Knowledge

Superconducting coherence length

Source đź“ť

125: 487: 386: 794: 836: 722: 230: 655: 412:, it is equivalent to the characteristic exponent describing a recovery of the order parameter away from a perturbation in the theory of the second order phase transitions. 410: 257: 157: 742: 685: 619: 585: 510: 565: 307: 181: 42: 534: 280: 621:
cm. The electron near or at the Fermi surface moving through the lattice of a metal produces behind itself an attractive potential of range of the order of
1289: 907:
Victor F. Weisskopf (1979). The Formation of Cooper Pairs and the Nature of Superconducting Currents, CERN 79-12 (Yellow Report), December 1979
591:. The superconducting coherence length is a measure of the size of a Cooper pair (distance between the two electrons) and is of the order of 959: 1022: 61: 917: 429: 312: 892: 160: 1381: 1119: 997: 1229: 1317: 755: 1234: 952: 1017: 987: 867: 803: 1358: 1210: 1154: 1129: 687:
cm. For a very authoritative explanation based on physical intuition see the CERN article by V.F. Weisskopf.
1260: 1189: 693: 186: 1205: 1124: 416: 1412: 1312: 1307: 992: 945: 52: 1265: 1012: 624: 1048: 745: 588: 1391: 1250: 1182: 1099: 513: 391: 235: 48:), is the characteristic exponent of the variations of the density of superconducting component. 133: 1302: 1275: 1255: 1177: 797: 727: 1172: 841:
In strong-coupling, anisotropic and multi-component theories these expressions are modified.
749: 660: 594: 570: 495: 1376: 1332: 543: 285: 166: 27: 8: 1363: 1114: 1074: 519: 265: 1139: 968: 888: 863: 423:
of isotropic s-wave superconductor it is related to characteristic Cooper pair size:
17: 1348: 1322: 1094: 1069: 1002: 1371: 1104: 1109: 1053: 1043: 1007: 1406: 537: 1144: 1134: 1089: 1084: 1270: 1079: 982: 420: 51:
The superconducting coherence length is one of two parameters in the
937: 1297: 120:{\displaystyle \xi ={\sqrt {\frac {\hbar ^{2}}{2m|\alpha (T)|}}}} 1353: 1327: 482:{\displaystyle \xi _{BCS}={\frac {\hbar v_{f}}{\pi \Delta }}} 381:{\displaystyle \xi (T)\propto (1-T/T_{c})^{-{\frac {1}{2}}}} 1386: 806: 758: 730: 696: 663: 627: 597: 573: 546: 522: 498: 432: 394: 315: 288: 268: 238: 189: 169: 136: 64: 30: 830: 788: 736: 716: 679: 649: 613: 579: 559: 528: 504: 481: 404: 380: 301: 274: 251: 224: 175: 151: 119: 36: 887:. New York: Oxford university press. p. 62. 860:Introduction to Superconductivity, Second Edition 1404: 885:Superconductivity, Superfluids and Condensates 282:near the superconducting critical temperature 953: 789:{\displaystyle 0<\kappa <1/{\sqrt {2}}} 748:, is known as the Ginzburg–Landau parameter. 