Knowledge

Thin film

Source 📝

1614:
growth rate, and material). Koch states that there are three different modes of Volmer-Weber growth. Zone I behavior is characterized by low grain growth in subsequent film layers and is associated with low atomic mobility. Koch suggests that Zone I behavior can be observed at lower temperatures. The zone I mode typically has small columnar grains in the final film. The second mode of Volmer-Weber growth is classified as Zone T, where the grain size at the surface of the film deposition increases with film thickness, but the grain size in the deposited layers below the surface does not change. Zone T-type films are associated with higher atomic mobilities, higher deposition temperatures, and V-shaped final grains. The final mode of proposed Volmer-Weber growth is Zone II type growth, where the grain boundaries in the bulk of the film at the surface are mobile, resulting in large yet columnar grains. This growth mode is associated with the highest atomic mobility and deposition temperature. There is also a possibility of developing a mixed Zone T/Zone II type structure, where the grains are mostly wide and columnar, but do experience slight growth as their thickness approaches the surface of the film. Although Koch focuses mostly on temperature to suggest a potential zone mode, factors such as deposition rate can also influence the final film microstructure.
1344: 1610:
coalesce and begin to impinge on each other, resulting in an increase in the overall tensile stress in the film. This increase in overall tensile stress can be attributed to the formation of grain boundaries upon island coalescence that results in interatomic forces acting over the newly formed grain boundaries. The magnitude of this generated tensile stress depends on the density of the formed grain boundaries, as well as their grain-boundary energies. During this stage, the thickness of the film is not uniform because of the random nature of the island coalescence but is measured as the average thickness. The third and final stage of the Volmer-Weber film growth begins when the morphology of the film’s surface is unchanging with film thickness. During this stage, the overall stress in the film can remain tensile, or become compressive.  
1450:) to knock material from a "target" a few atoms at a time. The target can be kept at a relatively low temperature, since the process is not one of evaporation, making this one of the most flexible deposition techniques. It is especially useful for compounds or mixtures, where different components would otherwise tend to evaporate at different rates. Note, sputtering's step coverage is more or less conformal. It is also widely used in optical media. The manufacturing of all formats of CD, DVD, and BD are done with the help of this technique. It is a fast technique and also it provides a good thickness control. Presently, nitrogen and oxygen gases are also being used in sputtering. 2697:. Because of this proportionality, measuring the curvature of a film at a given film thickness can directly determine the stress in the film at that thickness. The curvature of a wafer is determined by the average stress of in the film. However, if stress is not uniformly distributed in a film (as it would be for epitaxially grown film layers that have not relaxed so that the intrinsic stress is due to the lattice mismatch of the substrate and the film), it is impossible to determine the stress at a specific film height without continuous curvature measurements. If continuous curvature measurements are taken, the time derivative of the curvature data: 1571: 1579: 1587: 1527: 3740: 2847: 1741:
relative to its substrate due to a volume change in the film. Volume changes that cause dilatational strain may come from changes in temperature, defects, or phase transformations. A temperature change will induce a volume change if the film and substrate thermal expansion coefficients are different.
1234:
of the sol determine the ultimate thickness of the deposited film. Repeated depositions can be carried out to increase the thickness of films as desired. Thermal treatment is often carried out in order to crystallize the amorphous spin coated film. Such crystalline films can exhibit certain preferred
646:
based on the adsorption reaction of vapor adatom with vacancy on the substrate surface. The BET model expands further and allows adatoms deposition on previously adsorbed adatoms without interaction between adjacent piles of atoms. The resulting derived surface coverage is in terms of the equilibrium
228:. The process of physic- and chemisorption can be visualized by the potential energy as a function of distance. The equilibrium distance for physisorption is further from the surface than chemisorption. The transition from physisorbed to chemisorbed states are governed by the effective energy barrier 1628:
A subset of thin-film deposition processes and applications is focused on the so-called epitaxial growth of materials, the deposition of crystalline thin films that grow following the crystalline structure of the substrate. The term epitaxy comes from the Greek roots epi (áŒÏ€ÎŻ), meaning "above", and
920:
describes the lateral motion of adsorbed atoms moving between energy minima on the substrate surface. Diffusion most readily occurs between positions with lowest intervening potential barriers. Surface diffusion can be measured using glancing-angle ion scattering. The average time between events can
1960:
is the initial temperature of the film and substrate when it is in a stress-free state. For example, if a film is deposited onto a substrate with a lower thermal expansion coefficient at high temperatures, then cooled to room temperature, a positive elastic strain will be created. In this case, the
1245:
is similar to spin coating in that a liquid precursor or sol-gel precursor is deposited on a substrate, but in this case the substrate is completely submerged in the solution and then withdrawn under controlled conditions. By controlling the withdrawal speed, the evaporation conditions (principally
2470:
is the average stress in the film. The assumptions made regarding the Stoney formula assume that the film and substrate are smaller than the lateral size of the wafer and that the stress is uniform across the surface. Therefore the average stress thickness of a given film can be determined by
1613:
On a stress-thickness vs. thickness plot, an overall compressive stress is represented by a negative slope, and an overall tensile stress is represented by a positive slope. The overall shape of the stress-thickness vs. thickness curve depends on various processing conditions (such as temperature,
1504:
deposition (electrospray deposition) is a relatively new process of thin-film deposition. The liquid to be deposited, either in the form of nanoparticle solution or simply a solution, is fed to a small capillary nozzle (usually metallic) which is connected to a high voltage. The substrate on which
1215:
method uses molecules floating on top of an aqueous subphase. The packing density of molecules is controlled, and the packed monolayer is transferred on a solid substrate by controlled withdrawal of the solid substrate from the subphase. This allows creating thin films of various molecules such as
1969:
A change in density due to the creation or destruction of defects, phase changes, or compositional changes after the film is grown on the substrate will generate a growth strain. Such as in the Stranski–Krastanov mode, where the layer of film is strained to fit the substrate due to an increase in
1328:
environment, so that particles of material escape its surface. Facing this source is a cooler surface which draws energy from these particles as they arrive, allowing them to form a solid layer. The whole system is kept in a vacuum deposition chamber, to allow the particles to travel as freely as
1296:
thin film's one layer at a time. The process is split up into two half reactions, run in sequence and repeated for each layer, in order to ensure total layer saturation before beginning the next layer. Therefore, one reactant is deposited first, and then the second reactant is deposited, during
2190:
of the wafer due to the strain by the film. Using optical setups, such as those with lasers, allow for whole wafer characterization pre and post deposition. Lasers are reflected off the wafer in a grid pattern and distortions in the grid are used to calculate the curvature as well as measure the
1158:
undergoes a chemical change at a solid surface, leaving a solid layer. An everyday example is the formation of soot on a cool object when it is placed inside a flame. Since the fluid surrounds the solid object, deposition happens on every surface, with little regard to direction; thin films from
1023:
and sintering, occur in response to reduce the total surface energy of the system. Ostwald repining describes the process in which islands of adatoms with various sizes grow into larger ones at the expense of smaller ones. Sintering is the coalescence mechanism when the islands contact and join.
3685:
Thin films are often deposited to protect an underlying work piece from external influences. The protection may operate by minimizing the contact with the exterior medium in order to reduce the diffusion from the medium to the work piece or vice versa. For instance, plastic lemonade bottles are
3616:
that were already used in ancient India more than 5000 years ago. It may also be understood as any form of painting, although this kind of work is generally considered as an arts craft rather than an engineering or scientific discipline. Today, thin-film materials of variable thickness and high
908:
As an important note, surface crystallography and differ from the bulk to minimize the overall free electronic and bond energies due to the broken bonds at the surface. This can result in a new equilibrium position known as “selvedge”, where the parallel bulk lattice symmetry is preserved. This
1609:
There are three distinct stages of stress evolution that arise during Volmer-Weber film deposition. The first stage consists of the nucleation of individual atomic islands. During this first stage, the overall observed stress is very low. The second stage commences as these individual islands
3422:
Due to the low thickness of the films, accidental probing of the substrate is a concern. To avoid indenting beyond the film and into the substrate, penetration depths are often kept to less than 10% of the film thickness. For a conical or pyramidal indenters, the indentation depth scales as
285:
values that would preferentially be populated by vapor molecules to reduce the overall free energy. These stable sites are often found on step edges, vacancies and screw dislocations. After the most stable sites become filled, the adatom-adatom (vapor molecule) interaction becomes important.
