Knowledge

Supramolecular chemistry

Source 📝

228: 179: 144: 160: 194: 209: 2326: 2235: 2144: 2080: 132: 3888: 3912: 883:. Non-covalent bonds between the reactants and a "template" hold the reactive sites of the reactants close together, facilitating the desired chemistry. This technique is particularly useful for situations where the desired reaction conformation is thermodynamically or kinetically unlikely, such as in the preparation of large macrocycles. This pre-organization also serves purposes such as minimizing side reactions, lowering the 3924: 3900: 65:, provided that the electronic coupling strength remains small relative to the energy parameters of the component. While traditional chemistry concentrates on the covalent bond, supramolecular chemistry examines the weaker and reversible non-covalent interactions between molecules. These forces include hydrogen bonding, 770:
In that example a macrocyclic ring with 4 protonated nitrogen atoms encapsulates a chloride anion; illustrations of ITC data and a titration curve are reproduced in Steed&Atwood. (pp 15–16) The value of the equilibrium constant and the stoichiometry of the species formed were found to be strongly
1390:
Design based on supramolecular chemistry has led to numerous applications in the creation of functional biomaterials and therapeutics. Supramolecular biomaterials afford a number of modular and generalizable platforms with tunable mechanical, chemical and biological properties. These include systems
902:
consist of molecules that are linked only as a consequence of their topology. Some non-covalent interactions may exist between the different components (often those that were used in the construction of the system), but covalent bonds do not. Supramolecular chemistry, and template-directed synthesis
820:
Molecular self-assembly is the construction of systems without guidance or management from an outside source (other than to provide a suitable environment). The molecules are directed to assemble through non-covalent interactions. Self-assembly may be subdivided into intermolecular self-assembly (to
861:
Molecular recognition is the specific binding of a guest molecule to a complementary host molecule to form a host–guest complex. Often, the definition of which species is the "host" and which is the "guest" is arbitrary. The molecules are able to identify each other using non-covalent interactions.
963:
describes a process by which a host is constructed from small molecules using a suitable molecular species as a template. After construction, the template is removed leaving only the host. The template for host construction may be subtly different from the guest that the finished host binds to. In
278:
occurred when it was realized that there are two separate strands of nucleotides connected through hydrogen bonds. The use of non-covalent bonds is essential to replication because they allow the strands to be separated and used to template new double stranded DNA. Concomitantly, chemists began to
1008:
Supramolecular systems are rarely designed from first principles. Rather, chemists have a range of well-studied structural and functional building blocks that they are able to use to build up larger functional architectures. Many of these exist as whole families of similar units, from which the
1221:
The understanding of intermolecular interactions in solids has undergone a major renaissance via inputs from different experimental and computational methods in the last decade. This includes high-pressure studies in solids and "in situ" crystallization of compounds which are liquids at room
318:
for Chemistry which was awarded to Donald J. Cram, Jean-Marie Lehn, and Charles J. Pedersen in recognition of their work in this area. The development of selective "host–guest" complexes in particular, in which a host molecule recognizes and selectively binds a certain guest, was cited as an
891:. After the reaction has taken place, the template may remain in place, be forcibly removed, or may be "automatically" decomplexed on account of the different recognition properties of the reaction product. The template may be as simple as a single metal ion or may be extremely complex. 1222:
temperature along with the use of electron density analysis, crystal structure prediction and DFT calculations in solid state to enable a quantitative understanding of the nature, energetics and topological properties associated with such interactions in crystals.
1413:
Supramolecular chemistry has been used to demonstrate computation functions on a molecular scale. In many cases, photonic or chemical signals have been used in these components, but electrical interfacing of these units has also been shown by supramolecular
783:
have strong hydrogen bonding, electrostatic, and charge-transfer capabilities, and are therefore able to become involved in complex equilibria with the system, even breaking complexes completely. For this reason, the choice of solvent can be critical.
1853:
Janeta, Mateusz; John, Ɓukasz; Ejfler, Jolanta; Lis, Tadeusz; Szafert, SƂawomir (2016-08-02). "Multifunctional imine-POSS as uncommon 3D nanobuilding blocks for supramolecular hybrid materials: synthesis, structural characterization, and properties".
1134:
Supramolecular metallocycles are macrocyclic aggregates with metal ions in the ring, often formed from angular and linear modules. Common metallocycle shapes in these types of applications include triangles, squares, and pentagons, each bearing
346:
motifs became integrated into supramolecular systems in order to increase functionality, research into synthetic self-replicating system began, and work on molecular information processing devices began. The emerging science of
878:
Molecular recognition and self-assembly may be used with reactive species in order to pre-organize a system for a chemical reaction (to form one or more covalent bonds). It may be considered a special case of supramolecular
931:
covalent bonds are broken and formed in a reversible reaction under thermodynamic control. While covalent bonds are key to the process, the system is directed by non-covalent forces to form the lowest energy structures.
2843:
RodrĂ­guez-VĂĄzquez, Nuria; Fuertes, Alberto; AmorĂ­n, Manuel; Granja, Juan R. (2016). "Chapter 14. Bioinspired Artificial Sodium and Potassium Ion Channels". In Sigel, Astrid; Sigel, Helmut; Sigel, Roland K.O. (eds.).
310:
became active in synthesizing shape- and ion-selective receptors, and throughout the 1980s research in the area gathered a rapid pace with concepts such as mechanically interlocked molecular architectures emerging.
1335:
Supramolecular chemistry has found many applications, in particular molecular self-assembly processes have been applied to the development of new materials. Large structures can be readily accessed using
979:
are molecules or molecular assemblies that can perform functions such as linear or rotational movement, switching, and entrapment. These devices exist at the boundary between supramolecular chemistry and
376:
Supramolecular complexes are formed by non-covalent interactions between two chemical moieties, which can be described as an host and a guest. Most commonly, the interacting species are held together by
227: 1401:
has also made critical advances as a result of supramolecular chemistry providing encapsulation and targeted release mechanisms. In addition, supramolecular systems have been designed to disrupt
1340:
synthesis as they are composed of small molecules requiring fewer steps to synthesize. Thus most of the bottom-up approaches to nanotechnology are based on supramolecular chemistry. Many
691: 793: 1109:
are very useful in supramolecular chemistry, as they provide whole cavities that can completely surround guest molecules and may be chemically modified to fine-tune their properties.
432: 1162:
Many supramolecular systems require their components to have suitable spacing and conformations relative to each other, and therefore easily employed structural units are required.
1928: 193: 1826:
Schmitt, J. L.; Stadler, A. M.; Kyritsakas, N.; Lehn, J. M. (2003). "Helicity-Encoded Molecular Strands: Efficient Access by the Hydrazone Route and Structural Features".
143: 644: 2946: 944:
architectures can be used to learn about both the biological model and the synthetic implementation. Examples include photoelectrochemical systems, catalytic systems,
740: 717: 618: 595: 1382:
are also used in catalysis to create microenvironments suitable for reactions (or steps in reactions) to progress that is not possible to use on a macroscopic scale.
2157:
Daze, K. (2012). "Supramolecular hosts that recognize methyllysines and disrupt the interaction between a modified histone tail and its epigenetic reader protein".
1397:
Supramolecular chemistry is also important to the development of new pharmaceutical therapies by understanding the interactions at a drug binding site. The area of
1752:
Anderson, S.; Anderson, H. L.; Bashall, A.; McPartlin, M.; Sanders, J. K. M. (1995). "Assembly and Crystal Structure of a Photoactive Array of Five Porphyrins".
178: 159: 760: 259:
and host–guest chemistry. In the early twentieth century non-covalent bonds were understood in gradually more detail, with the hydrogen bond being described by
1394:
A supramolecular approach has been used extensively to create artificial ion channels for the transport of sodium and potassium ions into and out of cells.
1980:
Sessler, Jonathan L.; Gross, Dustin E.; Cho, Won-Seob; Lynch, Vincent M.; Schmidtchen, Franz P.; Bates, Gareth W.; Light, Mark E.; Gale, Philip A. (2006).
1362:
and catalysis. Non-covalent interactions are extremely important in catalysis, binding reactants into conformations suitable for reaction and lowering the
2248:
Lehn, J. M. (1990). "Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self-Organization".