262:In Landau mean-field theory, at temperatures 960: 946: 876: 831:{\displaystyle \kappa >1/{\sqrt {2}}} 657:cm, the lattice distance being of order 536:is the mass of a Cooper pair (twice the 857: 1405: 882: 851: 55:of superconductivity. It is given by: 967: 941: 717:{\displaystyle \kappa =\lambda /\xi } 419:, for example in the weak-coupling 225:{\displaystyle \alpha _{0}(T-T_{c})} 13: 574: 473: 14: 1424: 22:superconducting coherence length 650:{\displaystyle 3\times 10^{-6}} 910: 901: 359: 331: 325: 319: 219: 200: 146: 140: 109: 105: 99: 92: 1: 918:"Superfluid States of Matter" 862:. New York, NY: McGraw-Hill. 844: 7: 567:is the Fermi velocity, and 405:{\displaystyle {\sqrt {2}}} 252:{\displaystyle \alpha _{0}} 10: 1429: 1290:Technological applications 589:superconducting energy gap 152:{\displaystyle \alpha (T)} 1341: 1288: 1243: 1219: 1198: 1162: 1153: 1062: 1032:Characteristic parameters 1031: 975: 1049:London penetration depth 746:London penetration depth 737:{\displaystyle \lambda } 161:Ginzburg–Landau equation 1342:List of superconductors 1220:By critical temperature 798:type-II superconductors 680:{\displaystyle 10^{-8}} 614:{\displaystyle 10^{-4}} 580:{\displaystyle \Delta } 514:reduced Planck constant 883:Annett, James (2004). 832: 790: 750:Type-I superconductors 738: 718: 681: 651: 615: 581: 561: 530: 506: 505:{\displaystyle \hbar } 483: 406: 382: 303: 276: 253: 226: 177: 159:is a parameter in the 153: 121: 53:Ginzburg–Landau theory 38: 988:Bean's critical state 833: 791: 739: 719: 682: 652: 616: 582: 562: 560:{\displaystyle v_{f}} 531: 507: 484: 407: 388:. Up to a factor of 383: 304: 302:{\displaystyle T_{c}} 277: 254: 227: 178: 176:{\displaystyle \psi } 154: 122: 39: 24:, usually denoted as 1163:By magnetic response 858:Tinkham, M. (1996). 804: 756: 728: 694: 661: 625: 595: 571: 544: 520: 496: 430: 392: 313: 286: 266: 236: 187: 167: 134: 62: 37:{\displaystyle \xi } 28: 1115:persistent currents 1100:Little–Parks effect 1075:Andreev reflection 1070:Abrikosov vortices 828: 786: 734: 714: 677: 647: 611: 577: 557: 526: 502: 479: 402: 378: 299: 272: 249: 222: 173: 149: 117: 34: 1413:Superconductivity 1400: 1399: 1318:quantum computing 1284: 1283: 1140:superdiamagnetism 969:Superconductivity 894:978-0-19-850756-7 826: 784: 529:{\displaystyle m} 477: 400: 374: 275:{\displaystyle T} 115: 114: 44:(Greek lowercase 18:superconductivity 1420: 1349:bilayer graphene 1323:Rutherford cable 1235:room temperature 1230:high temperature 1160: 1159: 1120:proximity effect 1095:Josephson effect 1039:coherence length 962: 955: 948: 939: 938: 932: 931: 929: 928: 914: 908: 905: 899: 898: 880: 874: 873: 855: 837: 835: 834: 829: 827: 822: 820: 795: 793: 792: 787: 785: 780: 778: 743: 741: 740: 735: 723: 721: 720: 715: 710: 686: 684: 683: 678: 676: 675: 656: 654: 653: 648: 646: 645: 620: 618: 617: 612: 610: 609: 586: 584: 583: 578: 566: 564: 563: 558: 556: 555: 535: 533: 532: 527: 511: 509: 508: 503: 488: 486: 485: 480: 478: 476: 468: 467: 466: 453: 448: 447: 415:In some special 411: 409: 408: 403: 401: 396: 387: 385: 384: 379: 377: 376: 375: 367: 357: 356: 347: 308: 306: 305: 300: 298: 297: 281: 279: 278: 273: 258: 256: 255: 250: 248: 247: 231: 229: 228: 223: 218: 217: 199: 198: 182: 180: 