811: 1162:
Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. (July 2004).
917:
Diffendorfer JE (April 1998). "Testing models of source-sink dynamics and balanced dispersal".
369: 98: 784:
Analysis and management of animal populations : modeling, estimation, and decision making
3065: 3010: 2873: 2858: 2641: 2598: 2588: 2583: 2340: 2320: 2176: 2166: 2108: 2103: 1939: 1791: 1610:
Purcell KL, Verner J (April 1998). "Density and reproductive success of California Towhees".
3191: 3156: 3151: 3075: 3070: 3025: 2923: 2893: 2888: 2740: 2603: 2593: 2138: 1977: 1766: 1677: 1619: 1493: 1438: 1365: 1306: 1259: 1175: 1136: 1078: 926: 886: 816: 618: 499: 349: 149: 609:
Johnson DM (July 2004). "Source–sink dynamics in a temporally heterogeneous environment".
8: 3281: 3241: 3216: 3080: 3050: 2995: 2908: 2798: 2783: 2730: 2563: 2498: 2380: 2310: 2242: 1841: 1647:
Schlaepfer MA, Runge MC, Sherman PW (October 2002). "Ecological and evolutionary traps".
1295:"Source-Sink Colonization as a Possible Strategy of Insects Living in Temporary Habitats" 384: 27: 1681: 1623: 1497: 1442: 1369: 1310: 1263: 1179: 1140: 930: 890: 820: 622: 503: 47:
theory describes the reasons why organisms may actually prefer sink patches over source
3252: 3201: 3196: 3005: 2968: 2710: 2666: 2631: 2488: 2413: 2315: 2247: 2237: 2171: 2118: 1929: 1874: 1836: 1761: 1635: 1556: 1509: 1462: 1329: 1294: 1232: 1205:"A framework for understanding ecological traps and an evaluation of existing evidence" 1109: 1055: 1016: 981: 942: 840: 739: 553: 515: 469: 389: 52: 1660: 1271: 3141: 3110: 2898: 2725: 2533: 2398: 2375: 2113: 1889: 1801: 1786: 1771: 1751: 1631: 1548: 1505: 1454: 1383: 1334: 1275: 1236: 1224: 1188: 1163: 1148: 962:"On territorial behavior and other factors influencing habitat distribution in birds" 832: 787: 762: 731: 691: 591: 587: 431: 364: 285: 94: 1639: 1466: 1113: 1020: 985: 557: 473: 3095: 2958: 2950: 2868: 2750: 2735: 2671: 2651: 2568: 2558: 2553: 2518: 2350: 2290: 2161: 1962: 1904: 1816: 1776: 1685: 1656: 1627: 1598: 1577: 1560: 1538: 1530: 1513: 1501: 1446: 1373: 1324: 1314: 1267: 1216: 1183: 1144: 1101: 1047: 1008: 973: 934: 898: 894: 844: 824: 743: 723: 683: 653: 626: 583: 545: 507: 461: 427: 399: 317: 301: 277: 162:
Table 1. Summary characteristics of variations on the source–sink dynamics model.
44: 3231: 3090: 3060: 3055: 3045: 2978: 2963: 2843: 2823: 2705: 2573: 2479: 2370: 2280: 2222: 1806: 1732: 1319: 1035: 379: 354: 333: 3211: 3035: 2988: 2918: 2913: 2808: 2675: 2548: 2355: 2345: 2325: 2128: 2093: 2032: 1909: 1864: 1756: 961: 490:
Watkinson AR, Sutherland WJ (January 1995). "Sources, sinks and pseudo-sinks".
374: 309: 113:
which completely inundated patches of the host plant for a rolled-leaf beetle (
1450: 3265: 3236: 2212: 2186: 2143: 2133: 2088: 2055: 1947: 1781: 1736: 1458: 1279: 313: 1378: 1353: 3221: 3206: 2863: 2833: 2778: 2661: 2626: 2503: 2002: 1552: 1387: 1338: 1228: 836: 735: 695: 595: 1164:"The metacommunity concept: a framework for multi-scale community ecology" 759:
Matrix population models : construction, analysis, and interpretation
2513: 2060: 2022: 1997: 1987: 1952: 1899: 1879: 1406:
Roberts CM. "Sources, sinks, and the design of marine reserve networks".
452:
Pulliam HR (November 1988). "Sources, sinks, and population regulation".
141: 73: 3226: 2803: 2768: 2408: 2360: 2305: 2275: 2181: 2098: 2042: 1919: 1869: 1543: 1059: 977: 946: 828: 110: 81: 39: 22:
is a theoretical model used by ecologists to describe how variation in
1427:"Movements and source–sink dynamics of a Masai giraffe metapopulation" 1105: 3131: 3085: 2813: 2257: 2227: 2027: 1982: 1957: 1894: 1884: 1859: 1851: 1796: 1727: 1689: 1581: 1352:
Lamb CT, Mowat G, McLellan BN, Nielsen SE, Boutin S (January 2017).