290:
Eventually, chemists were able to take these concepts and apply them to synthetic systems. The breakthrough came in the 1960s with the synthesis of the
1690:
Day, A. I.; Blanch, R. J.; Arnold, A. P.; Lorenzo, S.; Lewis, G. R.; Dance, I. (2002). "A Cucurbituril-Based Gyroscane: A New Supramolecular Form".
307: 208: 2686: 1725:
Bravo, J. A.; Raymo, F. I. M.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. (1998). "High Yielding Template-Directed Syntheses of Rotaxanes".
899: 165: 105: 2765:
Choudhury, R. (2012). "Deep-Cavity Cavitand Octa Acid as a Hydrogen Donor: Photofunctionalization with Nitrenes Generated from Azidoadamantanes".
2983: 1150: 2637: 1738: 1120:, cucurbiturils and crown ethers are readily synthesized in large quantities, and are therefore convenient for use in supramolecular systems. 968:
interactions, but more complex systems also incorporate hydrogen bonding and other interactions to improve binding strength and specificity.
3084: 3089: 903:
in particular, is key to the efficient synthesis of the compounds. Examples of mechanically interlocked molecular architectures include
2556:
Functional Metallosupramolecular Materials, Editors: John George Hardy, Felix H Schacher, Royal Society of Chemistry, Cambridge 2015,
1391:
based on supramolecular assembly of peptides, host–guest macrocycles, high-affinity hydrogen bonding, and metal–ligand interactions.
2700: 131: 3067: 2412: 1703: 3111: 442: 2719: 2662: 1964: 1929:"Chemistry and Physics Nobels Hail Discoveries on Life and Superconductors; Three Share Prize for Synthesis of Vital Enzymes" 1535: 1026:
with dioxyarenes or diaminoarenes have been used extensively for the construction of mechanically interlocked systems and in
3123: 3062: 779:
The molecular environment around a supramolecular system is also of prime importance to its operation and stability. Many
2976: 1663:
Hasenknopf, B.; Lehn, J. M.; Kneisel, B. O.; Baum, G.; Fenske, D. (1996). "Self-Assembly of a Circular Double Helicate".
2699:
Schneider, H.-J. ( Ed.) (2012) Applications of Supramolecular Chemistry, CRC Press Taylor & Francis Boca Raton etc,
2895: 1315:
has been used as a route to produce modified enzymes, electrically contacted enzymes, and even photoswitchable enzymes.
1206:
can be used as scaffolds for the construction of complex systems and also for interfacing electrochemical systems with
3950: 2800:
Webber, Matthew J.; Appel, Eric A.; Meijer, E. W.; Langer, Robert (18 December 2015). "Supramolecular biomaterials".
2613: 763: 3928: 1402: 652: 1446:
have been demonstrated on a conceptual level. Even full-scale computations have been achieved by semi-synthetic
3807: 2969: 244: 17: 402: 3250: 3004: 1337: 270:
and other biological processes. For instance, the important breakthrough that allowed the elucidation of the
2894:
Bertrand, N.; Gauthier, M. A.; Bouvet, C. L.; Moreau, P.; Petitjean, A.; Leroux, J. C.; Leblond, J. (2011).
771:
solvent-dependent. With nitromethane solutions values of ΔH = 8.55 kJmol and ΔS = -9.1 JKmol were obtained.
116:
is crucial to understanding many biological processes that rely on these forces for structure and function.
1239:
have highly tunable photochemical and electrochemical activity as well as the potential to form complexes.
3527: 3014: 396:, will be in equilibrium with each other. In the simplest case, p=q=1, the equilibrium can be written as 3904: 3453: 3424: 3404: 3357: 2955: 928: 109: 2951: 3042: 1586:
Biedermann, F.; Schneider, H.J. (2016). "Experimental Binding Energies in Supramolecular Complexes".
916: 833:
and polypeptides). Molecular self-assembly also allows the construction of larger structures such as
271: 2531: 2325: 2234: 2143: 2079: 1249:
groups can change their shapes and properties, including binding properties, upon exposure to light.
3797: 3352: 1353: 1211: 997: 260: 185: 113: 101: 1783:-xylylenediammonium chloride and calcium hydrogensulfate adducts of the cavitand 'cucurbituril', C 940:
Many synthetic supramolecular systems are designed to copy functions of biological systems. These
3735: 3646: 3609: 3493: 3419: 3240: 3223: 3166: 2734: 1367: 1312: 822: 215: 89: 1321:
has been used both as a structural and as a functional unit in synthetic supramolecular systems.
322:
In the 1990s, supramolecular chemistry became even more sophisticated, with researchers such as
49:. The strength of the forces responsible for spatial organization of the system range from weak 3653: 3641: 3532: 3397: 3171: 3037: 2569:
Lee, S. J.; Lin, W. (2008). "Chiral Metallocycles: Rational Synthesis and Novel Applications".
1366:
energy of reaction. Template-directed synthesis is a special case of supramolecular catalysis.
1097:
properties in addition to the complexation itself. These units are used a great deal by nature.
623: 1622: 1078:
is of great utility in the construction of complex architectures of many individual molecules.
722: 699: 600: 577: 3802: 3699: 3684: 3614: 3537: 3369: 3319: 3228: 3153: 3052: 338:
developing sensors and methods of electronic and biological interfacing. During this period,
323: 256: 97: 78: 381:. The definition excludes compounds formed by electrostatic interactions, which are called 3792: 3747: 3522: 3342: 3272: 3029: 3009: 2809: 2392: 2352: 2288: 2197: 2106: 2042: 1492: 1443: 1055: 1019: 960: 438: 248: 66: 50: 2557: 445:
by any of the techniques described below. Some examples are shown in the following table.
251:
developed supramolecular chemistry's philosophical roots. In 1894, Fischer suggested that
8: 3815: 3769: 3694: 3667: 3565: 3547: 3500: 3438: 3334: 3314: 3183: 3178: 3079: 1982:"Calix[4]pyrrole as a Chloride Anion Receptor: Solvent and Countercation Effects" 1419: 1415: 1027: 985: 850: 826: 327: 295: 93: 74: 2813: 2356: 2292: 2201: 2110: 2046: 1496: 3955: 3892: 3858: 3720: 3689: 3570: 3512: 3210: 3193: 3188: 3143: 3106: 3096: 3057: 2926: 2680: 2654:
Understanding intermolecular interactions in the solid state: approaches and techniques
2631: 2459: 2434:
Zhang, S. (2003). "Fabrication of novel biomaterials through molecular self-assembly".
2309: 2300: 2276: 2218: 2209: 2185: 2127: 2118: 2094: 2063: 2054: 2030: 2006: 1981: 1431: 1252: 1246: 993: 801: 745: 70: 2490: 3911: 3873: 3838: 3821: 3759: 3677: 3672: 3600: 3585: 3555: 3476: 3443: 3414: 3409: 3384: 3374: 3294: 3282: 3161: 3074: 2918: 2882: 2857: 2825: 2782: 2715: 2668: 2658: 2619: 2609: 2586: 2451: 2416: 2370: 2314: 2223: 2132: 2068: 2011: 1960: 1879: 1871: 1707: 1645: 1603: 1568: 1531: 1508: 1459: 1203: 1193: 1048: 976: 884: 842: 571: 279:
recognize and study synthetic structures based on non-covalent interactions, such as
267: 2930: 2463: 3916: 3833: 3488: 3347: 3324: 3277: 3218: 2910: 2849: 2817: 2774: 2578: 2513: 2486: 2443: 2408: 2360: 2304: 2296: 2257: 2213: 2205: 2166: 2122: 2114: 2058: 2050: 2001: 1993: 1952: 1910: 1863: 1835: 1808: 1761: 1734: 1699: 1672: 1637: 1595: 1560: 1500: 1423: 1363: 1358:
A major application of supramolecular chemistry is the design and understanding of
1136: 949: 863: 809: 805: 339: 252: 38: 2914: 3774: 3730: 3725: 3619: 3595: 3429: 3392: 3245: 3235: 3118: 2853: 2396: 1260: 1094: 1045: 989: 888: 846: 303: 117: 1739:
10.1002/(SICI)1099-0690(199811)1998:11<2565::AID-EJOC2565>3.0.CO;2-8
1599: 1182:. The chemistry for creating and connecting these units is very well understood. 3658: 3636: 3631: 3626: 3581: 3577: 3560: 3517: 3448: 3309: 3304: 3289: 3101: 3019: 2029:
Ariga, K.; Hill, J. P.; Lee, M. V.; Vinu, A.; Charvet, R.; Acharya, S. (2008).
