Knowledge

Stress relaxation

Source đź“ť

71: 63:, which describes how polymers strain under constant stress. Experimentally, stress relaxation is determined by step strain experiments, i.e. by applying a sudden one-time strain and measuring the build-up and subsequent relaxation of stress in the material (see figure), in either extensional or shear 43:
Since relaxation relieves the state of stress, it has the effect of also relieving the equipment reactions. Thus, relaxation has the same effect as cold springing, except it occurs over a longer period of time. The amount of relaxation which takes place is a function of time, temperature and stress
89:
places these elements in parallel. Although the Maxwell model is good at predicting stress relaxation, it is fairly poor at predicting creep. On the other hand, the Voigt model is good at predicting creep but rather poor at predicting stress relaxation (see
545: 406: 35:
generated in the structure. This is primarily due to keeping the structure in a strained condition for some finite interval of time hence causing some amount of plastic strain. This should not be confused with
238: 81:
materials have the properties of both viscous and elastic materials and can be modeled by combining elements that represent these characteristics. One viscoelastic model, called the
415: 268: 565: 596: 286: 105:
are stress relaxing, and the kinetics of stress relaxation have been recognized as an important mechanical cue that affects the migration,
131: 762: 682: 85:
predicts behavior akin to a spring (elastic element) being in series with a dashpot (viscous element), while the
694:
Chaudhuri, Ovijit; Cooper-White, Justin; Janmey, Paul A.; Mooney, David J.; Shenoy, Vivek B. (27 August 2020).
540:{\displaystyle \sigma (t)={\frac {1}{b}}\cdot \log {\frac {10^{\alpha }(t-t_{n})+1}{10^{\alpha }(t-t_{n})-1}}} 643: 780: 658: 86: 110: 246: 32: 44:
level, thus the actual effect it has on the system is not precisely known, but can be bounded.
74:
a) Applied step strain and b) induced stress as functions of time for a viscoelastic material.
550: 59:
fashion. This nonlinearity is described by both stress relaxation and a phenomenon known as
707: 574: 98: 8: 633: 60: 37: 711: 728: 695: 106: 28: 758: 733: 678: 20: 723: 715: 653: 648: 102: 82: 52: 48: 638: 91: 78: 281:
Vegener et al. use a power series to describe stress relaxation in polyamides:
114: 56: 719: 602:
The following non-material parameters all affect stress relaxation in polymers
774: 410:
To model stress relaxation in glass materials Dowvalter uses the following:
737: 51:
under constant strain. Because they are viscoelastic, polymers behave in a
40:, which is a constant state of stress with an increasing amount of strain. 401:{\displaystyle \sigma (t)=\sum _{m,n}^{}{A_{mn}^{m}(\epsilon '_{0})^{n}}} 696:"Effects of extracellular matrix viscoelasticity on cellular behaviour" 757:
T.M. Junisbekov. "Stress Relaxation in Viscoelastic Materials" (2003)
70: 64: 121:
Stress relaxation calculations can differ for different materials:
693: 677:
Meyers and Chawla. "Mechanical Behavior of Materials" (1999)
270:
is the maximum stress at the time the loading was removed (
614:
Temperature (isothermal vs non-isothermal conditions)
577: 553: 418: 289: 249: 134: 233:{\displaystyle \sigma (t)={\frac {\sigma _{0}}{1-}}} 590: 559: 539: 400: 262: 232: 47:Stress relaxation describes how polymers relieve 772: 125:To generalize, Obukhov uses power dependencies: 753: 751: 749: 747: 744: 727: 69: 773: 671: 13: 14: 792: 598:depend on processing conditions. 687: 525: 506: 485: 466: 428: 422: 388: 371: 362: 358: 346: 337: 299: 293: 224: 221: 202: 199: 178: 169: 144: 138: 1: 664: 608:Magnitude of initial loading 27:is the observed decrease in 16:Materials science phenomenon 7: 644:Standard Linear Solid Model 627: 567:is a material constant and 263:{\displaystyle \sigma _{0}} 10: 797: 720:10.1038/s41586-020-2612-2 278:is a material parameter. 560:{\displaystyle \alpha } 592: 561: 541: 402: 322: 264: 234: 75: 659:Kelvin–Voigt material 593: 591:{\displaystyle t_{n}} 562: 542: 403: 305: 265: 235: 73: 575: 551: 416: 287: 247: 132: 99:extracellular matrix 712:2020Natur.584..535C 386: 588: 557: 537: 398: 374: 260: 230: 76: 781:Materials science 706:(7822): 535–546. 