1051: 938: 630: 519: 3186: 3115: 2646: 2474: 2153: 2065: 2012: 1967: 1534: 1012: 727: 549: 465: 122: 31: 574:
Dias PC (August 1996). "Sources and sinks in population biology".
3176: 2983: 2853: 2848: 2475: 2423: 2083: 1728: 511: 359: 130: 23: 1161: 308:
Source–sink dynamics has also been incorporated into studies of
77: 69: 1603:
10.1890/0012-9658(2000)081[2892:CACOHO]2.0.CO;2
658:
10.1890/0012-9658(1999)080[2727:EEFCSS]2.0.CO;2
1221:
10.1890/0012-9658(2006)87[1075:AFFUET]2.0.CO;2
1091: 688:
10.1890/0012-9658(2006)87[3029:eolsda]2.0.co;2
1351: 761:(2nd ed.). Sunderland, Mass.: Sinauer Associates. 1646: 1588: 781: 1520: 1036:"The niche-relationships of the California Thrasher" 912: 910: 908: 673: 535: 489: 905: 713: 3263: 998: 959: 485: 483: 1401: 1399: 1397: 1567: 1292: 1249: 1202: 1126: 669: 667: 447: 445: 443: 441: 2460: 1713: 1609: 1027: 775: 531: 529: 480: 1667: 1394: 916: 750: 709: 707: 705: 637: 782:Williams BK, Nichols JD, Conroy MJ (2002). 664: 569: 567: 438: 16:Ecological model of population distribution 2681:Latitudinal gradients in species diversity 2467: 2453: 1720: 1706: 1072: 526: 129:) 7500 years ago as forest composition on 1542: 1424: 1377: 1328: 1318: 1187: 1120: 876: 702: 2579:Predator–prey (Lotka–Volterra) equations 2218:Tritrophic interactions in plant defense 1033: 857: 643: 564: 295: 2611:Random generalized Lotka–Volterra model 960:Fretwell SD, Lucas Jr HL (March 1969). 756: 608: 451: 3264: 2419:Herbivore adaptations to plant defense 1483: 1345: 2448: 1701: 806: 267: 58: 2434:Predator avoidance in schooling fish 573: 417: 2884:Intermediate disturbance hypothesis 1405: 1293:Frouz J, Kindlmann P (2015-06-05). 1203:Robertson BA, Hutto RL (May 2006). 13: 2637:Ecological effects of biodiversity 1476: 14: 3313: 1973:Generalist and specialist species 1649:Trends in Ecology & Evolution 1272:10.1034/j.1600-0706.2001.930105.x 1081:. Vol. 22. pp. 415–427. 576:Trends in Ecology & Evolution 2696:Occupancy–abundance relationship 1632:10.1111/j.1523-1739.1998.96354.x 1506:10.1111/j.1523-1739.2004.00417.x 1425:Lee DE, Bolger DT (2017-05-05). 1189:10.1111/j.1461-0248.2004.00608.x 2716:Relative abundance distribution 2429:Plant defense against herbivory 2296:Competitive exclusion principle 2008:Mesopredator release hypothesis 1418: 1286: 1243: 1196: 1155: 1085: 1077:. Cold Spring Harbor Symposium 1066: 992: 953: 870: 851: 800: 323: 2301:Consumer–resource interactions 899:10.1016/j.jaridenv.2014.10.007 602: 420:Theoretical Population Biology 411: 332:In considering where to place 1: 3147:Biological data visualization 2974:Environmental niche modelling 2701:Population viability analysis 1661:10.1016/S0169-5347(02)02580-6 1358:The Journal of Animal Ecology 786:. San Diego: Academic Press. 405: 395:Population viability analysis 2632:Density-dependent inhibition 1320:10.1371/journal.pone.0127743 1149:10.1016/0006-3207(91)90071-G 879:Journal of Arid Environments 588:10.1016/0169-5347(96)10037-9 432:10.1016/0040-5809(85)90027-9 7: 3101:Liebig's law of the minimum 2936:Resource selection function 1827:Metabolic theory of ecology 1570:Canadian Journal of Zoology 1034:Grinnell J (October 1917). 