1464: 1435: 1341: 1301: 1236: 1086: 981: 945: 912: 348: 343: 335: 299: 54: 2672: 1812: 3944: 3863: 3752: 3708: 3433: 3267: 3262: 3255: 3133: 2623: 1914: 1875: 1398: 1242: 1185: 1146: 1090: 838: 378: 331: 284: 82: 62: 58: 2504:
Balzani, V.; GĂłmez-LĂłpez, M.; Stoddart, J. F. (1998). "Molecular Machines".
2339:
Li, F.; Clegg, J. K.; Lindoy, L. F.; MacQuart, R. B.; Meehan, G. V. (2011).
1504: 1304:, and has been used as the recognition motif to construct synthetic systems. 3740: 3590: 3505: 3481: 3471: 3463: 3364: 3299: 3198: 3047: 2958:– Thematic Series in the Open Access Beilstein Journal of Organic Chemistry 2922: 2861: 2829: 2786: 2753: 2652: 2590: 2455: 2420: 2388: 2374: 2318: 2261: 2227: 2136: 2072: 2015: 1883: 1839: 1765: 1711: 1676: 1649: 1641: 1607: 1572: 1564: 1447: 1427: 1142: 1113: 356: 200: 150: 1956: 1512: 3138: 2848:. Metal Ions in Life Sciences. Vol. 16. Springer. pp. 485–556. 2746:
Chemoresponsive Materials /Stimulation by Chemical and Biological Signals
1179: 1106: 1063: 1034: 479: 351:
also had a strong influence on the subject, with building blocks such as
315: 291: 2961: 1551:
Schneider, H. (2009). "Binding Mechanisms in Supramolecular Complexes".
3764: 2413:
10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
2365: 2340: 2170: 1867: 1704:
10.1002/1521-3773(20020118)41:2<275::AID-ANIE275>3.0.CO;2-M
1375: 1226: 1215: 1207: 1197: 1124: 1117: 1075: 1059: 1023: 984:, and prototypes have been demonstrated using supramolecular concepts. 941: 314:
The importance of supramolecular chemistry was established by the 1987
2778: 2582: 2517: 1997: 792: 3826: 3128: 2993: 2821: 1279: 1271: 1232: 1175: 1167: 1082: 1067: 880: 867: 830: 523: 455:
values for complexes of medicinal interest in methanol at 25 Â°C
360: 352: 233:
3D interpenetrated network in the crystal structure of silsesquioxane
34: 2842: 2186:"Chemistry and application of flexible porous coordination polymers" 2095:"Metallo-supramolecular modules as a paradigm for materials science" 1898: 3848: 2604:
Atwood, J. L.; Gokel, George W.; Barbour, Leonard J. (2017-06-22).
2447: 2277:"Electrochromic materials using mechanically interlocked molecules" 1379: 1371: 1359: 1275: 1189: 1171: 1131:
can be synthesised to provide more tailored recognition properties.
1128: 1038: 908: 904: 894: 834: 797: 780: 545: 501: 382: 219: 169: 46: 2031:"Challenges and breakthroughs in recent research on self-assembly" 266:
The use of these principles led to an increasing understanding of
3868: 1308: 1256: 280: 255:
take the form of a "lock and key", the fundamental principles of
42: 2477:
Dickert, F. (1999). "Molecular imprinting in chemical sensing".
1751: 88:
Important concepts advanced by supramolecular chemistry include
1297: 1293: 1071: 965: 243:
The existence of intermolecular forces was first postulated by
2735:
http://pubs.rsc.org/bookshop/collections/series?issn=2046-0066
199:
Host–guest complex with a p-xylylenediammonium bound within a
1439: 1264: 2896:"New pharmaceutical applications for macromolecular binders" 2893: 2341:"Metallosupramolecular self-assembly of a universal 3-ravel" 1825: 3843: 2387: 1442:-switchable units, and even by molecular motion. Synthetic 2503: 2183: 3853: 2712:
Supramolecular Chemistry: From Molecules to Nanomaterials
1662: 1318: 856: 275: 2947:
2D and 3D Models of Dodecahedrane and Cuneane Assemblies
1620: 1200:
offer nanometer-sized structure and encapsulation units.
1009:
analog with the exact desired properties can be chosen.
2799: 2558:
https://pubs.rsc.org/en/content/ebook/978-1-78262-267-3
1899:"Einfluss der Configuration auf die Wirkung der Enzyme" 1724: 1621:
Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. (2007).
1282:, are useful in supramolecular electrochemical devices. 1210:. Regular surfaces can be used for the construction of 862:
Key applications of this field are the construction of
120:
are often the inspiration for supramolecular research.
1689: 1000:
for the 'design and synthesis of molecular machines'.
2338: 748: 725: 702: 655: 626: 603: 580: 405: 1979: 1227:
Photo-chemically and electro-chemically active units
1166:
Commonly used spacers and connecting groups include
597:, for this reaction is the sum of an enthalpy term, 2651:Chopra, Deepak, Royal Society of Chemistry (2019). 2184:Bureekaew, S.; Shimomura, S.; Kitagawa, S. (2008). 1852: 1585: 2883:http://pubs.rsc.org/en/content/ebook/9781849735520 2603: 2250:Angewandte Chemie International Edition in English 1754:Angewandte Chemie International Edition in English 1665:Angewandte Chemie International Edition in English 754: 734: 711: 685: 638: 612: 589: 426: 2657:. London; Cambridge: Royal Society of Chemistry. 742:values can be determined at a given temperature, 388:In solution, the host H, guest G, and complexes H 298:. Following this work, other researchers such as 3942: 2028: 900:Mechanically interlocked molecular architectures 895:Mechanically interlocked molecular architectures 106:mechanically-interlocked molecular architectures 1145:are metallomacrocycles generated via a similar 1051:and other simple hydrogen bonding interactions. 1012: 1903:Berichte der Deutschen Chemischen Gesellschaft 1408: 873: 2977: 2274: 1947:Steed, Jonathan W.; Atwood, Jerry L. (2009). 1483:Lehn, J. (1993). "Supramolecular Chemistry". 1286: 1089:around metal ions gives access to catalytic, 922: 441:, K, for this reaction can, in principle, be 2685:: CS1 maint: multiple names: authors list ( 2281:Science and Technology of Advanced Materials 2190:Science and Technology of Advanced Materials 2099:Science and Technology of Advanced Materials 2035:Science and Technology of Advanced Materials 1139:that connect the pieces via "self-assembly." 1946: 686:{\displaystyle \Delta G=\Delta H-T\Delta S} 137:Self-assembly of a circular double helicate 2984: 2970: 2636:: CS1 maint: location missing publisher ( 1927:Schmeck, Harold M. Jr. (October 15, 1987) 1779:Freeman, W. A. (1984). "Structures of the 1292:The extremely strong complexation between 1041:is ubiquitous in supramolecular chemistry. 