623:Long-term storage 620:Friction and wear 535: 442: 228: 25:stress relaxation 21:materials science 788: 765: 755: 742: 741: 731: 691: 685: 675: 654:Maxwell material 649:Burgers material 611:Speed of loading 597: 595: 594: 589: 587: 586: 566: 564: 563: 558: 546: 544: 543: 538: 536: 534: 524: 523: 505: 504: 494: 484: 483: 465: 464: 454: 443: 435: 407: 405: 404: 399: 397: 396: 395: 382: 370: 369: 336: 335: 321: 319: 269: 267: 266: 261: 259: 258: 239: 237: 236: 231: 229: 227: 220: 219: 198: 197: 188: 161: 160: 151: 796: 795: 791: 790: 789: 787: 786: 785: 771: 770: 769: 768: 756: 745: 692: 688: 676: 672: 667: 639:Viscoelasticity 630: 582: 578: 576: 573: 572: 552: 549: 548: 519: 515: 500: 496: 495: 479: 475: 460: 456: 455: 453: 434: 417: 414: 413: 391: 387: 378: 365: 361: 328: 324: 323: 320: 309: 288: 285: 284: 254: 250: 248: 245: 244: 209: 205: 193: 189: 184: 162: 156: 152: 150: 133: 130: 129: 111:differentiation 92:viscoelasticity 31:in response to 17: 12: 11: 5: 794: 784: 783: 767: 766: 743: 686: 669: 668: 666: 663: 662: 661: 656: 651: 646: 641: 636: 629: 626: 625: 624: 621: 618: 617:Loading medium 615: 612: 609: 585: 581: 556: 533: 530: 527: 522: 518: 514: 511: 508: 503: 499: 493: 490: 487: 482: 478: 474: 471: 468: 463: 459: 452: 449: 446: 441: 438: 433: 430: 427: 424: 421: 394: 390: 385: 381: 377: 373: 368: 364: 360: 357: 354: 351: 348: 345: 342: 339: 334: 331: 327: 318: 315: 312: 308: 304: 301: 298: 295: 292: 257: 253: 241: 240: 226: 223: 218: 215: 212: 208: 204: 201: 196: 192: 187: 183: 180: 177: 174: 171: 168: 165: 159: 155: 149: 146: 143: 140: 137: 15: 9: 6: 4: 3: 2: 793: 782: 779: 778: 776: 764: 763:1-57808-258-7 760: 754: 752: 750: 748: 739: 735: 730: 725: 721: 717: 713: 709: 705: 701: 697: 690: 684: 683:0-13-262817-1 680: 674: 670: 660: 657: 655: 652: 650: 647: 645: 642: 640: 637: 635: 632: 631: 622: 619: 616: 613: 610: 607: 606: 605: 603: 599: 583: 579: 570: 554: 531: 528: 520: 516: 512: 509: 501: 497: 491: 488: 480: 476: 472: 469: 461: 457: 450: 447: 444: 439: 436: 431: 425: 419: 411: 408: 392: 383: 379: 375: 366: 355: 352: 349: 343: 340: 332: 329: 325: 316: 313: 310: 306: 302: 296: 290: 282: 279: 277: 273: 255: 251: 216: 213: 210: 206: 194: 190: 185: 181: 175: 172: 166: 163: 157: 153: 147: 141: 135: 128: 127: 126: 123: 122: 118: 116: 112: 108: 107:proliferation 104: 100: 95: 93: 88: 84: 83:Maxwell model 80: 72: 68: 66: 62: 58: 54: 50: 45: 41: 39: 34: 30: 26: 22: 703: 699: 689: 673: 601: 600: 568: 412: 409: 283: 280: 275: 271: 242: 124: 120: 119: 113:of embedded 96: 79:Viscoelastic 77: 46: 42: 24: 18: 87:Voigt model 57:non-Hookean 665:References 555:α 529:− 513:− 502:α 473:− 462:α 451:⁡ 445:⋅ 420:σ 376:ϵ 344:⁡ 307:∑ 291:σ 252:σ 214:− 195:∗ 176:− 167:− 154:σ 136:σ 101:and most 53:nonlinear 775:Category 738:32848221 628:See also 384:′ 65:rheology 729:7676152 708:Bibcode 274:), and 103:tissues 761:  736:  726:  700:Nature 681:  547:where 243:where 109:, and 49:stress 33:strain 29:stress 634:Creep 115:cells 61:creep 38:creep 759:ISBN 734:PMID 679:ISBN 571:and 97:The 724:PMC 716:doi 704:584 448:log 94:). 19:In 777:: 746:^ 732:. 722:. 714:. 702:. 698:. 604:: 498:10 458:10 341:ln 272:t* 117:. 67:. 55:, 23:, 740:. 718:: 710:: 584:n 580:t 569:b 532:1 526:) 521:n 517:t 510:t 507:( 492:1 489:+ 486:) 481:n 477:t 470:t 467:( 440:b 437:1 432:= 429:) 426:t 423:( 393:n 389:) 380:0 372:( 367:m 363:] 359:) 356:t 353:+ 350:1 347:( 338:[ 333:n 330:m 326:A 317:n 314:, 311:m 303:= 300:) 297:t 294:( 276:n 256:0 225:] 222:) 217:n 211:1 207:1 203:( 200:) 191:t 186:/ 182:t 179:( 173:1 170:[ 164:1 158:0 148:= 145:) 142:t 139:(

Index

materials science
stress
strain
creep
stress
nonlinear
non-Hookean
creep
rheology

Viscoelastic
Maxwell model
Voigt model
viscoelasticity
extracellular matrix
tissues
proliferation
differentiation
cells
Creep
Viscoelasticity
Standard Linear Solid Model
Burgers material
Maxwell material
Kelvin–Voigt material
ISBN
0-13-262817-1
"Effects of extracellular matrix viscoelasticity on cellular behaviour"
Bibcode
2020Natur.584..535C

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