343: 86: 10: 3318: 3001:Niche apportionment models 2721:Relative species abundance 1925:Primary nutritional groups 1822:List of feeding behaviours 3250: 3182:Ecosystem based fisheries 3124: 3024: 2949: 2822: 2794:Interspecific competition 2759: 2686:Minimum viable population 2619: 2544:Maximum sustainable yield 2529:Intraspecific competition 2524:Effective population size 2487: 2404:Anti-predator adaptations 2389: 2268: 2195: 2152: 2074: 2041: 1938: 1915:Photosynthetic efficiency 1850: 1744: 1451:10.1007/s10144-017-0580-7 492:Journal of Animal Ecology 249: 3172:Ecological stoichiometry 3137:Alternative stable state 860:Progress in Protistology 3302:Ecological connectivity 3016:Ontogenetic niche shift 2879:Ideal free distribution 2789:Ecological facilitation 2539:Malthusian growth model 2509:Consumer-resource model 2366:Paradox of the plankton 2331:Energy systems language 2051:Chemoorganoheterotrophy 2018:Optimal foraging theory 1993:Heterotrophic nutrition 1523:The American Naturalist 1379:10.1111/1365-2656.12589 1129:Biological Conservation 1001:The American Naturalist 716:The American Naturalist 538:The American Naturalist 454:The American Naturalist 282:ideal free distribution 228:Declines to stable size 182:(high quality habitat) 26:quality may affect the 3162:Ecological forecasting 3106:Marginal value theorem 2904:Landscape epidemiology 2839:Cross-boundary subsidy 2774:Biological interaction 2124:Microbial intelligence 1812:Green world hypothesis 1073:Hutchinson GE (1957). 370:List of ecology topics 318:ecological trap theory 237:Declines to extinction 219:Declines to extinction 216:(low quality habitat) 115:Cephaloleia fenestrata 3167:Ecological humanities 3066:Ecological energetics 3011:Niche differentiation 2874:Habitat fragmentation 2642:Ecological extinction 2589:Small population size 2341:Feed conversion ratio 2321:Ecological succession 2253:San Francisco Estuary 2167:Ecological efficiency 2109:Microbial cooperation 1094:Marine Mammal Science 296:Importance in ecology 241:Attractive (or equal) 30:growth or decline of 3287:Conservation biology 3192:Evolutionary ecology 3157:Ecological footprint 3152:Ecological economics 3076:Ecological threshold 3071:Ecological indicator 2941:Source–sink dynamics 2894:Land change modeling 2889:Insular biogeography 2741:Species distribution 2480:Modelling ecosystems 2139:Microbial metabolism 1978:Intraguild predation 1767:Biogeochemical cycle 1733:Modelling ecosystems 1612:Conservation Biology 1486:Conservation Biology 1079:Quantitative Biology 350:Conservation biology 150:Breeding Bird Survey 146:Hylocichla mustelina 20:Source–sink dynamics 3277:Ecological theories 3242:Theoretical ecology 3217:Natural environment 3081:Ecosystem diversity 3051:Ecological collapse 3041:Bateman's principle 2996:Limiting similarity 2909:Landscape limnology 2731:Species homogeneity 2569:Population modeling 2564:Population dynamics 2381:Trophic state index 1682:2005Ecol...86.1422W 1624:1998ConBi..12..442P 1498:2004ConBi..18.1482B 1443:2017PopEc..59..157L 1370:2017JAnEc..86...55L 1311:2015PLoSO..1027743F 1264:2001Oikos..93...50F 1180:2004EcolL...7..601L 1141:1991BCons..57..239H 931:1998Oikos..81..417D 891:2015JArEn.113..121F 821:1982Oecol..52..348K 623:2004Ecol...85.2037J 504:1995JAnEc..64..126W 385:Population dynamics 163: 99:Edith's checkerspot 3297:Behavioral ecology 3253:Outline of ecology 3202:Industrial ecology 3197:Functional ecology 3061:Ecological deficit 3006:Niche construction 2969:Ecosystem engineer 2746:Species–area curve 2667:Introduced species 2482:: Other components 2414:Deimatic behaviour 2316:Ecological network 2248:North Pacific Gyre 2233:hydrothermal vents 2172:Ecological pyramid 2119:Microbial food web 1930:Primary production 1875:Foundation species 1431:Population Ecology 1075:Concluding remarks 978:10.1007/BF01601955 966:Acta Biotheoretica 829:10.1007/BF00367958 757:Caswell H (2018). 