3009:
is a popular method of measuring the mechanical properties of films. Measurements can be used to compare coated and uncoated films to reveal the effects of surface treatment on both elastic and plastic responses of the film. Load-displacement curves may reveal information about cracking,
1297:
which a chemical reaction occurs on the substrate, forming the desired composition. As a result of the stepwise, the process is slower than chemical vapor deposition; however, it can be run at low temperatures. When performed on polymeric substrates, atomic layer deposition can become
2997: 1513:) and at the apex of the cone a thin jet emanates which disintegrates into very fine and small positively charged droplets under the influence of Rayleigh charge limit. The droplets keep getting smaller and smaller and ultimately get deposited on the substrate as a uniform thin layer. 1190:. In semiconductor manufacturing, an advanced form of electroplating known as electrochemical deposition is now used to create the copper conductive wires in advanced chips, replacing the chemical and physical deposition processes used to previous chip generations for aluminum wires 1636:
refers to the specific case in which a film of the same material is grown on a crystalline substrate. This technology is used, for instance, to grow a film which is more pure than the substrate, has a lower density of defects, and to fabricate layers having different doping levels.
1246:
the humidity, temperature) and the volatility/viscosity of the solvent, the film thickness, homogeneity and nanoscopic morphology are controlled. There are two evaporation regimes: the capillary zone at very low withdrawal speeds, and the draining zone at faster evaporation speeds.
1313:. Since most engineering materials are held together by relatively high energies, and chemical reactions are not used to store these energies, commercial physical deposition systems tend to require a low-pressure vapor environment to function properly; most can be classified as 3831:
are surface waves in the optical regime that propagate in between metal-dielectric interfaces; in Kretschmann-Raether configuration for the SPR sensors, a prism is coated with a metallic film through evaporation. Due to the poor adhesive characteristics of metallic films,
1400:
materials can be deposited. The beam is usually bent through an angle of 270° in order to ensure that the gun filament is not directly exposed to the evaporant flux. Typical deposition rates for electron beam evaporation range from 1 to 10 nanometres per second.
201:. Evaporated molecules rapidly lose kinetic energy and reduces its free energy by bonding with surface atoms. Chemisorption describes the strong electron transfer (ionic or covalent bond) of molecule with substrate atoms characterized by adsorption energy 127:
is an important step in growth that helps determine the final structure of a thin film. Many growth methods rely on nucleation control such as atomic-layer epitaxy (atomic layer deposition). Nucleation can be modeled by characterizing surface process of
3017:
and elastic modulus evaluation by the use of axisymmetric indenter geometries like a spherical indenter. This method assumes that during unloading, only elastic deformations are recovered (where reverse plastic deformation is negligible). The parameter
1705:
along the surface. In epitaxial films, initially deposited atomic layers may have coherent lattice planes with the substrate. However, past a critical thickness misfit dislocations will form leading to relaxation of stresses in the film.
4340:
Trontl, V. Mikơić; Pletikosić, I.; Milun, M.; Pervan, P.; Lazić, P.; Ơokčević, D.; Brako, R. (16 December 2005). "Experimental and ab initio study of the structural and electronic properties of subnanometer thick Ag films on Pd(111)".
3314:
is the effective elastic modulus and takes into account elastic displacements in the specimen and indenter. This relation can also be applied to elastic-plastic contact, which is not affected by pile-up and sink-in during indentation.
3418: 2557: 5733:
Birkholz, M.; Ehwald, K.-E.; Wolansky, D.; Costina, I.; Baristiran-Kaynak, C.; Fröhlich, M.; Beyer, H.; Kapp, A.; Lisdat, F. (15 March 2010). "Corrosion-resistant metal layers from a CMOS process for bioelectronic applications".
2700: 2294: 2173:
are the lattice parameters of the substrate and film, respectively. It is assumed that the substrate is rigid due to its relative thickness. Therefore, all of the elastic strain occurs in the film to match the substrate.
4852:
Rashidian Vaziri, M. R.; Hajiesmaeilbaigi, F.; Maleki, M. H. (7 October 2010). "Microscopic description of the thermalization process during pulsed laser deposition of aluminium in the presence of argon background gas".
3523:
applications. Therefore precautions are taken to either mitigate or produce such stresses; for example a buffer layer may be deposited between the substrate and film. Strain engineering is also used to produce various
2215:
A common method for determining the stress evolution of a film is to measure the wafer curvature during its deposition. Stoney relates a film’s average stress to its curvature through the following expression:  
3625:
are often applied for decorative coatings on glass for instance, causing a rainbow-color appearance like oil on water. In addition, intransparent gold-colored surfaces may either be prepared by sputtering of gold or
2851:
can show how the intrinsic stress is changing at any given point. Assuming that stress in the underlying layers of a deposited film remains constant during further deposition, we can represent the incremental stress
2893: 1368:
that uses an electric resistance heater to melt the material and raise its vapor pressure to a useful range. This is done in a high vacuum, both to allow the vapor to reach the substrate without reacting with or
1597:("layer-by-layer"). In this growth mode the adsorbate-surface and adsorbate-adsorbate interactions are balanced. This type of growth requires lattice matching, and hence considered an "ideal" growth mechanism. 1835: 1347:
One-atom-thick islands of silver deposited on the surface of palladium by thermal evaporation. Calibration of the surface coverage was achieved by tracking the time needed to complete a full monolayer using
614: 4511:
Frank, Frederick Charles; van der Merwe, J. H. (15 August 1949). "One-Dimensional Dislocations. III. Influence of the Second Harmonic Term in the Potential Representation, on the Properties of the Model".
3277: 2115: 3656:
became available during the 19th century and were produced by sputtering of metallic silver or aluminum on glass. Refractive lenses for optical instruments like cameras and microscopes typically exhibit
1758:
A mismatch of thermal expansion coefficients between the film and substrate will cause thermal strain during a temperature change. The elastic strain of the film relative to the substrate is given by:
1230:
precursor deposited onto a smooth, flat substrate which is subsequently spun at a high velocity to centrifugally spread the solution over the substrate. The speed at which the solution is spun and the
454: 2346: 1204:
powders dissolved in an organic solvent. This is a relatively inexpensive, simple thin-film process that produces stoichiometrically accurate crystalline phases. This technique is also known as the
1015: 3771:
and capacitors etc. is built up from thin Al or Cu layers. These layers dispose of thicknesses in the range of a few 100 nm up to a few ÎŒm, and they are often embedded into a few nm thin
904: 746: 5043:
Abadias, Grégory; Chason, Eric; Keckes, Jozef; Sebastiani, Marco; Thompson, Gregory B.; Barthel, Etienne; Doll, Gary L.; Murray, Conal E.; Stoessel, Chris H.; Martinu, Ludvik (1 March 2018).
2644: 2695: 53:
in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many applications. A familiar example is the household
6134:
Zou, Yuqin; Guo, Renjun; Buyruk, Ali; Chen, Wei; Xiao, Tianxiao; Yin, Shanshan; Jiang, Xinyu; Kreuzer, Lucas P.; Mu, Cheng; Ameri, Tayebeh; Schwartzkopf, Matthias (25 November 2020).
3669:
or silicon oxide etc. may correct these aberrations. A well-known example for the progress in optical systems by thin-film technology is represented by the only a few mm wide lens in
2468: 3210: 3140: 1606:
Volmer–Weber ("isolated islands"). In this growth mode the adsorbate-adsorbate interactions are stronger than adsorbate-surface interactions, hence "islands" are formed right away.
2041: 1373:
against other gas-phase atoms in the chamber, and reduce the incorporation of impurities from the residual gas in the vacuum chamber. Obviously, only materials with a much higher
2045:
A film experiencing growth strains will be under biaxial tensile strain conditions, generating tensile stresses in biaxial directions in order to match the substrate dimensions.