815: 2991: 2846:The Alkali Metal Ions: Their Role in Life 2764: 2710:Gale, P.A. and Steed, J.W. (eds.) (2012) 2606:Comprehensive Supramolecular Chemistry II 2364: 2308: 2217: 2126: 2062: 2005: 1550: 1405:that are important to cellular function. 2754:https://dx.doi.org/10.1039/9781782622420 2644: 1942: 1940: 964:its simplest form, imprinting uses only 825:), and intramolecular self-assembly (or 791: 427:{\displaystyle H+G\leftrightharpoons HG} 363:becoming involved in synthetic systems. 149:Host–guest complex within another host ( 2476: 2401:Angewandte Chemie International Edition 1896: 1778: 1692:Angewandte Chemie International Edition 1630:Angewandte Chemie International Edition 1330: 887:of the reaction, and producing desired 14: 3943: 2748:, Schneider, H.-J. ; Ed:, (2015) 2650: 2608:. Amsterdam, Netherlands. p. 46. 2568: 2399:(2002). "Dynamic Covalent Chemistry". 2391:; Cantrill, S. J.; Cousins, G. R. L.; 971: 857:Molecular recognition and complexation 2965: 2433: 2092: 2022: 1937: 1727:European Journal of Organic Chemistry 3899: 2247: 2156: 1525: 1482: 1422:has been accomplished by the use of 1344:are based on molecular recognition. 3923: 2562: 2532:"The Nobel Prize in Chemistry 2016" 2479:TrAC Trends in Analytical Chemistry 2275:Ikeda, T.; Stoddart, J. F. (2008). 1623:"Supramolecular Chemistry in Water" 1157: 24: 2733:, Royal Soc. Chem. Cambridge UK . 1020:pi-pi charge-transfer interactions 1003: 726: 703: 677: 665: 656: 630: 604: 581: 166:Mechanically-interlocked molecules 25: 3967: 2940: 2875:Smart Materials for Drug Delivery 371: 247:in 1873. However, Nobel laureate 3922: 3910: 3898: 3887: 3886: 2881:) Royal Soc. Chem. Cambridge UK 2767:The Journal of Organic Chemistry 2324: 2233: 2142: 2078: 1801:Acta Crystallographica Section B 764:Isothermal titration calorimetry 226: 207: 192: 177: 158: 142: 130: 2887: 2868: 2836: 2793: 2758: 2750:The Royal Society of Chemistry, 2739: 2724: 2704: 2693: 2597: 2550: 2524: 2497: 2470: 2427: 2381: 2332: 2268: 2241: 2177: 2150: 2086: 1973: 1921: 1890: 1846: 1819: 1772: 1325: 1263:, and therefore can be used in 766:. For an example, see Sessler. 1745: 1718: 1683: 1656: 1614: 1579: 1544: 1519: 1476: 1101: 935: 774: 415: 245:Johannes Diderik van der Waals 13: 1: 3251:Interface and colloid science 3005:Glossary of chemical formulae 2915:10.1016/j.jconrel.2011.04.027 2903:Journal of Controlled Release 2571:Accounts of Chemical Research 2506:Accounts of Chemical Research 2491:10.1016/S0165-9936(98)00123-X 1470: 955: 253:enzyme–substrate interactions 2854:10.1007/978-3-319-21756-7_14 2301:10.1088/1468-6996/9/1/014104 2210:10.1088/1468-6996/9/1/014108 2119:10.1088/1468-6996/9/1/014103 2055:10.1088/1468-6996/9/1/014109 1403:protein–protein interactions 1347: 1013:Synthetic recognition motifs 7: 3528:Bioorganometallic chemistry 3015:List of inorganic compounds 2956:Supramolecular Chemistry II 2731:Smart Materials Book Series 1600:10.1021/acs.chemrev.5b00583 1453: 1409:Data storage and processing 1385: 874:Template-directed synthesis 787: 10: 3972: 3454:Dynamic covalent chemistry 3425:Enantioselective synthesis 3405:Physical organic chemistry 3358:Organolanthanide chemistry 1553:Angew. Chem. Int. Ed. Engl 1351: 1287:Biologically-derived units 929:dynamic covalent chemistry 923:Dynamic covalent chemistry 366: 238: 123: 110:dynamic covalent chemistry 3882: 3785: 3546: 3462: 3383: 3333: 3209: 3152: 3043:Electroanalytical methods 3028: 3000: 1813:10.1107/S0108768184002354 1212:self-assembled monolayers 917:molecular Borromean rings 639:{\displaystyle T\Delta S} 114:non-covalent interactions 3951:Supramolecular chemistry 3798:Nobel Prize in Chemistry 3714:Supramolecular chemistry 3353:Organometallic chemistry 2952:Supramolecular Chemistry 1949:Supramolecular Chemistry 1915:10.1002/cber.18940270364 1528:Supramolecular Chemistry 1354:Supramolecular catalysis 998:Nobel Prize in Chemistry 735:{\displaystyle \Delta S} 712:{\displaystyle \Delta G} 613:{\displaystyle \Delta H} 590:{\displaystyle \Delta G} 319:important contribution. 272:double helical structure 33:refers to the branch of 31:Supramolecular chemistry 3736:Combinatorial chemistry 3647:Food physical chemistry 3610:Environmental chemistry 3494:Bioorthogonal chemistry 3420:Retrosynthetic analysis 3241:Chemical thermodynamics 3224:Spectroelectrochemistry 3167:Computational chemistry 1951:(2nd ed.). Wiley. 1505:10.1126/science.8511582 823:supramolecular assembly 816:Molecular self-assembly 90:molecular self-assembly 3808:of element discoveries 3654:Agricultural chemistry 3642:Carbohydrate chemistry 3533:Bioinorganic chemistry 3398:Alkane stereochemistry 3343:Coordination chemistry 3172:Mathematical chemistry 3038:Instrumental chemistry 2262:10.1002/anie.199013041 1840:10.1002/hlca.200390137 1828:Helvetica Chimica Acta 1766:10.1002/anie.199510961 1677:10.1002/anie.199618381 1642:10.1002/anie.200602815 1565:10.1002/anie.200802947 1037:binding with metal or 990:Sir J. Fraser Stoddart 849:, and is important to 812: 756: 736: 713: 687: 640: 614: 591: 428: 263:and Rodebush in 1920. 3803:Timeline of chemistry 3700:Post-mortem chemistry 3685:Clandestine chemistry 3615:Atmospheric chemistry 3538:Biophysical chemistry 3370:Solid-state chemistry 3320:Equilibrium chemistry 3229:Photoelectrochemistry 2538:. Nobel Media AB 2014 2345:Nature Communications 2093:Kurth, D. G. (2008). 1957:10.1002/9780470740880 1444:molecular logic gates 1368:Encapsulation systems 1270:Other units, such as 1267:and electrochemistry. 1259:have multiple stable 795: 757: 737: 714: 688: 641: 615: 592: 429: 324:James Fraser Stoddart 257:molecular recognition 98:molecular recognition 51:intermolecular forces 3793:History of chemistry 3748:Chemical engineering 3523:Bioorganic chemistry 3273:Structural chemistry 3010:List of biomolecules 2436:Nature Biotechnology 1897:Fischer, E. (1894). 