390:Population ecology 268:Modes of dispersal 212:Sink, pseudo-sink, 203:Avoided (or equal) 172:Source–pseudosink 161: 59:Theory development 3272:Landscape ecology 3259: 3258: 3142:Balance of nature 2899:Landscape ecology 2784:Community ecology 2726:Species diversity 2662:Indicator species 2657:Gradient analysis 2534:Logistic function 2442: 2441: 2399:Animal coloration 2376:Trophic mutualism 2114:Microbial ecology 1905:Photoheterotrophs 1890:Myco-heterotrophy 1802:Ecosystem ecology 1787:Carrying capacity 1752:Abiotic component 1106:10.1111/mms.12555 793:978-0-08-057472-1 768:978-0-87893-096-8 365:Landscape ecology 265: 264: 261: 260: 199:Stable or growing 192:Stable or growing 185:Stable or growing 103:Euphydryas editha 95:carrying capacity 3309: 2959:Ecological niche 2931:selection theory 2751:Umbrella species 2736:Species richness 2672:Invasive species 2652:Flagship species 2559:Population cycle 2554:Overexploitation 2519:Ecological yield 2469: 2462: 2455: 2446: 2445: 2351:Mesotrophic soil 2291:Climax community 2223:Marine food webs 2162:Biomagnification 1963:Chemoorganotroph 1817:Keystone species 1777:Biotic component 1722: 1715: 1708: 1699: 1698: 1693: 1664: 1643: 1606: 1597:(10): 2892–901. 1585: 1564: 1546: 1517: 1471: 1470: 1422: 1416: 1415: 1403: 1392: 1391: 1381: 1349: 1343: 1342: 1332: 1322: 1290: 1284: 1283: 1247: 1241: 1240: 1200: 1194: 1193: 1191: 1159: 1153: 1152: 1124: 1118: 1117: 1089: 1083: 1082: 1070: 1064: 1063: 1031: 1025: 1024: 996: 990: 989: 957: 951: 950: 914: 903: 902: 874: 868: 867: 855: 849: 848: 804: 798: 797: 779: 773: 772: 754: 748: 747: 711: 700: 699: 671: 662: 661: 641: 635: 634: 606: 600: 599: 571: 562: 561: 533: 524: 523: 487: 478: 477: 449: 436: 435: 415: 400:Refuge (ecology) 278:ecological traps 251: 250: 175:Ecological trap 164: 160: 3317: 3316: 3312: 3311: 3310: 3308: 3307: 3306: 3292:Disease ecology 3262: 3261: 3260: 3255: 3246: 3232:Systems ecology 3120: 3091:Extinction debt 3056:Ecological debt 3046:Bioluminescence 3027: 3020: 2989:marine habitats 2964:Ecological trap 2945: 2825: 2818: 2761: 2755: 2711:Rapoport's rule 2706:Priority effect 2647:Endemic species 2615: 2574:Population size 2490: 2483: 2473: 2443: 2438: 2391: 2385: 2371:Trophic cascade 2281:Bioaccumulation 2264: 2191: 2148: 2070: 2037: 1934: 1846: 1807:Ecosystem model 1740: 1726: 1696: 1690:10.1890/04-0913 1582:10.1139/z72-076 1479: 1477:Further reading 1474: 1423: 1419: 1404: 1395: 1350: 1346: 1305:(6): e0127743. 1291: 1287: 1248: 1244: 1201: 1197: 1168:Ecology Letters 1160: 1156: 1125: 1121: 1090: 1086: 1071: 1067: 1052:10.2307/4072271 1032: 1028: 997: 993: 958: 954: 939:10.2307/3546763 915: 906: 875: 871: 856: 852: 805: 801: 794: 780: 776: 769: 755: 751: 712: 703: 682:(12): 3029–36. 672: 665: 642: 638: 631:10.1890/03-0508 607: 603: 572: 565: 534: 527: 488: 481: 450: 439: 416: 412: 408: 380:Perceptual trap 355:Ecological trap 346: 326: 310:metapopulations 298: 270: 244: 238: 233: 231: 222: 220: 215: 213: 206: 200: 195: 193: 188: 186: 181: 127:Parus caeruleus 61: 45:ecological trap 17: 12: 11: 5: 3315: 3305: 3304: 3299: 3294: 3289: 3284: 3279: 3274: 3257: 3256: 3251: 3248: 3247: 3245: 3244: 3239: 3234: 3229: 3224: 3219: 3214: 3212:Microecosystem 3209: 3204: 3199: 3194: 3189: 3184: 3179: 3174: 3169: 3164: 3159: 3154: 3149: 3144: 3139: 3134: 3128: 3126: 3122: 3121: 3119: 3118: 3113: 3111:Thorson's rule 3108: 3103: 3098: 3093: 3088: 3083: 3078: 3073: 3068: 3063: 3058: 3053: 3048: 3043: 3038: 3036:Assembly rules 3032: 3030: 3022: 3021: 3019: 3018: 3013: 3008: 3003: 2998: 2993: 2992: 2991: 2981: 2976: 2971: 2966: 2961: 2955: 2953: 2947: 2946: 2944: 2943: 2938: 2933: 2921: 2919:Patch