1681:
of the film and substrate, and from the restructuring of the surface triple junction. Thermal stress is common in thin films grown at elevated temperatures due to differences in
6189:
Chen, Wei; Guo, Renjun; Tang, Haodong; Wienhold, Kerstin S.; Li, Nian; Jiang, Zhengyan; Tang, Jun; Jiang, Xinyu; Kreuzer, Lucas P.; Liu, Haochen; Schwartzkopf, Matthias (2021).
3661:, i.e. non-ideal refractive behavior. While large sets of lenses had to be lined up along the optical path previously, nowadays, the coating of optical lenses with transparent 1343: 5648:
Pandya, Shishir; Velarde, Gabriel A.; Gao, Ran; Everhardt, Arnoud S.; Wilbur, Joshua D.; Xu, Ruijuan; Maher, Josh T.; Agar, Joshua C.; Dames, Chris; Martin, Lane W. (2019).
3878:) processes. Other thin-film technologies, that are still in an early stage of ongoing research or with limited commercial availability, are often classified as emerging or 2886: 2368: 1857: 1911: 1884: 2608: 2388: 366: 1693:
contribute to intrinsic stress in thin films. These intrinsic stresses can be a function of film thickness. These stresses may be tensile or compressive and can cause
4376:
Rashidian Vaziri, M. R.; Hajiesmaeilbaigi, F.; Maleki, M. H. (24 August 2011). "Monte Carlo simulation of the subsurface growth mode during pulsed laser deposition".
3312: 386: 3548:
is a stack of different thin films. Typically, a multilayer medium is made for a specific purpose. Since layers are thin with respect to some relevant length scale,
3083: 2442: 2415: 2171: 2144: 1995: 1958: 1739: 775: 675: 283: 253: 226: 199: 108:
In addition to their applied interest, thin films play an important role in the development and study of materials with new and unique properties. Examples include
3747:
Thin layers from elemental metals like copper, aluminum, gold or silver etc. and alloys have found numerous applications in electrical devices. Due to their high
3449: 1970:
supersaturation and interfacial energy which shifts from island to island. The elastic strain to accommodate these changes is related to the dilatational strain
4268:
Hanaor, D.A.H.; Triani, G.; Sorrell, C.C. (15 March 2011). "Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films".
3933:
can be deposited directly onto chips or chip packages in any shape or size. Flexible batteries can be made by printing onto plastic, thin metal foil, or paper.
3509: 3489: 3469: 3162: 3056: 3036: 2579: 1931: 795: 644: 339: 319: 3870:
are cheaper to manufacture owing to their reduced material costs, energy costs, handling costs and capital costs. This is especially represented in the use of
2842:{\displaystyle {\frac {d\kappa }{dt}}\propto \sigma (h_{f}){\frac {\partial h_{f}}{\partial t}}+\int _{0}^{h_{f}}{\frac {\partial \sigma (z,t)}{\partial t}}dz} 6079:
Chen, Wei; Zhong, Jialin; Li, Junzi; Saxena, Nitin; Kreuzer, Lucas P.; Liu, Haochen; Song, Lin; Su, Bo; Yang, Dan; Wang, Kun; Schlipf, Johannes (2 May 2019).
3320: 1482:(30–100%), multiply charged ions, neutral particles, clusters and macro-particles (droplets). If a reactive gas is introduced during the evaporation process, 2476: 3751:
they are able to transport electrical currents or supply voltages. Thin metal layers serve in conventional electrical system, for instance, as Cu layers on
5192: 4313:
Faustini, Marco; Drisko, Glenna L; Boissiere, Cedric; Grosso, David (1 March 2014). "Liquid deposition approaches to self-assembled periodic nanomasks".
5796:"All-chemical YBa2Cu3O7- $ \delta$ coated conductors with preformed BaHfO3 and BaZrO3 nanocrystals on Ni5W technical substrate at the industrial scale" 1309:
Physical deposition uses mechanical, electromechanical or thermodynamic means to produce a thin film of solid. An everyday example is the formation of
2221: 1750:
will cause a volume change through densification. Phase transformations and concentration changes will cause volume changes via lattice distortions.
1603:("joint islands" or "layer-plus-island"). In this growth mode the adsorbate-surface interactions are stronger than adsorbate-adsorbate interactions. 4460:
Frank, Frederick Charles; van der Merwe, J. H. (15 August 1949). "One-Dimensional Dislocations. II. Misfitting Monolayers and Oriented Overgrowth".
5833:
Serrano, A.; RodrĂ­guez de la Fuente, O.; GarcĂ­a, M. A. (2010). "Extended and localized surface plasmons in annealed Au films on glass substrates".
1464:
light vaporize the surface of the target material and convert it to plasma; this plasma usually reverts to a gas before it reaches the substrate.
65:. Advances in thin film deposition techniques during the 20th century have enabled a wide range of technological breakthroughs in areas such as 2992:{\displaystyle \sigma (h_{f})\propto {\frac {\frac {\partial \kappa }{\partial t}}{\frac {\partial h_{f}}{\partial t}}}={\frac {d\kappa }{dh}}} 1178:
relies on liquid precursors, often a solution of water with a salt of the metal to be deposited. Some plating processes are driven entirely by
4207:"25th Anniversary Article: What Can Be Done with the Langmuir-Blodgett Method? Recent Developments and its Critical Role in Materials Science" 1040:
or onto previously deposited layers. "Thin" is a relative term, but most deposition techniques control layer thickness within a few tens of
6136:"Sodium Dodecylbenzene Sulfonate Interface Modification of Methylammonium Lead Iodide for Surface Passivation of Perovskite Solar Cells" 3693:, into which carbonic acid decomposes that was introduced into the beverage under high pressure. Another example is represented by thin 1408:, slow streams of an element can be directed at the substrate, so that material deposits one atomic layer at a time. Compounds such as 4650: 1763: 460: 1357: 1271: 3612:
The usage of thin films for decorative coatings probably represents their oldest application. This encompasses ca. 100 nm thin
2610:
represents the in-place stress at a particular height of the film. The stress thickness (or force per unit width) is represented by
5525:"Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology" 4906:"Restructuring of emergent grain boundaries at free surfaces–An interplay between core stabilization and elastic stress generation" 3219: 2058: 1389: 4563:
Stranski, I. N.; Krastanov, L. (10 February 1938). "Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander".
393: 2301: 5942: 5507: 5309: 5113: 5022: 4138: 1108: 294:
Nucleation kinetics can be modeled considering only adsorption and desorption. First consider case where there are no mutual
1019:
In addition to adatom migration, clusters of adatom can coalesce or deplete. Cluster coalescence through processes, such as
5650:"Understanding the Role of Ferroelastic Domains on the Pyroelectric and Electrocaloric Effects in Ferroelectric Thin Films" 4651:"The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films" 3085:
is the final penetration depth after unloading. These are used to approximate the power law relation for unloading curves:
1505:
the film has to be deposited is connected to ground. Through the influence of electric field, the liquid coming out of the
926: 17: 57:, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of 5880:
Foley IV, Jonathan J.; Harutyunyan, Hayk; Rosenmann, Daniel; Divan, Ralu; Wiederrecht, Gary P.; Gray, Stephen K. (2015).
3519:
Stress and relaxation of stresses in films can influence the materials properties of the film, such as mass transport in
159:
reverses adsorption where a previously adsorbed molecule overcomes the bounding energy and leaves the substrate surface.
6348: 6320: 6301: 6282: 5778: 5714: 4163: 3899: 3879: 802: 682: 1119:). Similar processes are sometimes used where thickness is not important: for instance, the purification of copper by 6272: 5705:
Pedrotti, Frank L.; Pedrotti, Leno M.; Pedrotti, Leno S. (17 April 2006). "Chapter 22 - Theory of Multilayer Films".
5572:"On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation" 4103: 4035: 3942: 3805: 1298: 1261: 61:
was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as
3965: 4061:"IEC 60050 - International Electrotechnical Vocabulary - Details for IEV number 523-05-02: "thin film technology"" 2613: 4060: 4040: 2649: 5355:
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character
1278:, as a precursor. Unlike the soot example above, this method relies on electromagnetic means (electric current, 5933:
Todeschini, Matteo; Bastos da Silva Fanta, Alice; Jensen, Flemming; Wagner, Jakob Birkedal; Han, Anpan (2017).