1331:Materials technology 1149:approach from fused 1081:The complexation of 961:Molecular imprinting 746: 723: 700: 653: 624: 620:and an entropy term 601: 578: 439:equilibrium constant 403: 249:Hermann Emil Fischer 186:host–guest chemistry 102:host–guest chemistry 75:van der Waals forces 55:electrostatic charge 3816:The central science 3770:Ceramic engineering 3695:Forensic toxicology 3668:Chemistry education 3566:Radiation chemistry 3548:Interdisciplinarity 3501:Medicinal chemistry 3439:Fullerene chemistry 3315:Microwave chemistry 3184:Molecular mechanics 3179:Molecular modelling 2814:2016NatMa..15...13W 2357:2011NatCo...2..205L 2293:2008STAdM...9a4104I 2202:2008STAdM...9a4108B 2111:2008STAdM...9a4103G 2047:2008STAdM...9a4109A 1992:(37): 12281–12288. 1862:(31): 12312–12321. 1856:Dalton Transactions 1497:1993Sci...260.1762L 1416:signal transduction 1300:is instrumental in 1028:crystal engineering 986:Jean-Pierre Sauvage 972:Molecular machinery 851:crystal engineering 829:as demonstrated by 456: 330:and highly complex 328:molecular machinery 296:Charles J. Pedersen 27:Branch of chemistry 3859:Chemical substance 3721:Chemical synthesis 3690:Forensic chemistry 3571:Actinide chemistry 3513:Clinical chemistry 3194:Molecular geometry 3189:Molecular dynamics 3144:Elemental analysis 3097:Separation process 2366:10.1038/ncomms1208 2171:10.1039/C2SC20583A 1868:10.1039/C6DT02134D 1424:molecular switches 1253:Tetrathiafulvalene 994:Bernard L. Feringa 977:Molecular machines 813: 802:biological machine 752: 732: 709: 683: 636: 610: 587: 450: 424: 118:Biological systems 79:pi–pi interactions 71:hydrophobic forces 67:metal coordination 3938: 3937: 3874:Quantum mechanics 3839:Chemical compound 3822:Chemical reaction 3760:Materials science 3678:General chemistry 3673:Amateur chemistry 3601:Photogeochemistry 3586:Stellar chemistry 3556:Nuclear chemistry 3477:Molecular biology 3444:Polymer chemistry 3415:Organic synthesis 3410:Organic reactions 3375:Ceramic chemistry 3365:Cluster chemistry 3295:Chemical kinetics 3283:Molecular physics 3162:Quantum chemistry 3075:Mass spectrometry 2779:10.1021/jo301499t 2720:978-0-470-74640-0 2664:978-1-78801-079-5 2583:10.1021/ar700216n 2518:10.1021/ar970340y 2393:Sanders, J. K. M. 2256:(11): 1304–1319. 1998:10.1021/ja064012h 1966:978-0-470-51234-0 1760:(10): 1096–1099. 1733:(11): 2565–2571. 1671:(16): 1838–1840. 1537:978-3-527-29311-7 1526:Lehn, J. (1995). 1491:(5115): 1762–23. 1460:Organic chemistry 1432:photoisomerizable 1247:photoisomerizable 1137:functional groups 1044:The formation of 885:activation energy 864:molecular sensors 755:{\displaystyle T} 572:Gibbs free energy 566: 565: 437:The value of the 268:protein structure 94:molecular folding 16:(Redirected from 3963: 3926: 3925: 3914: 3902: 3901: 3890: 3889: 3834:Chemical element 3489:Chemical biology 3348:Magnetochemistry 3325:Mechanochemistry 3278:Chemical physics 3219:Electrochemistry 3124:Characterization 2986: 2979: 2972: 2963: 2962: 2935: 2934: 2900: 2891: 2885: 2877:: Complete Set ( 2872: 2866: 2865: 2840: 2834: 2833: 2822:10.1038/nmat4474 2802:Nature Materials 2797: 2791: 2790: 2773:(5): 1824–1832. 2762: 2756: 2743: 2737: 2728: 2722: 2708: 2702: 2697: 2691: 2690: 2684: 2676: 2648: 2642: 2641: 2635: 2627: 2601: 2595: 2594: 2566: 2560: 2554: 2548: 2547: 2545: 2543: 2528: 2522: 2521: 2501: 2495: 2494: 2474: 2468: 2467: 2431: 2425: 2424: 2385: 2379: 2378: 2368: 2336: 2330: 2329: 2328: 2322: 2312: 2272: 2266: 2265: 2245: 2239: 2238: 2237: 2231: 2221: 2181: 2175: 2174: 2159:Chemical Science 2154: 2148: 2147: 2146: 2140: 2130: 2090: 2084: 2083: 2082: 2076: 2066: 2026: 2020: 2019: 2009: 1986:J. Am. Chem. Soc 1977: 1971: 1970: 1944: 1935: 1925: 1919: 1918: 1909:(3): 2985–2993. 1894: 1888: 1887: 1850: 1844: 1843: 1834:(5): 1598–1624. 1823: 1817: 1816: 1776: 1770: 1769: 1749: 1743: 1742: 1722: 1716: 1715: 1687: 1681: 1680: 1660: 1654: 1653: 1627: 1618: 1612: 1611: 1594:(9): 5216–5300. 1583: 1577: 1576: 1548: 1542: 1541: 1523: 1517: 1516: 1480: 1364:transition state 1261:oxidation states 1158:Structural units 1039:ammonium cations 996:shared the 2016 950:self-replication 806:protein dynamics 761: 759: 758: 753: 741: 739: 738: 733: 718: 716: 715: 710: 692: 690: 689: 684: 645: 643: 642: 637: 619: 617: 616: 611: 596: 594: 593: 588: 457: 449: 433: 431: 430: 425: 334:structures, and 230: 211: 196: 184:An example of a 181: 162: 146: 134: 63:covalent bonding 59:hydrogen bonding 39:chemical systems 21: 3971: 3970: 3966: 3965: 3964: 3962: 3961: 3960: 3941: 3940: 3939: 3934: 3878: 3781: 3775:Polymer science 3731:Click chemistry 3726:Green chemistry 3620:Ocean chemistry 3596:Biogeochemistry 3542: 3458: 3430:Total synthesis 3393:Stereochemistry 3379: 3329: 3246:Surface science 3236:Thermochemistry 3205: 3148: 3119:Crystallography 3024: 2996: 2990: 2943: 2938: 2898: 2892: 2888: 2873: 2869: 2841: 2837: 2798: 2794: 2763: 2759: 2744: 2740: 2729: 2725: 2709: 2705: 2698: 2694: 2678: 2677: 2665: 2649: 2645: 2629: 2628: 2616: 2602: 2598: 2567: 2563: 2555: 2551: 2541: 2539: 2530: 2529: 2525: 2502: 2498: 2475: 2471: 2432: 2428: 2397:Stoddart, J. F. 2386: 2382: 2337: 2333: 2323: 2273: 2269: 2246: 2242: 2232: 2182: 2178: 2155: 2151: 2141: 2091: 2087: 2077: 2027: 2023: 1978: 1974: 1967: 1945: 1938: 1926: 1922: 1895: 1891: 1851: 1847: 1824: 1820: 1798: 1794: 1790: 1786: 1777: 1773: 1750: 1746: 1723: 1719: 1688: 1684: 1661: 1657: 1636:(14): 2366–93. 1625: 1619: 1615: 1584: 1580: 1559:(22): 3924–77. 