179: 174: 158: 156: 155: 150: 126: 124: 123: 118: 116: 113: 112: 95: 83: 82: 73: 72: 43: 41: 40: 35: 1428: 1427: 1423: 1422: 1421: 1419: 1418: 1417: 1403: 1402: 1401: 1396: 1367: 1337: 1280: 1239: 1226:low temperature 1215: 1194: 1149: 1105:Meissner effect 1058: 1054:Silsbee current 1027: 993:Ginzburg–Landau 971: 966: 936: 935: 926: 924: 916: 915: 911: 906: 902: 895: 881: 877: 870: 856: 852: 847: 821: 816: 805: 802: 801: 800:are those with 779: 774: 757: 754: 753: 752:are those with 729: 726: 725: 706: 695: 692: 691: 668: 664: 662: 659: 658: 638: 634: 626: 623: 622: 602: 598: 596: 593: 592: 572: 569: 568: 551: 547: 545: 542: 541: 521: 518: 517: 497: 494: 493: 469: 462: 458: 454: 452: 437: 433: 431: 428: 427: 395: 393: 390: 389: 366: 362: 358: 352: 348: 343: 314: 311: 310: 293: 289: 287: 284: 283: 267: 264: 263: 259:is a constant. 243: 239: 237: 234: 233: 213: 209: 194: 190: 188: 185: 184: 168: 165: 164: 135: 132: 131: 108: 91: 84: 78: 74: 71: 63: 60: 59: 29: 26: 25: 12: 11: 5: 1426: 1416: 1415: 1398: 1397: 1395: 1394: 1389: 1384: 1379: 1374: 1369: 1365: 1361: 1356: 1351: 1345: 1343: 1339: 1338: 1336: 1335: 1330: 1325: 1320: 1315: 1310: 1305: 1303:electromagnets 1300: 1294: 1292: 1286: 1285: 1282: 1281: 1279: 1278: 1273: 1268: 1263: 1258: 1253: 1247: 1245: 1244:By composition 1241: 1240: 1238: 1237: 1232: 1227: 1223: 1221: 1217: 1216: 1214: 1213: 1211:unconventional 1208: 1202: 1200: 1199:By explanation 1196: 1195: 1193: 1192: 1187: 1186: 1185: 1180: 1175: 1166: 1164: 1157: 1155:Classification 1151: 1150: 1148: 1147: 1142: 1137: 1132: 1127: 1122: 1117: 1112: 1107: 1102: 1097: 1092: 1087: 1082: 1077: 1072: 1066: 1064: 1060: 1059: 1057: 1056: 1051: 1046: 1044:critical field 1041: 1035: 1033: 1029: 1028: 1026: 1025: 1020: 1015: 1013:Mattis–Bardeen 1010: 1005: 1000: 998:Kohn–Luttinger 995: 990: 985: 979: 977: 973: 972: 965: 964: 957: 950: 942: 934: 933: 909: 900: 893: 875: 868: 849: 848: 846: 843: 825: 819: 815: 812: 809: 783: 777: 773: 770: 767: 764: 761: 733: 713: 709: 705: 702: 699: 674: 671: 667: 644: 641: 637: 633: 630: 608: 605: 601: 576: 554: 550: 525: 501: 490: 489: 475: 472: 465: 461: 457: 451: 446: 443: 440: 436: 417:limiting cases 399: 373: 370: 365: 361: 355: 351: 346: 342: 339: 336: 333: 330: 327: 324: 321: 318: 296: 292: 271: 246: 242: 221: 216: 212: 208: 205: 202: 197: 193: 183:with the form 172: 148: 145: 142: 139: 128: 127: 111: 107: 104: 101: 98: 94: 90: 87: 81: 77: 70: 67: 33: 9: 6: 4: 3: 2: 1425: 1414: 1411: 1410: 1408: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1346: 1344: 1340: 1334: 1331: 1329: 1326: 1324: 1321: 1319: 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1295: 1293: 1291: 1287: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1261:heavy fermion 1259: 1257: 1254: 1252: 1249: 1248: 1246: 1242: 1236: 1233: 1231: 1228: 1225: 1224: 1222: 1218: 1212: 1209: 1207: 1204: 1203: 1201: 1197: 1191: 1190:ferromagnetic 1188: 