4649:
Floro, J. A.; Hearne, S. J.; Hunter, J. A.; Kotula, P.; Chason, E.; Seel, S. C.; Thompson, C. V. (1 May 2001).
1594: 3945:
TFBARs/FBARs are developed for oscillators, telecommunication filters and duplexers, and sensor applications.
1208:
method because the 'sol' (or solution) gradually evolves towards the formation of a gel-like diphasic system.
151:
is the interaction of a vapor atom or molecule with a substrate surface. The interaction is characterized the
6368: 3990: 2447: 1682: 1600: 1536: 1349: 1037: 5336:
Product Specifications : kSA MOS Control Your Stress! In Situ Curvature and Thin Film Stress Monitoring
4120: 3782:. The figure shows a micrograph of a laterally structured TiN/Al/TiN metal stack in a microelectronic chip. 3169: 3090: 3797: 2204: 2002: 1673:
originated from their interface with a substrate. Epitaxial thin films may experience stresses from misfit
5795: 1301:, where the reactants diffuse into the polymer and interact with functional groups on the polymer chains. 3844:
films are used as intermediate layers to promote stronger adhesion. Metallic thin films are also used in
3598:
is a macroscopic quantum effect observed in alternating ferromagnetic and non-magnetic conductive layers.
1329:
possible. Since particles tend to follow a straight path, films deposited by physical means are commonly
6373: 5835: 3995: 3845: 3760: 1425: 1289: 1212: 1057: 1049: 74: 3887: 3828: 3824: 3571:
layer that is one or two molecules thick. A multilayer medium rather consists of several thin films.
1649: 1314: 1249: 1132: 2855: 1474:
where an electrical arc is created that blasts ions from the cathode. The arc has an extremely high
1138:
Deposition techniques fall into two broad categories, depending on whether the process is primarily
1483: 1365: 1197: 4904:
Zhang, Xiaopu; Wang, Mengyuan; Wang, Hailong; Upmanyu, Moneesh; Boland, John J. (1 January 2023).
3552:
effects are much more important than in bulk materials, giving rise to novel physical properties.
2351: 1842: 6378: 4206: 3862:
Thin-film technologies are also being developed as a means of substantially reducing the cost of
3748: 3595: 3529: 3214:
From the relationship of contact area, the unloading stiffness can be expressed by the relation:
1889: 1862: 1653: 1467: 1453: 1421: 1285: 1076: 1053: 98: 5400:"Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films" 2584: 174:
bonding between a stretched or bent molecule and the surface characterized by adsorption energy
6030:"Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures" 5934: 5611:"Tie Importance of Contact Radius for Substrate-Independent Property Measurement of Thin Films" 5331: 4020: 3903: 3895: 3752: 2373: 1645: 1405: 1382: 1045: 344: 5045:"Review Article: Stress in thin films and coatings: Current status, challenges, and prospects" 4179: 2053:
An epitaxially grown film on a thick substrate will have an inherent elastic strain given by:
3907: 3720: 3284: 2196: 1674: 1433: 1088: 371: 3941:
For miniaturising and more precise control of resonance frequency of piezoelectric crystals
6043: 5992: 5844: 5661: 5536: 5461: 5411: 5362: 5246: 5207: 5157: 5056: 4977: 4917: 4862: 4810: 4763: 4712: 4662: 4521: 4469: 4424: 4385: 4350: 4218: 4030: 3980: 3926: 3867: 3857: 3759:
and various other forms like sensors etc. A major field of application became their use in
3061: 2420: 2393: 2149: 2122: 1973: 1936: 1717: 1096: 1072: 753: 653: 261: 231: 204: 177: 152: 90: 78: 70: 6236: 5771:
Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications
8: 6383: 4874: 3871: 3764: 3724: 3528:
and domain structures in thin films such as in the domain structure of the ferroelectric
3426: 2183: 1541: 1501: 1471: 1116: 1100: 1080: 171: 6047: 5996: 5848: 5665: 5540: 5465: 5415: 5366: 5250: 5219: 5211: 5161: 5060: 4981: 4921: 4866: 4814: 4767: 4716: 4666: 4525: 4514:
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
4473: 4462:
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
4428: 4417:
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
4389: 4354: 4222: 3413:{\displaystyle {\frac {1}{E_{eff}}}={\frac {1-\nu ^{2}}{E}}+{\frac {1-\nu ^{2}}{E_{i}}}} 170:, are distinguished by the strength of atomic interactions. Physisorption describes the 6218: 6171: 6116: 6080: 5910: 5886: 5882:"When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether Configuration?" 5881: 5301: 5119: 4886: 4631: 4588: 4545: 4537: 4493: 4485: 4442: 4295: 4277: 4250: 3891: 3883: 3796:
can lead to electrons being bound to a sub-nanometric layer, effectively behaving as a
3698: 3658: 3549: 3494: 3474: 3454: 3147: 3041: 3021: 2564: 2552:{\displaystyle \langle \sigma \rangle ={\frac {1}{h_{f}}}\int _{0}^{h_{f}}\sigma (z)dz} 1916: 1670: 1429: 780: 629: 324: 304: 5098:
2010 International Students and Young Scientists Workshop "Photonics and Microsystems"
1641:
refers to the case in which the film being deposited is different from the substrate.
1629:
taxis (Ï„ÎŹÎŸÎčς), meaning "an ordered manner". It can be translated as "arranging upon".
6344: 6316: 6297: 6278: 6222: 6210: 6175: 6163: 6155: 6120: 6108: 6100: 6061: 6010: 5959: 5915: 5774: 5751: 5710: 5687: 5679: 5630: 5591: 5552: 5503: 5477: 5427: 5380: 5305: 5289: 5270: 5262: 5173: 5109: 5074: 5018: 4993: 4943: 4890: 4878: 4834: 4826: 4779: 4728: 4678: 4635: 4623: 4580: 4549: 4497: 4326: 4254: 4242: 4234: 4159: 4134: 4099: 3960: 3930: 3801: 3585: 1678: 1545: 917: 137: 94: 5398:
Tlili, B.; Nouveau, C.; Guillemot, G.; Besnard, A.; Barkaoui, A. (1 February 2018).
5123: 4701:"Quantitative correlation between intrinsic stress and microstructure of thin films" 4592: 4299: 4217:(45). Deerfield Beach FL USA: VCH Publishers (published 8 October 2013): 6477–6512. 1220:, polymers and lipids with controlled particle packing density and layer thickness. 6202: 6147: 6092: 6051: 6000: 5951: 5905: 5895: 5860: 5852: 5815: 5807: 5747: 5743: 5669: 5622: 5583: 5544: 5469: 5419: 5370: 5297: 5254: 5215: 5165: 5101: 5064: 4985: 4933: 4925: 4870: 4818: 4771: 4720: 4670: 4615: 4572: 4529: 4477: 4432: 4393: 4358: 4322: 4291: 4287: 4226: 4126: 4025: 4005: 3975: 3772: 3694: 3643: 3627: 3622: 3618: 3589: 3525: 3520: 2200: 2192: 1409: 1275: 1112: 1020: 31: 30:
This article is about a thin layer of material. For magnetic thin film memory, see
6135: 6028:
Liu, Xiaoyong; Feng, Yijun; Chen, Ke; Zhu, Bo; Zhao, Junming; Jiang, Tian (2014).
4929: 3775:
layers in order to block a chemical reaction with the surrounding dielectric like
1268:
gas is used. Commercial techniques often use very low pressures of precursor gas.
5811: 5012: 4965: 4606:
Volmer, M.; Weber, A. (1 January 1926). "Keimbildung in ĂŒbersĂ€ttigten Gebilden".
3985: 3922: 3820: 3789: 3785: 3666: 3662: 3639: 3581: 3006: 2646:
is an important quantity as it is directionally proportional to the curvature by
1378: 82: 6096: 4905: 3013:
The Oliver and Pharr method can be used to evaluate nanoindentation results for
1428:. The beam of material can be generated by either physical means (that is, by a 619: 89:
coatings), hard coatings on cutting tools, and for both energy generation (e.g.