1549: 1545: 1538: 1524: 1520: 1481: 1477: 1473: 1456: 1411: 1388: 1356: 1350: 1342:smart materials 1333: 1328: 1307:The binding of 1289: 1265:redox reactions 1237:phthalocyanines 1229: 1160: 1104: 1095:electrochemical 1087:phthalocyanines 1046:carboxylic acid 1015: 1006: 1004:Building blocks 974: 958: 938: 925: 913:molecular knots 897: 889:stereochemistry 876: 859: 847:liquid crystals 818: 790: 777: 747: 744: 743: 724: 721: 720: 701: 698: 697: 654: 651: 650: 625: 622: 621: 602: 599: 598: 579: 576: 575: 454: 404: 401: 400: 395: 391: 374: 369: 340:electrochemical 304:Jean-Marie Lehn 241: 234: 231: 222: 214:Intramolecular 212: 203: 197: 188: 182: 173: 163: 154: 147: 138: 135: 126: 112:. The study of 43:discrete number 28: 23: 22: 15: 12: 11: 5: 3969: 3959: 3958: 3953: 3936: 3935: 3933: 3932: 3920: 3908: 3896: 3883: 3880: 3879: 3877: 3876: 3871: 3866: 3861: 3856: 3851: 3846: 3841: 3836: 3831: 3830: 3829: 3819: 3812: 3811: 3810: 3800: 3795: 3789: 3787: 3783: 3782: 3780: 3779: 3778: 3777: 3772: 3767: 3757: 3756: 3755: 3745: 3744: 3743: 3738: 3733: 3728: 3718: 3717: 3716: 3705: 3704: 3703: 3702: 3697: 3687: 3682: 3681: 3680: 3675: 3664: 3663: 3662: 3661: 3659:Soil chemistry 3651: 3650: 3649: 3644: 3637:Food chemistry 3634: 3632:Carbochemistry 3629: 3627:Clay chemistry 3624: 3623: 3622: 3617: 3606: 3605: 3604: 3603: 3598: 3588: 3582:Astrochemistry 3578:Cosmochemistry 3575: 3574: 3573: 3568: 3563: 3561:Radiochemistry 3552: 3550: 3544: 3543: 3541: 3540: 3535: 3530: 3525: 3520: 3518:Neurochemistry 3515: 3510: 3509: 3508: 3498: 3497: 3496: 3486: 3485: 3484: 3479: 3468: 3466: 3460: 3459: 3457: 3456: 3451: 3449:Petrochemistry 3446: 3441: 3436: 3427: 3422: 3417: 3412: 3407: 3402: 3401: 3400: 3389: 3387: 3381: 3380: 3378: 3377: 3372: 3367: 3362: 3361: 3360: 3350: 3345: 3339: 3337: 3331: 3330: 3328: 3327: 3322: 3317: 3312: 3310:Spin chemistry 3307: 3305:Photochemistry 3302: 3297: 3292: 3290:Femtochemistry 3287: 3286: 3285: 3275: 3270: 3265: 3260: 3259: 3258: 3248: 3243: 3238: 3233: 3232: 3231: 3226: 3215: 3213: 3207: 3206: 3204: 3203: 3202: 3201: 3191: 3186: 3181: 3176: 3175: 3174: 3164: 3158: 3156: 3150: 3149: 3147: 3146: 3141: 3136: 3131: 3126: 3121: 3116: 3115: 3114: 3109: 3102:Chromatography 3099: 3094: 3093: 3092: 3087: 3082: 3072: 3071: 3070: 3065: 3060: 3055: 3045: 3040: 3034: 3032: 3026: 3025: 3023: 3022: 3020:Periodic table 3017: 3012: 3007: 3001: 2998: 2997: 2989: 2988: 2981: 2974: 2966: 2960: 2959: 2949: 2942: 2941:External links 2939: 2937: 2936: 2886: 2867: 2835: 2792: 2757: 2738: 2723: 2703: 2692: 2663: 2643: 2614: 2596: 2561: 2549: 2536:Nobelprize.org 2523: 2512:(7): 405–414. 2496: 2485:(3): 192–199. 2469: 2448:10.1038/nbt874 2442:(10): 1171–8. 2426: 2407:(6): 898–952. 2380: 2331: 2267: 2240: 2176: 2149: 2085: 2021: 1972: 1965: 1936: 1933:New York Times 1920: 1889: 1845: 1818: 1807:(4): 382–387. 1796: 1792: 1788: 1784: 1771: 1744: 1717: 1682: 1655: 1613: 1578: 1543: 1536: 1518: 1474: 1472: 1469: 1468: 1467: 1465:Nanotechnology 1462: 1455: 1452: 1436:electrochromic 1410: 1407: 1387: 1384: 1352:Main article: 1349: 1346: 1332: 1329: 1327: 1324: 1323: 1322: 1316: 1305: 1302:blood clotting 1288: 1285: 1284: 1283: 1268: 1250: 1240: 1228: 1225: 1224: 1223: 1219: 1201: 1183: 1159: 1156: 1155: 1154: 1140: 1132: 1121: 1103: 1100: 1099: 1098: 1079: 1052: 1042: 1031: 1014: 1011: 1005: 1002: 982:nanotechnology 973: 970: 957: 954: 946:protein design 937: 934: 924: 921: 896: 893: 875: 872: 858: 855: 817: 814: 789: 786: 776: 773: 762:, by means of 751: 731: 728: 708: 705: 694: 693: 682: 679: 676: 673: 670: 667: 664: 661: 658: 635: 632: 629: 609: 606: 586: 583: 568: 567: 564: 563: 560: 557: 554: 551: 548: 542: 541: 538: 535: 532: 529: 526: 520: 519: 516: 513: 510: 507: 504: 498: 497: 494: 491: 488: 485: 482: 476: 475: 472: 469: 466: 463: 460: 452: 435: 434: 423: 420: 417: 414: 411: 408: 393: 389: 379:hydrogen bonds 373: 372:Thermodynamics 370: 368: 365: 349:nanotechnology 336:Itamar Willner 332:self-assembled 300:Donald J. Cram 285:microemulsions 240: 237: 236: 235: 232: 225: 223: 213: 206: 204: 198: 191: 189: 183: 176: 174: 164: 157: 155: 148: 141: 139: 136: 129: 125: 122: 41:composed of a 26: 18:Supramolecular 9: 6: 4: 3: 2: 3968: 3957: 3954: 3952: 3949: 3948: 3946: 3931: 3930: 3921: 3919: 3918: 3913: 3909: 3907: 3906: 3897: 3895: 3894: 3885: 3884: 3881: 3875: 3872: 3870: 3867: 3865: 3864:Chemical bond 3862: 3860: 3857: 3855: 3852: 3850: 3847: 3845: 3842: 3840: 3837: 3835: 3832: 3828: 3825: 3824: 3823: 3820: 3817: 3813: 3809: 3806: 3805: 3804: 3801: 3799: 3796: 3794: 3791: 3790: 3788: 3784: 3776: 3773: 3771: 3768: 3766: 3763: 3762: 3761: 3758: 3754: 3753:Stoichiometry 3751: 3750: 3749: 3746: 3742: 3739: 3737: 3734: 3732: 3729: 3727: 3724: 3723: 3722: 3719: 3715: 3712: 3711: 3710: 3709:Nanochemistry 3707: 3706: 3701: 3698: 3696: 3693: 3692: 3691: 3688: 3686: 3683: 3679: 3676: 3674: 3671: 3670: 3669: 3666: 3665: 3660: 3657: 3656: 3655: 3652: 3648: 3645: 3643: 3640: 3639: 3638: 3635: 3633: 3630: 3628: 3625: 3621: 3618: 3616: 3613: 3612: 3611: 3608: 3607: 3602: 3599: 3597: 3594: 3593: 3592: 3589: 3587: 3583: 3579: 3576: 3572: 3569: 3567: 3564: 3562: 3559: 3558: 3557: 3554: 3553: 3551: 3549: 3545: 3539: 3536: 3534: 3531: 3529: 3526: 3524: 3521: 3519: 3516: 3514: 3511: 3507: 3504: 3503: 3502: 3499: 3495: 3492: 3491: 3490: 3487: 3483: 3480: 3478: 3475: 3474: 3473: 3470: 3469: 3467: 3465: 3461: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3435: 3434:Semisynthesis 3431: 3428: 3426: 3423: 3421: 3418: 3416: 3413: 3411: 3408: 3406: 3403: 3399: 3396: 3395: 3394: 3391: 3390: 3388: 3386: 3382: 3376: 3373: 3371: 3368: 3366: 3363: 3359: 3356: 3355: 3354: 3351: 3349: 3346: 3344: 3341: 3340: 3338: 3336: 3332: 3326: 3323: 3321: 3318: 3316: 3313: 3311: 3308: 3306: 3303: 3301: 3298: 3296: 3293: 3291: 3288: 3284: 3281: 3280: 3279: 3276: 3274: 3271: 3269: 3268:Sonochemistry 3266: 3264: 3263:Cryochemistry 3261: 3257: 3256:Micromeritics 3254: 3253: 3252: 3249: 3247: 3244: 3242: 3239: 3237: 3234: 3230: 3227: 3225: 3222: 3221: 3220: 3217: 3216: 3214: 3212: 3208: 3200: 3197: 3196: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3177: 3173: 3170: 3169: 3168: 3165: 3163: 3160: 3159: 3157: 3155: 3151: 3145: 3142: 3140: 3137: 3135: 3134:Wet chemistry 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3113: 3110: 3108: 3105: 3104: 3103: 3100: 3098: 3095: 3091: 3088: 3086: 3083: 3081: 3078: 3077: 3076: 3073: 3069: 3066: 3064: 3061: 3059: 3056: 3054: 3051: 3050: 3049: 3046: 3044: 3041: 3039: 3036: 3035: 3033: 3031: 3027: 3021: 3018: 3016: 3013: 3011: 3008: 3006: 3003: 3002: 2999: 2995: 2987: 2982: 2980: 2975: 2973: 2968: 2967: 2964: 2957: 2953: 2950: 2948: 2945: 2944: 2932: 2928: 2924: 2920: 2916: 2912: 2909:(2): 200–10. 