dynamics 2916: 2914:Metapopulation 2911: 2906: 2901: 2896: 2891: 2886: 2881: 2876: 2871: 2866: 2861: 2856: 2851: 2846: 2841: 2836: 2830: 2828: 2820: 2819: 2817: 2816: 2811: 2809:Storage effect 2806: 2801: 2796: 2791: 2786: 2781: 2776: 2771: 2765: 2763: 2757: 2756: 2754: 2753: 2748: 2743: 2738: 2733: 2728: 2723: 2718: 2713: 2708: 2703: 2698: 2693: 2691:Neutral theory 2688: 2683: 2678: 2676:Native species 2669: 2664: 2659: 2654: 2649: 2644: 2639: 2634: 2629: 2623: 2621: 2617: 2616: 2614: 2613: 2608: 2607: 2606: 2601: 2591: 2586: 2581: 2576: 2571: 2566: 2561: 2556: 2551: 2549:Overpopulation 2546: 2541: 2536: 2531: 2526: 2521: 2516: 2511: 2506: 2501: 2495: 2493: 2485: 2484: 2472: 2471: 2464: 2457: 2449: 2440: 2439: 2437: 2436: 2431: 2426: 2421: 2416: 2411: 2406: 2401: 2395: 2393: 2387: 2386: 2384: 2383: 2378: 2373: 2368: 2363: 2358: 2356:Nutrient cycle 2353: 2348: 2346:Feeding frenzy 2343: 2338: 2333: 2328: 2326:Energy quality 2323: 2318: 2313: 2308: 2303: 2298: 2293: 2288: 2286:Cascade effect 2283: 2278: 2272: 2270: 2266: 2265: 2263: 2262: 2261: 2260: 2255: 2250: 2245: 2240: 2235: 2230: 2220: 2215: 2210: 2205: 2199: 2197: 2193: 2192: 2190: 2189: 2184: 2179: 2174: 2169: 2164: 2158: 2156: 2150: 2149: 2147: 2146: 2141: 2136: 2131: 2129:Microbial loop 2126: 2121: 2116: 2111: 2106: 2101: 2096: 2094:Lithoautotroph 2091: 2086: 2080: 2078: 2076:Microorganisms 2072: 2071: 2069: 2068: 2063: 2058: 2053: 2047: 2045: 2039: 2038: 2036: 2035: 2033:Prey switching 2030: 2025: 2020: 2015: 2010: 2005: 2000: 1995: 1990: 1985: 1980: 1975: 1970: 1965: 1960: 1955: 1950: 1944: 1942: 1936: 1935: 1933: 1932: 1927: 1922: 1917: 1912: 1910:Photosynthesis 1907: 1902: 1897: 1892: 1887: 1882: 1877: 1872: 1867: 1865:Chemosynthesis 1862: 1856: 1854: 1848: 1847: 1845: 1844: 1839: 1834: 1829: 1824: 1819: 1814: 1809: 1804: 1799: 1794: 1789: 1784: 1779: 1774: 1769: 1764: 1759: 1757:Abiotic stress 1754: 1748: 1746: 1742: 1741: 1725: 1724: 1717: 1710: 1702: 1695: 1694: 1676:(6): 1422–31. 1665: 1655:(10): 474–80. 1644: 1607: 1586: 1565: 1535:10.1086/321319 1518: 1492:(6): 1482–91. 1480: 1478: 1475: 1473: 1472: 1437:(2): 157–168. 1417: 1393: 1344: 1285: 1242: 1215:(5): 1075–85. 1195: 1154: 1119: 1100:(3): 732–759. 1084: 1065: 1026: 1013:10.1086/285139 991: 952: 904: 869: 850: 815:(3): 348–355. 799: 792: 774: 767: 749: 728:10.1086/503531 701: 663: 652:(8): 2727–39. 636: 617:(7): 2037–45. 601: 563: 550:10.1086/285966 525: 479: 466:10.1086/284880 437: 426:(2): 181–208. 409: 407: 404: 403: 402: 397: 392: 387: 382: 377: 375:Metapopulation 372: 367: 362: 357: 352: 345: 342: 325: 322: 297: 294: 269: 266: 263: 262: 259: 258: 247: 246: 235: 224: 217: 209: 208: 197: 190: 183: 177: 176: 173: 170: 167: 60: 57: 15: 9: 6: 4: 3: 2: 3314: 3303: 3300: 3298: 3295: 3293: 3290: 3288: 3285: 3283: 3280: 3278: 3275: 3273: 3270: 3269: 3267: 3254: 3249: 3243: 3240: 3238: 3237:Urban ecology 3235: 3233: 3230: 3228: 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3163: 3160: 3158: 3155: 3153: 3150: 3148: 3145: 3143: 3140: 3138: 3135: 3133: 3130: 3129: 3127: 3123: 3117: 3114: 3112: 3109: 3107: 3104: 3102: 3099: 3097: 3096:Kleiber's law 3094: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3072: 3069: 3067: 3064: 3062: 3059: 3057: 3054: 3052: 3049: 3047: 3044: 3042: 3039: 3037: 3034: 3033: 3031: 3029: 3023: 3017: 3014: 3012: 3009: 3007: 3004: 3002: 2999: 2997: 2994: 2990: 2987: 2986: 2985: 2982: 2980: 2977: 2975: 2972: 2970: 2967: 2965: 2962: 2960: 2957: 2956: 2954: 2952: 2948: 2942: 2939: 2937: 2934: 2932: 2930: 2926: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2887: 