6034: 5983: 5450:"A kinetic analysis of residual stress evolution in polycrystalline thin films" 5449: 5105: 5093: 4700: 4362: 4000: 3728: 3701:
separating electrically conducting aluminum lines from the embedding insulator
2289:{\displaystyle \kappa ={\frac {6\langle \sigma \rangle h_{f}}{M_{s}h_{s}^{2}}}} 1747: 1686: 1549: 1420:), so that the process is chemical, as well as physical; this is known also as 1397: 1374: 1293: 1265: 1201: 1187: 1161: 1120: 86: 66: 5473: 5423: 4798: 4724: 1155: 6362: 6214: 6159: 6104: 5755: 5683: 5634: 5595: 5556: 5481: 5431: 5384: 5266: 5177: 5078: 4997: 4947: 4882: 4830: 4822: 4783: 4732: 4682: 4627: 4584: 4238: 4130: 3793: 3756: 1491: 1475: 1092: 909:
phenomenon can cause deviations from theoretical calculations of nucleation.
167: 163: 109: 5794:
DĂ­ez-Sierra, Javier; MartĂ­nez, Alazne; Etxarri, Ion; Quintana, Iban (2022).
5548: 5399: 4619: 1570: 155:, the fraction of incoming species thermally equilibrated with the surface. 6167: 6151: 6112: 6081:"Structure and Charge Carrier Dynamics in Colloidal PbS Quantum Dot Solids" 6065: 6014: 6005: 5978: 5963: 5955: 5932: 5919: 5819: 5691: 5674: 5649: 5375: 5350: 5274: 4533: 4481: 4437: 4412: 4246: 4230: 4205:
Ariga, Katsuhiko; Yamauchi, Yusuke; Mori, Taizo; Hill, Jonathan P. (2013).
3970: 3875: 3723:
between mechanically moving parts. Examples for the latter application are
3674: 3670: 1702: 1578: 1412:
are usually deposited by repeatedly applying a layer of one element (i.e.,
1393: 1353: 1223: 1217: 623: 113: 5587: 5524: 5234: 4838: 1396:
to boil a small spot of material; since the heating is not uniform, lower
1172:
Chemical deposition is further categorized by the phase of the precursor:
6271:
Birkholz, Mario; Fewster, Paul F.; Genzel, Christoph (23 December 2005).
6056: 6029: 5258: 4010: 3936: 3863: 3816: 3768: 3686:
frequently coated by anti-diffusion layers to avoid the out-diffusion of
3613: 1743: 1690: 1510: 1242: 1183: 1084: 5626: 5571: 5094:"Critical thickness of epitaxial thin films using Finite Element Method" 3673:. Other examples are given by anti-reflection coatings on eyeglasses or 6206: 6190: 5865: 5169: 4938: 4747: 4576: 3649: 1487: 1479: 1439: 1370: 156: 148: 133: 129: 124: 102: 62: 50: 5900: 5856: 5610: 5069: 5044: 4851: 4775: 4674: 4397: 4375: 6191:"Operando structure degradation study of PbS quantum dot solar cells" 5145: 5092:
Wcislo, Tomasz; Dabrowska-Szata, Maria; Gelczuk, Lukasz (June 2010).
4989: 4541: 4489: 4446: 3833: 3767:, where the electrical network among active and passive devices like 3560: 2370:
is the bulk elastic modulus of the material comprising the film, and
2187: 1586: 1443: 1424:. If the precursors in use are organic, then the technique is called 1279: 1231: 1139: 1104: 1041: 58: 46: 42: 5498:
Fischer-Cripps, Anthony C. (2004). "Nanoindentation of Thin Films".
4154:
Knoll, Wolfgang Knoll; Advincula, Rigoberto C., eds. (7 June 2011).
3511:
and film thickness can be used as a scale parameter for soft films.
5832: 4797:
Koch, R.; Winau, D.; FĂŒhrmann, A.; Rieder, K. H. (15 August 1991).
4180:"One big wire change in '97 still helping chips achieve tiny scale" 3841: 3837: 3058:
is the displacement relative to the undeformed coating surface and
3014: 1698: 1694: 1495: 1457: 1282:
excitation), rather than a chemical-reaction, to produce a plasma.
5793: 4282: 5879: 4565:
Monatshefte fĂŒr Chemie und verwandte Teile anderer Wissenschaften
4411:
Frank, Frederick Charles; van der Merwe, J. H. (15 August 1949).
3955: 3918: 3564: 1623: 1417: 1413: 1325: 1257: 1236: 1227: 1205: 1193: 1179: 1175: 1143: 1128: 1124: 1830:{\displaystyle \varepsilon =-(\alpha _{f}-\alpha _{s})(T-T_{0})} 609:{\displaystyle n=J\sigma \tau _{a}\leftn=J\sigma \tau _{a}\left} 5769:
Korotcenkov, Ghenadii (18 September 2013). "Thin metal films".
4096:
Materials science of thin films : deposition and structure
4015: 3800:. Quantum effects in such thin films can significantly enhance 3653: 1506: 1321: 1253: 1068: 295: 54: 5935:"Influence of Ti and Cr Adhesion Layers on Ultrathin Au Films" 1036:– any technique for depositing a thin film of material onto a 618:
Adsorption can also be modeled by different isotherms such as
5773:. Integrated Analytical Systems. Springer. pp. 153–166. 5732: 5042: 4748:"Asymmetry of interface reactions in Ag-Sn thin film couples— 4312: 3272:{\displaystyle S=\beta {\frac {2}{\surd \pi }}E_{eff}\surd A} 3010:
delamination, and plasticity in both the film and substrate.
2110:{\displaystyle \varepsilon \approx {a_{s}-a_{f} \over a_{f}}} 1461: 1447: 1385:
is a particularly sophisticated form of thermal evaporation.
1310: 5609:
Hay, J. L.; O’Hern, M. E.; Oliver, W. C. (1 December 1998).
5570:
Pharr, G. M.; Oliver, W. C.; Brotzen, F. R. (1 March 1992).
5397: 5091: 4799:"Growth-mode-specific intrinsic stress of thin silver films" 3804:
as compared to that of a bulk crystal, which is employed in
2390:
is the Poisson’s ratio of the material comprising the film,
298:
interactions, no clustering or interaction with step edges.
4339: 2471:
integrating the stress over a given film thickness:  
2182:
The stresses in Films deposited on flat substrates such as
1742:
The creation or annihilation of defects such as vacancies,
1644:
Techniques used for epitaxial growth of thin films include
1061: 3739: 1714:
Films may experience a dilatational transformation strain
777:
is the equilibrium vapor pressure of adsorbed adatoms and
449:{\displaystyle {dn \over dt}=J\sigma -{n \over \tau _{a}}} 5647: 5351:"The tension of metallic films deposited by electrolysis" 3929:
to create unique batteries for specialized applications.
3743:
Laterally structured metal layer of an integrated circuit
2341:{\displaystyle M_{s}={\frac {\mathrm {E} }{1-\upsilon }}} 1186:), but by far the most commercially important process is 258:
Crystal surfaces have specific bonding sites with larger
5704: 4796: 4648: 1913:
is the thermal expansion coefficient of the substrate,
5979:"Novel surface plasmon waveguide for high integration" 5294:
Magnetic, Ferroelectric, and Multiferroic Metal Oxides
3937:
Thin-film bulk acoustic wave resonators (TFBARs/FBARs)
3491:
is the film thickness. The ratio of penetration depth
6270: 4204: 3497: 3477: 3457: 3429: 3323: 3287: 3222: 3172: 3150: 3093: 3064: 3044: 3024: 2896: 2858: 2703: 2652: 2616: 2587: 2567: 2479: 2450: 2423: 2396: 2376: 2354: 2304: 2224: 2152: 2125: 2061: 2005: 1976: 1939: 1919: 1892: 1865: 1845: 1766: 1720: 1010:{\displaystyle \tau _{d}=(1/v_{1})\exp(E_{d}/kT_{s})} 929: 805: 783: 756: 685: 656: 632: 626:. The Langmuir model derives an equilibrium constant 463: 396: 374: 368:
is the mean surface lifetime prior to desorption and
347: 327: 307: 264: 234: 207: 180: 6237:"Cell Mechanical Construction - Thin Film Batteries" 5290:"Single and heterostructure multiferroic thin films" 4903: 1470:(arc-physical vapor deposition), which is a kind of 1381:
can be deposited without contamination of the film.