1184: 1181: 1179: 1176: 1174: 1171: 1170: 1168: 1167: 1165: 1161: 1158: 1156: 1152: 1146: 1143: 1141: 1138: 1136: 1135:supercurrents 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1067: 1065: 1061: 1055: 1052: 1050: 1047: 1045: 1042: 1040: 1037: 1036: 1034: 1030: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 981: 980: 978: 974: 970: 963: 958: 956: 951: 949: 944: 943: 940: 923: 919: 913: 904: 896: 890: 886: 879: 871: 865: 861: 854: 850: 842: 839: 823: 817: 813: 810: 807: 799: 781: 775: 771: 768: 765: 762: 759: 751: 747: 731: 711: 707: 703: 700: 697: 688: 672: 669: 665: 642: 639: 635: 631: 628: 606: 603: 599: 590: 552: 548: 539: 538:electron mass 523: 515: 499: 470: 463: 459: 455: 449: 444: 441: 438: 434: 426: 425: 424: 422: 418: 413: 397: 371: 368: 363: 353: 349: 344: 340: 337: 334: 328: 322: 316: 294: 290: 269: 260: 244: 240: 214: 210: 206: 203: 195: 191: 170: 162: 143: 137: 102: 96: 88: 85: 79: 75: 68: 65: 58: 57: 56: 54: 49: 47: 31: 23: 19: 1271:oxypnictides 1206:conventional 1145:superstripes 1090:flux pumping 1085:flux pinning 1080:Cooper pairs 1038: 925:. Retrieved 921: 912: 903: 884: 878: 859: 853: 840: 689: 491: 414: 261: 129: 50: 45: 21: 15: 1130:SU(2) color 1110:Homes's law 1266:iron-based 1125:reentrance 927:2019-04-02 869:0486435032 845:References 690:The ratio 421:BCS theory 1063:Phenomena 922:CRC Press 808:κ 766:κ 732:λ 712:ξ 704:λ 698:κ 670:− 640:− 632:× 604:− 575:Δ 500:ℏ 474:Δ 471:π 456:ℏ 435:ξ 364:− 338:− 329:∝ 317:ξ 241:α 207:− 192:α 171:ψ 138:α 97:α 76:ℏ 66:ξ 32:ξ 1407:Category 1298:cryotron 1256:cuprates 1251:covalent 1008:Matthias 976:Theories 724:, where 232:, where 1392:more... 1276:organic 744:is the 587:is the 512:is the 1169:Types 1003:London 891:  866:  796:, and 492:where 130:where 20:, the 1382:TBCCO 1354:BSCCO 1333:wires 1328:SQUID 1387:YBCO 1377:NbTi 1372:NbSn 1359:LBCO 889:ISBN 864:ISBN 811:> 769:< 763:< 163:for 1364:MgB 1313:NMR 1308:MRI 1183:1.5 1023:WHH 1018:RVB 983:BCS 540:), 16:In 1409:: 1178:II 920:. 838:. 666:10 636:10 600:10 516:, 309:, 46:xi 1366:2 1173:I 961:e 954:t 947:v 930:. 897:. 872:. 824:2 818:/ 814:1 782:2 776:/ 772:1 760:0 708:/ 701:= 673:8 643:6 629:3 607:4 553:f 549:v 524:m 464:f 460:v 450:= 445:S 442:C 439:B 398:2 372:2 369:1 360:) 354:c 350:T 345:/ 341:T 335:1 332:( 326:) 323:T 320:( 295:c 291:T 270:T 245:0 220:) 215:c 211:T 204:T 201:( 196:0 147:) 144:T 141:( 110:| 106:) 103:T 100:( 93:| 89:m 86:2 80:2 69:=

Index

superconductivity
Ginzburg–Landau theory
Ginzburg–Landau equation
limiting cases
BCS theory
reduced Planck constant
electron mass
superconducting energy gap
London penetration depth
Type-I superconductors
type-II superconductors
ISBN
0486435032
ISBN
978-0-19-850756-7
"Superfluid States of Matter"
v
t
e
Superconductivity
BCS
Bean's critical state
Ginzburg–Landau
Kohn–Luttinger
London
Matthias
Mattis–Bardeen
RVB
WHH
coherence length

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