2885: 2882: 2880: 2877: 2875: 2872: 2870: 2869:Foster's rule 2867: 2865: 2862: 2860: 2857: 2855: 2852: 2850: 2847: 2845: 2842: 2840: 2837: 2835: 2832: 2831: 2829: 2827: 2821: 2815: 2812: 2810: 2807: 2805: 2802: 2800: 2797: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2766: 2764: 2758: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2734: 2732: 2729: 2727: 2724: 2722: 2719: 2717: 2714: 2712: 2709: 2707: 2704: 2702: 2699: 2697: 2694: 2692: 2689: 2687: 2684: 2682: 2679: 2677: 2673: 2670: 2668: 2665: 2663: 2660: 2658: 2655: 2653: 2650: 2648: 2645: 2643: 2640: 2638: 2635: 2633: 2630: 2628: 2625: 2624: 2622: 2618: 2612: 2609: 2605: 2602: 2600: 2597: 2596: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2542: 2540: 2537: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2496: 2494: 2492: 2486: 2481: 2477: 2470: 2465: 2463: 2458: 2456: 2451: 2450: 2447: 2435: 2432: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2396: 2394: 2388: 2382: 2379: 2377: 2374: 2372: 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2352: 2349: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2319: 2317: 2314: 2312: 2309: 2307: 2304: 2302: 2299: 2297: 2294: 2292: 2289: 2287: 2284: 2282: 2279: 2277: 2274: 2273: 2271: 2267: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2239: 2236: 2234: 2231: 2229: 2226: 2225: 2224: 2221: 2219: 2216: 2214: 2211: 2209: 2206: 2204: 2201: 2200: 2198: 2194: 2188: 2187:Trophic level 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2159: 2157: 2155: 2151: 2145: 2144:Phage ecology 2142: 2140: 2137: 2135: 2134:Microbial mat 2132: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2089:Bacteriophage 2087: 2085: 2082: 2081: 2079: 2077: 2073: 2067: 2064: 2062: 2059: 2057: 2056:Decomposition 2054: 2052: 2049: 2048: 2046: 2044: 2040: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2004: 2003:Mesopredators 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1948:Apex predator 1946: 1945: 1943: 1941: 1937: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1857: 1855: 1853: 1849: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1795: 1793: 1790: 1788: 1785: 1783: 1782:Biotic stress 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1749: 1747: 1743: 1738: 1734: 1730: 1723: 1718: 1716: 1711: 1709: 1704: 1703: 1700: 1691: 1687: 1683: 1679: 1675: 1671: 1666: 1662: 1658: 1654: 1650: 1645: 1641: 1637: 1633: 1629: 1625: 1621: 1618:(2): 442–50. 1617: 1613: 1608: 1604: 1600: 1596: 1592: 1587: 1583: 1579: 1576:(5): 559–63. 1575: 1571: 1566: 1562: 1558: 1554: 1550: 1545: 1540: 1536: 1532: 1529:(3): 277–85. 1528: 1524: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1487: 1482: 1481: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1421: 1413: 1409: 1402: 1400: 1398: 1389: 1385: 1380: 1375: 1371: 1367: 1363: 1359: 1355: 1348: 1340: 1336: 1331: 1326: 1321: 1316: 1312: 1308: 1304: 1300: 1296: 1289: 1281: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1246: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1199: 1190: 1185: 1181: 1177: 1174:(7): 601–13. 1173: 1169: 1165: 1158: 1150: 1146: 1142: 1138: 1135:(3): 239–55. 1134: 1130: 1123: 1115: 1111: 1107: 1103: 1099: 1095: 1088: 1080: 1076: 1069: 1061: 1057: 1053: 1049: 1046:(4): 427–33. 1045: 1041: 1037: 1030: 1022: 1018: 1014: 1010: 1006: 1002: 995: 987: 983: 979: 975: 971: 967: 963: 956: 948: 944: 940: 936: 932: 928: 925:(3): 417–33. 924: 920: 913: 911: 909: 900: 896: 892: 888: 884: 880: 873: 865: 861: 854: 846: 842: 838: 834: 830: 826: 822: 818: 814: 810: 803: 795: 789: 785: 778: 770: 764: 760: 753: 745: 741: 737: 733: 729: 725: 722:(6): 925–38. 