97:). It is also being applied to pharmaceuticals, via 6188: 4267: 3811: 797:is the applied vapor pressure of adsorbed adatoms: 41:is a layer of material ranging from fractions of a 5569: 4510: 4459: 4410: 4156:Functional Polymer Films, 2 Volume Set 1st Edition 3734: 3503: 3483: 3463: 3443: 3412: 3306: 3271: 3204: 3156: 3134: 3077: 3050: 3030: 2991: 2880: 2841: 2689: 2638: 2602: 2573: 2551: 2462: 2436: 2409: 2382: 2362: 2340: 2288: 2165: 2138: 2109: 2035: 1989: 1952: 1925: 1905: 1886:is the thermal expansion coefficient of the film, 1878: 1851: 1829: 1733: 1009: 898: 789: 769: 740: 669: 638: 608: 448: 380: 360: 333: 313: 277: 247: 220: 193: 6078: 4745: 4562: 3727:layers used in car engines or thin films made of 899:{\displaystyle \theta ={Xp \over (p_{e}-p)\left}} 741:{\displaystyle \theta ={bP_{A} \over (1+bP_{A})}} 6360: 6133: 5404:Journal of Materials Engineering and Performance 5235:"Review of the fundamentals of thin-film growth" 4413:"One-dimensional dislocations. I. Static theory" 3719:. Often, thin films serve as protection against 3588:, is made of several layers that have different 1032:The act of applying a thin film to a surface is 6294:Materials Science of Thin Films, Second Edition 5608: 4122:Introduction to Surface and Thin Film Processes 4098:(2nd ed.). San Diego, CA: Academic Press. 3851: 2210: 2195:. Strain in thin films can also be measured by 1356:characteristic of the silver film thickness in 1260:of the element to be deposited. In the case of 1200:uses a liquid precursor, usually a solution of 6027: 5523:Oliver, W. C.; Pharr, G. M. (1 January 2004). 5497: 4698: 4153: 2177: 1252:generally uses a gas-phase precursor, often a 5977:Liu, Liu; Han, Zhanghua; He, Sailing (2005). 5014:Thin-Film Deposition: Principles and Practice 4966:"Deformation in thin films by thermal strain" 3164:is calculated, the hardness is estimated by: 2581:is the direction normal to the substrate and 1320:The material to be deposited is placed in an 1235:orientations after crystallization on single 1226:or spin casting, uses a liquid precursor, or 301:The rate of change of adatom surface density 6341:The Foundations of Vacuum Coating Technology 6313:Handbook of Thin Film Deposition 3rd Edition 5049:Journal of Vacuum Science & Technology A 4970:Journal of Vacuum Science & Technology A 2639:{\displaystyle \langle \sigma \rangle h_{f}} 2623: 2617: 2486: 2480: 2457: 2451: 2243: 2237: 2199:or by milling a section of the film using a 143: 5768: 5522: 4746:Zotov, N.; SchĂŒtzendĂŒbe, P. (3 June 2019). 4605: 2690:{\displaystyle {\frac {6}{M_{s}h_{s}^{2}}}} 677:is the vapor pressure of adsorbed adatoms: 116:that allow the study of quantum phenomena. 5728: 5726: 4125:(1 ed.). Cambridge University Press. 3648:These layers serve in both reflective and 1159:chemical deposition techniques tend to be 1135:-like process after gas-phase processing. 6085:The Journal of Physical Chemistry Letters 6055: 6004: 5909: 5899: 5864: 5709:(3 ed.). Pearson. pp. 476–490. 5673: 5374: 5068: 4937: 4699:Depla, D.; Braeckman, B.R. (April 2016). 4436: 4281: 1340:Examples of physical deposition include: 1272:Plasma Enhanced Chemical Vapor Deposition 5976: 4963: 4118: 3738: 3471:is the radius of the contact circle and 1585: 1577: 1569: 1360:(ARPES). Image size is 250 nm by 250 nm. 1342: 1064:or molecules to be deposited at a time. 5723: 5287: 2463:{\displaystyle \langle \sigma \rangle } 1669:Thin films may be biaxially loaded via 1534:It has been suggested that portions of 1498:and a compound film will be deposited. 14: 6361: 6338: 6310: 6291: 6274:Thin Film Analysis by X-Ray Scattering 6140:ACS Applied Materials & Interfaces 5943:ACS Applied Materials & Interfaces 5447: 5348: 5232: 4093: 3913: 3708:in order to suppress the formation of 3680: 3607: 3205:{\displaystyle H={\frac {P_{max}}{A}}} 3135:{\displaystyle P=\alpha (h-h_{f})^{m}} 1659: 1494:can occur during interaction with the 1304: 1149: 5493: 5491: 5443: 5441: 5332:"kSA MOS Product Specification Sheet" 5190: 5146:"Mechanical properties of thin films" 5139: 5137: 5135: 5133: 5038: 5036: 5034: 5010: 4959: 4957: 4855:Journal of Physics D: Applied Physics 4694: 4692: 4089: 4087: 4085: 4083: 4081: 3514: 2036:{\displaystyle \varepsilon =-e_{T}/3} 647:vapor pressure and applied pressure. 6339:Mattox, Donald M (14 January 2004). 4897: 4608:Zeitschrift fĂŒr Physikalische Chemie 4119:Venables, John A. (31 August 2000). 3535: 2048: 1961:film will develop tensile stresses. 1520: 1416:), then a layer of the other (i.e., 1292:, uses gaseous precursor to deposit 912: 289: 101:. A stack of thin films is called a 5220:10.1146/annurev.ms.26.080196.002243 5193:"Mechanical Behavior of Thin Films" 5144:Nix, William D. (1 November 1989). 5143: 3921:is being used to apply solid-state 3880:third generation photovoltaic cells 3755:, as the outer ground conductor in 3633: 2417:is the thickness of the substrate, 2186:can be calculated by measuring the 1685:with the substrate. Differences in 1067:It is useful in the manufacture of 24: 6292:Ohring, Milton (26 October 2001). 6258: 6195:Energy & Environmental Science 5488: 5438: 5302:10.1016/b978-0-12-811180-2.00023-2 5200:Annual Review of Materials Science 5184: 5130: 5031: 5011:Smith, Donald L. (22 March 1995). 4964:Murakami, Masanori (1 July 1991). 4954: 4689: 4078: 3943:thin-film bulk acoustic resonators 3806:high-electron-mobility transistors 3001: 2956: 2941: 2931: 2923: 2824: 2801: 2764: 2749: 2356: 2321: 2203:and monitoring the relaxation via 1689:and the growth and coalescence of 25: 6395: 4036:Thin-film bulk acoustic resonator 3652:systems. Large-area (reflective) 1753: 1392:fires a high-energy beam from an 1299:sequential infiltration synthesis 1262:metalorganic vapour phase epitaxy 6311:Seshan, Krishna (11 July 2017). 5349:Stoney, G. Gerald (6 May 1909). 4327:10.1016/j.scriptamat.2013.07.029 3966:Dual-polarisation interferometry 3812:Biosensors and plasmonic devices 1964: 1525: 1352:(STM) and from the emergence of 71:electronic semiconductor devices 6229: 6182: 6127: 6072: 6021: 5970: 5926: 5873: 5826: 5787: 5762: 5736:Surface and Coatings Technology 5698: 5641: 5602: 5563: 5516: 5391: 5342: 5324: 5281: 5233:Kaiser, Norbert (1 June 2002). 