2908: 2904: 2897: 2890: 2884: 2880: 2876: 2871: 2863: 2859: 2855: 2851: 2847: 2839: 2831: 2827: 2823: 2819: 2815: 2811: 2807: 2803: 2796: 2788: 2784: 2780: 2776: 2772: 2768: 2761: 2755: 2751: 2747: 2742: 2736: 2732: 2727: 2721: 2717: 2713: 2707: 2701: 2696: 2688: 2682: 2674: 2670: 2666: 2660: 2656: 2655: 2647: 2639: 2633: 2625: 2621: 2617: 2615:9780128031995 2611: 2607: 2600: 2592: 2588: 2584: 2580: 2577:(4): 521–37. 2576: 2572: 2565: 2559: 2553: 2537: 2533: 2527: 2519: 2515: 2511: 2507: 2500: 2492: 2488: 2484: 2480: 2473: 2465: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2430: 2422: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2384: 2376: 2372: 2367: 2362: 2358: 2354: 2350: 2346: 2342: 2335: 2327: 2320: 2316: 2311: 2306: 2302: 2298: 2294: 2290: 2287:(1): 014104. 2286: 2282: 2278: 2271: 2263: 2259: 2255: 2251: 2244: 2236: 2229: 2225: 2220: 2215: 2211: 2207: 2203: 2199: 2196:(1): 014108. 2195: 2191: 2187: 2180: 2172: 2168: 2164: 2160: 2153: 2145: 2138: 2134: 2129: 2124: 2120: 2116: 2112: 2108: 2105:(1): 014103. 2104: 2100: 2096: 2089: 2081: 2074: 2070: 2065: 2060: 2056: 2052: 2048: 2044: 2041:(1): 014109. 2040: 2036: 2032: 2025: 2017: 2013: 2008: 2003: 1999: 1995: 1991: 1987: 1983: 1976: 1968: 1962: 1958: 1954: 1950: 1943: 1941: 1934: 1930: 1924: 1916: 1912: 1908: 1904: 1900: 1893: 1885: 1881: 1877: 1873: 1869: 1865: 1861: 1857: 1849: 1841: 1837: 1833: 1829: 1822: 1814: 1810: 1806: 1802: 1782: 1775: 1767: 1763: 1759: 1755: 1748: 1740: 1736: 1732: 1728: 1721: 1713: 1709: 1705: 1701: 1697: 1693: 1686: 1678: 1674: 1670: 1666: 1659: 1651: 1647: 1643: 1639: 1635: 1631: 1624: 1617: 1609: 1605: 1601: 1597: 1593: 1589: 1582: 1574: 1570: 1566: 1562: 1558: 1554: 1547: 1539: 1533: 1530:. Wiley-VCH. 1529: 1522: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1479: 1475: 1466: 1463: 1461: 1458: 1457: 1451: 1449: 1448:DNA computers 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1406: 1404: 1400: 1399:drug delivery 1395: 1392: 1383: 1381: 1377: 1373: 1369: 1365: 1361: 1355: 1345: 1343: 1339: 1320: 1317: 1314: 1310: 1306: 1303: 1299: 1295: 1291: 1290: 1281: 1277: 1274:derivatives, 1273: 1269: 1266: 1262: 1258: 1254: 1251: 1248: 1244: 1241: 1238: 1234: 1231: 1230: 1220: 1217: 1213: 1209: 1205: 1202: 1199: 1195: 1191: 1187: 1186:nanoparticles 1184: 1181: 1178:, and simple 1177: 1173: 1169: 1165: 1164: 1163: 1152: 1151:chelate-rings 1148: 1147:self-assembly 1144: 1143:Metallacrowns 1141: 1138: 1133: 1130: 1126: 1123:More complex 1122: 1119: 1115: 1114:Cyclodextrins 1112: 1111: 1110: 1108: 1096: 1092: 1091:photochemical 1088: 1084: 1080: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1050: 1047: 1043: 1040: 1036: 1032: 1029: 1025: 1021: 1017: 1016: 1010: 1001: 999: 995: 991: 987: 983: 978: 969: 967: 962: 953: 951: 947: 943: 933: 930: 920: 918: 914: 910: 906: 901: 892: 890: 886: 882: 871: 869: 865: 854: 852: 848: 844: 840: 836: 832: 828: 824: 811: 807: 803: 799: 794: 785: 782: 772: 769: 765: 749: 729: 706: 680: 674: 671: 668: 662: 659: 649: 648: 647: 633: 627: 607: 584: 573: 561: 558: 555: 552: 549: 547: 544: 543: 539: 536: 533: 530: 527: 525: 522: 521: 517: 514: 511: 508: 505: 503: 500: 499: 495: 492: 489: 486: 483: 481: 478: 477: 473: 470: 467: 464: 461: 459: 458: 448: 447: 446: 444: 440: 421: 418: 412: 409: 406: 399: 398: 397: 386: 384: 380: 364: 362: 358: 357:nanoparticles 354: 350: 345: 344:photochemical 341: 337: 333: 329: 325: 320: 317: 312: 309: 305: 301: 297: 293: 288: 286: 282: 277: 273: 269: 264: 262: 258: 254: 250: 246: 229: 224: 221: 217: 216:self-assembly 210: 205: 202: 195: 190: 187: 180: 175: 171: 167: 161: 156: 152: 145: 140: 133: 128: 127: 121: 119: 115: 111: 107: 103: 99: 95: 91: 86: 84: 83:electrostatic 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 19: 3927: 3915: 3903: 3891: 3741:Biosynthesis 3713: 3591:Geochemistry 3506:Pharmacology 3482:Cell biology 3472:Biochemistry 3300:Spectroscopy 3199:VSEPR theory 3048:Spectroscopy 2992:Branches of 2906: 2902: 2889: 2878: 2874: 2870: 2845: 2838: 2808:(1): 13–26. 2805: 2801: 2795: 2770: 2766: 2760: 2749: 2745: 2741: 2730: 2726: 2711: 2706: 2695: 2653: 2646: 2605: 2599: 2574: 2570: 2564: 2552: 2540:. Retrieved 2535: 2526: 2509: 2505: 2499: 2482: 2478: 2472: 2439: 2435: 2429: 2404: 2400: 2389:Rowan, S. J. 2383: 2348: 2344: 2334: 2284: 2280: 2270: 2253: 2249: 2243: 2193: 2189: 2179: 2162: 2158: 2152: 2102: 2098: 2088: 2038: 2034: 2024: 1989: 1985: 1975: 1948: 1932: 1923: 1906: 1902: 1892: 1859: 1855: 1848: 1831: 1827: 1821: 1804: 1800: 1780: 1774: 1757: 1753: 1747: 1730: 1726: 1720: 1698:(2): 275–7. 1695: 1691: 1685: 1668: 1664: 1658: 1633: 1629: 1616: 1591: 1587: 1581: 1556: 1552: 1546: 1527: 1521: 1488: 1484: 1478: 1428:photochromic 1420:Data storage 1412: 1396: 1393: 1389: 1357: 1334: 1326:Applications 1243:Photochromic 1180:alkyl chains 1161: 1105: 1064:terpyridines 1056:complexation 1024:bipyridinium 1007: 975: 959: 939: 926: 919:and ravels. 898: 877: 860: 819: 778: 767: 695: 569: 436: 387: 375: 321: 313: 308:Fritz Vögtle 292:crown ethers 289: 265: 242: 201:cucurbituril 151:cucurbituril 87: 30: 29: 3929:WikiProject 3154:Theoretical 3139:Calorimetry 2165:(9): 2695. 1311:with their 1216:multilayers 1125:cyclophanes 1118:calixarenes 1107:Macrocycles 1102:Macrocycles 1060:bipyridines 1035:crown ether 1033:The use of 936:Biomimetics 775:Environment 480:Valinomycin 326:developing 316:Nobel Prize 37:concerning 3945:Categories 3765:Metallurgy 3464:Biological 3030:Analytical 2752:Cambridge 2673:1103809341 2542:14 January 1471:References 1434:units, by 1376:dendrimers 1280:fullerenes 1255:(TTF) and 1233:Porphyrins 1208:electrodes 1198:dendrimers 1194:fullerenes 1176:triphenyls 1083:porphyrins 1076:metal ions 956:Imprinting 942:biomimetic 810:nanoscales 804:that uses 443:determined 361:dendrimers 353:fullerenes 61:to strong 3956:Chemistry 3827:Catalysis 3335:Inorganic 3129:Titration 2994:chemistry 2714:. Wiley. 