721: 717: 710: 708: 706: 697: 693: 689: 685: 681: 677: 670: 668: 659: 655: 651: 647: 640: 632: 628: 624: 620: 616: 612: 605: 597: 593: 589: 585: 582:(8): 326–30. 581: 577: 570: 568: 559: 555: 551: 547: 544:(6): 957–75. 543: 539: 532: 530: 521: 517: 513: 509: 505: 501: 498:(1): 126–30. 497: 493: 486: 484: 475: 471: 467: 463: 460:(5): 652–61. 459: 455: 448: 446: 444: 442: 433: 429: 425: 421: 414: 410: 401: 398: 396: 393: 391: 388: 386: 383: 381: 378: 376: 373: 371: 368: 366: 363: 361: 358: 356: 353: 351: 348: 347: 341: 339: 338:no-take zones 335: 330: 321: 319: 315: 314:metacommunity 311: 306: 303: 293: 289: 287: 283: 279: 274: 257: 253: 252: 248: 245:Net importer 243: 242: 236: 234:Net importer 230: 229: 225: 223:Net importer 218: 214:or trap patch 211: 210: 207:Net exporter 205: 204: 198: 196:Net exporter 191: 189:Net exporter 184: 179: 178: 174: 171: 168: 166: 165: 159: 157: 153: 151: 147: 143: 138: 136: 132: 128: 124: 118: 116: 112: 106: 104: 100: 96: 90: 88: 87:(see Table 1) 83: 79: 75: 71: 67: 56: 54: 50: 46: 41: 35: 33: 29: 25: 21: 3222:Regime shift 3207:Macroecology 2940: 2928: 2924: 2864:Edge effects 2834:Biogeography 2779:Commensalism 2627:Biodiversity 2504:Allee effect 2243:kelp forests 2196:Example webs 2061:Detritivores 1900:Organotrophs 1880:Kinetotrophs 1832:Productivity 1673: 1669: 1652: 1648: 1615: 1611: 1594: 1590: 1573: 1569: 1526: 1522: 1489: 1485: 1434: 1430: 1420: 1411: 1407: 1364:(1): 55–65. 1361: 1357: 1347: 1302: 1298: 1288: 1258:(1): 50–58. 1255: 1251: 1245: 1212: 1208: 1198: 1171: 1167: 1157: 1132: 1128: 1122: 1097: 1093: 1087: 1074: 1068: 1043: 1039: 1029: 1004: 1000: 994: 972:(1): 45–52. 969: 965: 955: 922: 918: 882: 878: 872: 863: 859: 853: 812: 808: 802: 783: 777: 758: 752: 719: 715: 679: 675: 649: 645: 639: 614: 610: 604: 579: 575: 541: 537: 512:10.2307/5833 495: 491: 457: 453: 423: 419: 413: 331: 327: 324:Conservation 307: 299: 290: 275: 271: 254: 240: 239: 227: 226: 202: 201: 180:Source patch 169:Source–sink 158: 154: 145: 139: 134: 126: 119: 114: 107: 102: 91: 62: 53:conservation 36: 19: 18: 2859:Disturbance 2762:interaction 2584:Recruitment 2514:Depensation 2306:Copiotrophs 2177:Energy flow 2099:Lithotrophy 2043:Decomposers 2023:Planktivore 1998:Insectivore 1988:Heterotroph 1953:Bacterivore 1920:Phototrophs 1870:Chemotrophs 1842:Restoration 1792:Competition 1544:10261/50227 142:wood thrush 101:butterfly ( 74:immigration 55:decisions. 40:individuals 3282:Population 3266:Categories 3227:Sexecology 2804:Parasitism 2769:Antibiosis 2604:Resistance 2599:Resilience 2489:Population 2409:Camouflage 2361:Oligotroph 2276:Ascendency 2238:intertidal 2228:cold seeps 2182:Food chain 1983:Herbivores 1958:Carnivores 1885:Mixotrophs 1860:Autotrophs 1739:components 1007:: S50-66. 406:References 194:Attractive 187:Attractive 111:Costa Rica 82:emigration 66:BIDE rates 28:population 3132:Allometry 3086:Emergence 2814:Symbiosis 2799:Mutualism 2594:Stability 2499:Abundance 2311:Dominance 2269:Processes 2258:tide pool 2154:Food webs 2028:Predation 2013:Omnivores 1940:Consumers 1895:Mycotroph 1852:Producers 1797:Ecosystem 1762:Behaviour 1459:1438-3896 1408:Fisheries 1280:1600-0706 1237:266029513 885:: 121–5. 866:: 69–212. 809:Oecologia 135:E. editha 32:organisms 3187:Endolith 3116:Xerosere 3028:networks 2844:Ecocline 2390:Defense, 2066:Detritus 1968:Foraging 1837:Resource 1640:85652768 1553:18707324 1467:24276021 1414:: 16–19. 