5226: 5085: 5004: 4845: 4790: 4739: 4642: 4599: 4556: 4504: 4453: 4404: 4369: 4270:Surface and Coatings Technology 4041:Transfer-matrix method (optics) 3735:Electrically operating coatings 3602: 2444:is the height of the film, and 1516: 5748:10.1016/j.surfcoat.2009.09.075 5615:MRS Online Proceedings Library 5502:. Springer. pp. 132–143. 5448:Chason, Eric (December 2012). 5296:, Elsevier, pp. 487–514, 4875:10.1088/0022-3727/43/42/425205 4333: 4306: 4292:10.1016/j.surfcoat.2011.01.007 4261: 4198: 4172: 4147: 4112: 4053: 3263: 3238: 3123: 3103: 2913: 2900: 2881:{\displaystyle \sigma (h_{f})} 2875: 2862: 2819: 2807: 2743: 2730: 2597: 2591: 2540: 2534: 1824: 1805: 1802: 1776: 1683:thermal expansion coefficients 1442:relies on a plasma (usually a 1004: 973: 964: 943: 868: 856: 842: 823: 732: 710: 162:The two types of adsorptions, 13: 1: 6343:. William Andrew Publishing. 6315:. William Andrew Publishing. 6243:. Woodbank Communications Ltd 5576:Journal of Materials Research 5529:Journal of Materials Research 4930:10.1016/j.actamat.2022.118432 4047: 3991:Kelvin probe force microscope 3919:Thin-film printing technology 1478:resulting in a high level of 1432:) or by a chemical reaction ( 1182:in the solution (usually for 1027: 388:is the sticking coefficient: 119: 5812:10.1016/j.apsusc.2022.154844 5150:Metallurgical Transactions A 5017:. McGraw Hill Professional. 4752:synchrotron radiation study" 3866:. The rationale for this is 3852:Thin-film photovoltaic cells 3798:two-dimensional electron gas 3584:, as used for instance in a 3540:In the physical sciences, a 2363:{\displaystyle \mathrm {E} } 2211:Wafer Curvature Measurements 2205:scanning electron microscopy 1852:{\displaystyle \varepsilon } 1194:Chemical solution deposition 7: 6097:10.1021/acs.jpclett.9b00869 3948: 3574: 2178:Measuring stress and strain 1906:{\displaystyle \alpha _{s}} 1879:{\displaystyle \alpha _{f}} 1460:process. Pulses of focused 10: 6400: 5836:Journal of Applied Physics 5191:Vinci, Richard P. (1996). 5106:10.1109/STYSW.2010.5714177 4756:Journal of Applied Physics 4655:Journal of Applied Physics 4378:Journal of Applied Physics 4363:10.1103/PhysRevB.72.235418 3855: 3829:Surface plasmon polaritons 3761:integrated passive devices 3637: 2603:{\displaystyle \sigma (z)} 1621: 1617: 1595:Frank–van der Merwe growth 1426:molecular layer deposition 1358:photoemission spectroscopy 1290:molecular layer deposition 1274:uses an ionized vapor, or 1058:molecular layer deposition 75:integrated passive devices 29: 5474:10.1016/j.tsf.2012.11.001 5424:10.1007/s11665-018-3132-1 5288:Barbier, Antoine (2018), 4725:10.1016/j.tsf.2016.03.039 3825:surface plasmon resonance 3555:The term "multilayer" is 2383:{\displaystyle \upsilon } 1933:is the temperature, and 1709: 1664: 1650:chemical vapor deposition 1601:Stranski–Krastanov growth 1537:Stranski–Krastanov growth 1315:physical vapor deposition 1288:and its sister technique 1250:Chemical vapor deposition 1133:chemical vapor deposition 1109:aluminium-coated PET film 361:{\displaystyle \tau _{a}} 144:Adsorption and desorption 4823:10.1103/physrevb.44.3369 4131:10.1017/cbo9780511755651 1574:Frank–van-der-Merwe mode 1390:electron beam evaporator 1198:chemical bath deposition 1123:, and the deposition of 1077:anti-reflective coatings 1060:allow a single layer of 1050:Langmuir–Blodgett method 67:magnetic recording media 5800:Applied Surface Science 5549:10.1557/jmr.2004.19.1.3 4620:10.1515/zpch-1926-11927 4384:(4): 043304–043304–12. 4094:Ohring, Milton (2002). 3900:copper zinc tin sulfide 3819:thin films are used in 3749:electrical conductivity 3596:Giant magnetoresistance 3530:Lead Zirconate Titanate 3307:{\displaystyle E_{eff}} 3144:After the contact area 1859:is the elastic strain, 1654:pulsed laser deposition 1582:Stranski–Krastanov mode 1509:takes a conical shape ( 1468:Cathodic arc deposition 1454:Pulsed laser deposition 1422:atomic layer deposition 1286:Atomic layer deposition 1054:atomic layer deposition 381:{\displaystyle \sigma } 99:thin-film drug delivery 6152:10.1021/acsami.0c14732 6006:10.1364/OPEX.13.006645 5956:10.1021/acsami.7b10136 5843:(7): 074303–074303–7. 5707:Introduction to Optics 5675:10.1002/adma.201803312 5376:10.1098/rspa.1909.0021 4534:10.1098/rspa.1949.0163 4482:10.1098/rspa.1949.0096 4438:10.1098/rspa.1949.0095 4231:10.1002/adma.201302283 4021:Thin-film interference 3996:Langmuir–Blodgett film 3908:perovskite solar cells 3753:printed circuit boards 3744: 3505: 3485: 3465: 3445: 3414: 3308: 3273: 3206: 3158: 3136: 3079: 3052: 3032: 2993: 2882: 2843: 2691: 2640: 2604: 2575: 2553: 2464: 2438: 2411: 2384: 2364: 2342: 2290: 2167: 2140: 2111: 2037: 1991: 1954: 1927: 1907: 1880: 1853: 1831: 1735: 1646:molecular beam epitaxy 1591: 1583: 1575: 1406:molecular beam epitaxy 1383:Molecular beam epitaxy 1361: 1046:Molecular beam epitaxy 1011: 900: 791: 771: 742: 671: 640: 610: 450: 382: 362: 335: 315: 279: 249: 222: 195: 110:multiferroic materials 27:Thin layer of material 5588:10.1557/JMR.1992.0613 3868:thin-film solar cells 3856:Further information: 3742: 3699:microelectronic chips 3665:of titanium dioxide, 3638:Further information: 3506: 3486: 3466: 3446: 3415: 3309: 3274: 3207: 3159: 3137: 3080: 3078:{\displaystyle h_{f}} 3053: 3038:designates the load, 3033: 2994: 2883: 2844: 2692: 2641: 2605: 2576: 2554: 2465: 2439: 2437:{\displaystyle h_{f}} 2412: 2410:{\displaystyle h_{s}} 2385: 2365: 2343: 2291: 2168: 2166:{\displaystyle a_{f}} 2141: 2139:{\displaystyle a_{s}} 2112: 2038: 1992: 1990:{\displaystyle e_{T}} 1955: 1953:{\displaystyle T_{0}} 1928: 1908: 1881: 1854: 1832: 1736: 1734:{\displaystyle e_{T}} 1677:between the coherent 1622:Further information: 1589: 1581: 1573: 1434:chemical beam epitaxy 1346: 1012: 901: 792: 772: 770:{\displaystyle p_{e}} 743: 672: 670:{\displaystyle P_{A}} 650:Langmuir model where 641: 611: 451: 383: 363: 336: 316: 280: 278:{\displaystyle E_{a}} 250: 248:{\displaystyle E_{a}} 223: 221:{\displaystyle E_{c}} 196: 194:{\displaystyle E_{p}} 91:thin-film solar cells 79:light-emitting diodes 6369:Artificial materials 6057:10.1364/OE.22.020107 5742:(12–13): 2055–2059. 