2681:cite book 2632:cite book 2624:992802408 1876:1477-9234 1588:Chem. Rev 1418:devices. 1380:cavitands 1360:catalysts 1348:Catalysis 1338:bottom-up 1313:cofactors 1276:viologens 1272:benzidine 1172:biphenyls 1168:polyether 1129:cryptands 1074:or other 1068:ruthenium 909:rotaxanes 905:catenanes 881:catalysis 868:catalysis 839:membranes 831:foldamers 727:Δ 704:Δ 678:Δ 672:− 666:Δ 657:Δ 631:Δ 605:Δ 582:Δ 524:Nigericin 416:⇋ 383:ion pairs 85:effects. 47:molecules 35:chemistry 3893:Category 3849:Molecule 3786:See also 3211:Physical 2931:41385952 2923:21571017 2862:26860310 2830:26681596 2787:22931185 2591:18271561 2464:54485012 2456:14520402 2421:12491278 2375:21343923 2319:27877930 2228:27877934 2137:27877929 2073:27877935 2016:16967979 1884:27438046 1712:12491407 1650:17370285 1608:27136957 1573:19415701 1454:See also 1386:Medicine 1372:micelles 1370:such as 1257:quinones 1204:Surfaces 1190:nanorods 1170:chains, 843:vesicles 835:micelles 798:ribosome 788:Concepts 781:solvents 574:change, 546:Monensin 502:Enniatin 281:micelles 220:foldamer 170:rotaxane 3905:Commons 3869:Alchemy 3385:Organic 2810:Bibcode 2353:Bibcode 2351:: 205. 2310:5099799 2289:Bibcode 2219:5099803 2198:Bibcode 2128:5099798 2107:Bibcode 2064:5099804 2043:Bibcode 2007:2572717 1513:8511582 1493:Bibcode 1485:Science 1309:enzymes 827:folding 821:form a 484:<0.7 367:Control 261:Latimer 239:History 124:Gallery 3917:Portal 3063:UV-Vis 2929:  2921:  2860:  2828:  2785:  2718:  2671:  2661:  2622:  2612:  2589:  2462:  2454:  2419:  2373:  2317:  2307:  2226:  2216:  2135:  2125:  2071:  2061:  2014:  2004:  1963:  1882:  1874:  1710:  1648:  1606:  1571:  1534:  1511:  1378:, and 1298:biotin 1294:avidin 1278:, and 1235:, and 1127:, and 1072:silver 1049:dimers 966:steric 768:et.al. 359:, and 108:, and 3090:MALDI 3058:Raman 2927:S2CID 2899:(PDF) 2460:S2CID 1626:(PDF) 1440:redox 1426:with 1066:with 800:is a 696:Both 518:2.34 496:4.42 451:Log K 218:of a 57:, or 3844:Atom 3112:HPLC 2954:and 2919:PMID 2879:2013 2858:PMID 2826:PMID 2783:PMID 2716:ISBN 2687:link 2669:OCLC 2659:ISBN 2638:link 2620:OCLC 2610:ISBN 2587:PMID 2544:2017 2452:PMID 2417:PMID 2371:PMID 2315:PMID 2224:PMID 2133:PMID 2069:PMID 2012:PMID 1961:ISBN 1880:PMID 1872:ISSN 1731:1998 1708:PMID 1646:PMID 1604:PMID 1569:PMID 1532:ISBN 1509:PMID 1438:and 1430:and 1296:and 1245:and 1214:and 1196:and 1174:and 1093:and 1054:The 1018:The 992:and 948:and 866:and 719:and 570:The 562:3.6 515:2.24 512:2.92 509:2.42 506:1.28 493:5.26 487:0.67 342:and 306:and 283:and 81:and 3854:Ion 3085:ICP 3068:NMR 2911:doi 2907:155 2850:doi 2818:doi 2775:doi 2579:doi 2514:doi 2487:doi 2444:doi 2409:doi 2361:doi 2305:PMC 2297:doi 2258:doi 2214:PMC 2206:doi 2167:doi 2123:PMC 2115:doi 2059:PMC 2051:doi 2002:PMC 1994:doi 1990:128 1953:doi 1911:doi 1864:doi 1836:doi 1809:doi 1799:". 1762:doi 1735:doi 1700:doi 1673:doi 1638:doi 1596:doi 1592:116 1561:doi 1501:doi 1489:260 1319:DNA 1085:or 1062:or 1058:of 1022:of 927:In 808:on 559:4.3 556:5.0 553:6.5 550:3.6 537:5.0 534:5.6 531:4.7 490:4.9 474:Cs 453:1,1 294:by 276:DNA 274:of 45:of 3947:: 3584:/ 3580:/ 3432:/ 3107:GC 3080:EI 3053:IR 2925:. 2917:. 2905:. 2901:. 2856:. 2824:. 2816:. 2806:15 2804:. 2781:. 2771:78 2769:. 2683:}} 2679:{{ 2667:. 2634:}} 2630:{{ 2618:. 2585:. 2575:41 2573:. 2534:. 2510:31 2508:. 2483:18 2481:. 2458:. 2450:. 2440:21 2438:. 2415:. 2405:41 2403:. 2395:; 2369:. 2359:. 2347:. 2343:. 2313:. 2303:. 2295:. 2283:. 2279:. 2254:29 2252:. 2222:. 2212:. 2204:. 2192:. 2188:. 2161:. 2131:. 2121:. 2113:. 2101:. 2097:. 2067:. 2057:. 2049:. 2037:. 2033:. 2010:. 2000:. 1988:. 1984:. 1959:. 1939:^ 1931:. 1907:27 1905:. 1901:. 1878:. 1870:. 1860:45 1858:. 1832:86 1830:. 1805:40 1803:. 1797:12 1793:24 1789:36 1785:36 1758:34 1756:. 1729:. 1706:. 1696:41 1694:. 1669:35 1667:. 1644:. 1634:46 1632:. 1628:. 1602:. 1590:. 1567:. 1557:48 1555:. 1507:. 1499:. 1487:. 1450:. 1374:, 1192:, 1188:, 1116:, 1070:, 988:, 952:. 915:, 911:, 907:, 870:. 853:. 845:, 841:, 837:, 796:A 646:. 540:- 471:Rb 465:Na 462:Li 385:. 355:, 302:, 287:. 104:, 100:, 96:, 92:, 77:, 73:, 69:, 53:, 3818:" 3814:" 2985:e 2978:t 2971:v 2933:. 2913:: 2864:. 2852:: 2832:. 2820:: 2812:: 2789:. 2777:: 2689:) 2675:. 2640:) 2626:. 2593:. 2581:: 2546:. 2520:. 2516:: 2493:. 2489:: 2466:. 2446:: 2423:. 2411:: 2377:. 2363:: 2355:: 2349:2 2321:. 2299:: 2291:: 2285:9 2264:. 2260:: 2230:. 2208:: 2200:: 2194:9 2173:. 2169:: 2163:3 2139:. 2117:: 2109:: 2103:9 2075:. 2053:: 2045:: 2039:9 2018:. 1996:: 1969:. 1955:: 1917:. 1913:: 1886:. 1866:: 1842:. 1838:: 1815:. 1811:: 1795:O 1791:N 1787:H 1781:p 1768:. 1764:: 1741:. 1737:: 1714:. 1702:: 1679:. 1675:: 1652:. 1640:: 1610:. 1598:: 1575:. 1563:: 1540:. 1515:. 1503:: 1495:: 1218:. 1153:. 1030:. 750:T 730:S 707:G 681:S 675:T 669:H 663:= 660:G 634:S 628:T 608:H 585:G 528:- 468:K 422:G 419:H 413:G 410:+ 407:H 394:q 392:G 390:p 172:) 168:( 153:) 20:)

Index

Supramolecular
chemistry
chemical systems
discrete number
molecules
intermolecular forces
electrostatic charge
hydrogen bonding
covalent bonding
metal coordination
hydrophobic forces
van der Waals forces
pi–pi interactions
electrostatic
molecular self-assembly
molecular folding
molecular recognition
host–guest chemistry
mechanically-interlocked molecular architectures
dynamic covalent chemistry
non-covalent interactions
Biological systems
Self-assembly of a circular double helicate
Host–guest complex within another host (cucurbituril)
cucurbituril
Mechanically-interlocked molecules (rotaxane)
Mechanically-interlocked molecules
rotaxane
An example of a host–guest chemistry
host–guest chemistry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