1388:27677529 1339:26047010 1299:PLOS ONE 1229:16761584 1114:92108810 1021:85125604 986:89682949 837:28310394 736:16615034 696:17249228 596:21237863 558:85253063 474:84423952 344:See also 334:reserves 123:blue tit 3177:Ecopath 2984:Habitat 2854:Ecotype 2849:Ecotone 2826:ecology 2824:Spatial 2760:Species 2620:Species 2491:ecology 2476:Ecology 2424:Mimicry 2392:counter 2336:f-ratio 2084:Archaea 1772:Biomass 1745:General 1737:Trophic 1729:Ecology 1678:Bibcode 1670:Ecology 1620:Bibcode 1591:Ecology 1561:1345605 1514:2383356 1494:Bibcode 1439:Bibcode 1366:Bibcode 1330:4457784 1307:Bibcode 1260:Bibcode 1209:Ecology 1176:Bibcode 1137:Bibcode 1060:4072271 1040:The Auk 947:3546763 927:Bibcode 887:Bibcode 845:7778352 817:Bibcode 744:8952958 676:Ecology 646:Ecology 619:Bibcode 611:Ecology 500:Bibcode 360:Ecology 286:fitness 221:Avoided 131:Corsica 49:patches 24:habitat 2208:Rivers 2104:Marine 1638:  1559:  1551:  1512:  1465:  1457:  1386:  1337:  1327:  1278:  1235:  1227:  1112:  1058:  1019:  984:  945:  843:  835:  790:  765:  742:  734:  694:  594:  556:  518:  472:  232:Either 80:, and 3125:Other 3026:Other 2979:Guild 2951:Niche 2203:Lakes 1636:S2CID 1557:S2CID 1510:S2CID 1463:S2CID 1252:Oikos 1233:S2CID 1110:S2CID 1056:JSTOR 1017:S2CID 982:S2CID 943:JSTOR 919:Oikos 841:S2CID 740:S2CID 554:S2CID 516:JSTOR 470:S2CID 302:niche 78:death 70:birth 2213:Soil 1549:PMID 1455:ISSN 1384:PMID 1335:PMID 1276:ISSN 1225:PMID 833:PMID 788:ISBN 763:ISBN 732:PMID 692:PMID 592:PMID 520:5833 1686:doi 1657:doi 1628:doi 1599:doi 1578:doi 1539:hdl 1531:doi 1527:158 1502:doi 1447:doi 1374:doi 1325:PMC 1315:doi 1268:doi 1217:doi 1184:doi 1145:doi 1102:doi 1048:doi 1009:doi 1005:137 974:doi 935:doi 895:doi 883:113 825:doi 724:doi 720:167 684:doi 654:doi 627:doi 584:doi 546:doi 542:148 508:doi 462:doi 458:132 428:doi 3268:: 2674:/ 2478:: 1735:: 1731:: 1684:. 1674:86 1672:. 1653:17 1651:. 1634:. 1626:. 1616:12 1614:. 1595:81 1593:. 1574:50 1572:. 1555:. 1547:. 1537:. 1525:. 1508:. 1500:. 1490:18 1488:. 1461:. 1453:. 1445:. 1435:59 1433:. 1429:. 1412:23 1410:. 1396:^ 1382:. 1372:. 1362:86 1360:. 1356:. 1333:. 1323:. 1313:. 1303:10 1301:. 1297:. 1274:. 1266:. 1256:93 1254:. 1231:. 1223:. 1213:87 1211:. 1207:. 1182:. 1170:. 1166:. 1143:. 1133:57 1131:. 1108:. 1098:35 1096:. 1054:. 1044:34 1042:. 1038:. 1015:. 1003:. 980:. 970:19 968:. 964:. 941:. 933:. 923:81 921:. 907:^ 893:. 881:. 862:. 839:. 831:. 823:. 813:52 811:. 738:. 730:. 718:. 704:^ 690:. 680:87 678:. 666:^ 650:80 648:. 625:. 615:85 613:. 590:. 580:11 578:. 566:^ 552:. 540:. 528:^ 514:. 506:. 494:. 482:^ 468:. 456:. 440:^ 424:28 422:. 89:. 76:, 72:, 34:. 2929:K 2927:/ 2925:r 2468:e 2461:t 2454:v 1721:e 1714:t 1707:v 1692:. 1688:: 1680:: 1663:. 1659:: 1642:. 1630:: 1622:: 1605:. 1601:: 1584:. 1580:: 1563:. 1541:: 1533:: 1516:. 1504:: 1496:: 1469:. 1449:: 1441:: 1390:. 1376:: 1368:: 1341:. 1317:: 1309:: 1282:. 1270:: 1262:: 1239:. 1219:: 1192:. 1186:: 1178:: 1172:7 1151:. 1147:: 1139:: 1116:. 1104:: 1062:. 1050:: 1023:. 1011:: 988:. 976:: 949:. 937:: 929:: 901:. 897:: 889:: 864:2 847:. 827:: 819:: 796:. 771:. 746:. 726:: 698:. 686:: 660:. 656:: 633:. 629:: 621:: 598:. 586:: 560:. 548:: 522:. 510:: 502:: 496:1 476:. 464:: 434:. 430:: 144:( 125:( 68:(

Index

habitat
population
organisms
individuals
ecological trap
patches
conservation
BIDE rates
birth
immigration
death
emigration
(see Table 1)
carrying capacity
Edith's checkerspot
Costa Rica
blue tit
Corsica
wood thrush
Breeding Bird Survey
ecological traps
ideal free distribution
fitness
niche
metapopulations
metacommunity
ecological trap theory
reserves
no-take zones
Conservation biology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.