5259:10.1364/ao.41.003053 4065:www.electropedia.org 4031:Thin-film solar cell 3981:Flexible electronics 3858:Thin film solar cell 3567:", which describe a 3495: 3475: 3455: 3427: 3321: 3285: 3220: 3170: 3148: 3091: 3062: 3042: 3022: 2894: 2856: 2701: 2650: 2614: 2585: 2565: 2477: 2448: 2421: 2394: 2374: 2352: 2302: 2222: 2150: 2123: 2059: 2003: 1974: 1937: 1917: 1890: 1863: 1843: 1764: 1718: 1548:into this section. ( 1350:tunneling microscopy 1034:thin-film deposition 927: 803: 781: 754: 683: 654: 630: 461: 394: 372: 345: 325: 305: 262: 232: 205: 178: 153:sticking coefficient 18:Thin-film deposition 6146:(47): 52643–52651. 6048:2014OExpr..2220107L 6042:(17): 20107–20116. 5997:2005OExpr..13.6645L 5950:(42): 37374–37385. 5849:2010JAP...108g4303S 5666:2019AdM....3103312P 5627:10.1557/PROC-522-27 5541:2004JMatR..19....3O 5466:2012TSF...526....1C 5416:2018JMEP...27..457T 5367:1909RSPSA..82..172S 5251:2002ApOpt..41.3053K 5212:1996AnRMS..26..431V 5162:1989MTA....20.2217N 5061:2018JVSTA..36b0801A 4982:1991JVSTA...9.2469M 4922:2023AcMat.24218432Z 4867:2010JPhD...43P5205R 4815:1991PhRvB..44.3369K 4768:2019JAP...125u5302Z 4717:2016TSF...604...90D 4667:2001JAP....89.4886F 4526:1949RSPSA.200..125F 4474:1949RSPSA.198..216F 4429:1949RSPSA.198..205F 4390:2011JAP...110d3304R 4355:2005PhRvB..72w5418T 4223:2013AdM....25.6477A 3931:Thin-film batteries 3914:Thin-film batteries 3892:polymer solar cells 3872:printed electronics 3846:plasmonic waveguide 3823:structures such as 3765:integrated circuits 3725:diamond-like carbon 3681:Protective coatings 3671:smart phone cameras 3608:Decorative coatings 3444:{\displaystyle a/t} 2797: 2683: 2530: 2282: 1660:Mechanical Behavior 1502:Electrohydrodynamic 1472:ion beam deposition 1456:systems work by an 1354:quantum-well states 1305:Physical deposition 1150:Chemical deposition 1101:integrated circuits 1081:self-cleaning glass 95:thin-film batteries 6296:. Academic Press. 6207:10.1039/D1EE00832C 5887:Scientific Reports 5654:Advanced Materials 5170:10.1007/BF02666659 5100:. pp. 82–85. 4577:10.1007/BF01798103 4315:Scripta Materialia 4211:Advanced Materials 4186:. 15 November 2017 3745: 3590:refractive indexes 3515:Strain engineering 3501: 3481: 3461: 3441: 3410: 3304: 3269: 3202: 3154: 3132: 3075: 3048: 3028: 2989: 2878: 2839: 2776: 2687: 2669: 2636: 2600: 2571: 2549: 2509: 2460: 2434: 2407: 2380: 2360: 2338: 2286: 2268: 2163: 2136: 2107: 2033: 1987: 1950: 1923: 1903: 1876: 1849: 1827: 1731: 1687:interfacial energy 1592: 1584: 1576: 1362: 1007: 896: 787: 767: 738: 667: 636: 606: 446: 378: 358: 341:is the net flux, 331: 311: 275: 245: 218: 191: 6374:Materials science 5991:(17): 6645–6650. 5901:10.1038/srep09929 5857:10.1063/1.3485825 5509:978-1-4757-5943-3 5338:. 18 August 2021. 5311:978-0-12-811180-2 5245:(16): 3053–3060. 5156:(11): 2217–2245. 5115:978-1-4244-8324-2 5070:10.1116/1.5011790 5024:978-0-07-058502-7 4803:Physical Review B 4776:10.1063/1.5094286 4675:10.1063/1.1352563 4520:(1053): 125–134. 4468:(1053): 216–225. 4423:(1053): 205–216. 4398:10.1063/1.3624768 4343:Physical Review B 4276:(12): 3658–3664. 4184:IBM Research Blog 4140:978-0-521-78500-6 3961:Dielectric mirror 3802:electron mobility 3586:dielectric mirror 3559:an extension of " 3546:stratified medium 3536:Multilayer medium 3504:{\displaystyle h} 3484:{\displaystyle t} 3464:{\displaystyle a} 3408: 3373: 3345: 3245: 3200: 3157:{\displaystyle A} 3051:{\displaystyle h} 3031:{\displaystyle P} 2987: 2964: 2963: 2938: 2831: 2771: 2722: 2685: 2574:{\displaystyle z} 2507: 2336: 2284: 2197:x-ray diffraction 2193:optical constants 2105: 2049:Epitaxial Strains 1926:{\displaystyle T} 1590:Volmer–Weber mode 1566: 1565: 1213:Langmuir–Blodgett 1115:(see the work of 1083:, for instance), 921:be describes by: 918:Surface diffusion 913:Surface diffusion 894: 886: 790:{\displaystyle p} 736: 639:{\displaystyle b} 595: 527: 444: 415: 334:{\displaystyle J} 314:{\displaystyle n} 290:Nucleation models 138:surface diffusion 16:(Redirected from 6391: 6354: 6326: 6307: 6288: 6253: 6252: 6250: 6248: 6233: 6227: 6226: 6201:(6): 3420–3429. 6186: 6180: 6179: 6131: 6125: 6124: 6091:(9): 2058–2065. 6076: 6070: 6069: 6059: 6025: 6019: 6018: 6008: 5974: 5968: 5967: 5939: 5930: 5924: 5923: 5913: 5903: 5877: 5871: 5870: 5868: 5830: 5824: 5823: 5791: 5785: 5784: 5766: 5760: 5759: 5730: 5721: 5720: 5702: 5696: 5695: 5677: 5645: 5639: 5638: 5606: 5600: 5599: 5567: 5561: 5560: 5520: 5514: 5513: 5495: 5486: 5485: 5454:Thin Solid Films 5445: 5436: 5435: 5395: 5389: 5388: 5378: 5361:(553): 172–175. 5346: 5340: 5339: 5328: 5322: 5321: 5320: 5318: 5285: 5279: 5278: 5230: 5224: 5223: 5197: 5188: 5182: 5181: 5141: 5128: 5127: 5089: 5083: 5082: 5072: 5040: 5029: 5028: 5008: 5002: 5001: 4990:10.1116/1.577258 4976:(4): 2469–2476. 4961: 4952: 4951: 4941: 4901: 4895: 4894: 4849: 4843: 4842: 4809:(7): 3369–3372. 4794: 4788: 4787: 4743: 4737: 4736: 4705:Thin Solid Films 4696: 4687: 4686: 4661:(9): 4886–4897. 4646: 4640: 4639: 4603: 4597: 4596: 4560: 4554: 4553: 4508: 4502: 4501: 4457: 4451: 4450: 4440: 4408: 4402: 4401: 4373: 4367: 4366: 4337: 4331: 4330: 4310: 4304: 4303: 4285: 4265: 4259: 4258: 4202: 4196: 4195: 4193: 4191: 4176: 4170: 4169: 4151: 4145: 4144: 4116: 4110: 4109: 4091: 4076: 4075: 4073: 4071: 4057: 4026:Thin-film optics 4006:Microfabrication 3976:Flexible display 3925:to a variety of 3923:lithium polymers 3786:Heterostructures 3781: 3773:titanium nitride 3718: 3707: 3692: 3644:Thin film optics 3634:Optical coatings 3628:titanium nitride 3623:titanium dioxide 3619:refractive index 3521:microelectronics 3510: 3508: 3507: 3502: 3490: 3488: 3487: 3482: 3470: 3468: 3467: 3462: 3450: 3448: 3447: 3442: 3437: 3419: 3417: 3416: 3411: 3409: 3407: 3406: 3397: 3396: 3395: 3379: 3374: 3369: 3368: 3367: 3351: 3346: 3344: 3343: 3325: 3313: 3311: 3310: 3305: 3303: 3302: 3278: 3276: 3275: 3270: 3262: 3261: 3246: 3244: 3233: 3211: 3209: 3208: 3203: 3201: 3196: 3195: 3180: 3163: 3161: 3160: 3155: 3141: 3139: 3138: 3133: 3131: 3130: 3121: 3120: 3084: 3082: 3081: 3076: 3074: 3073: 3057: 3055: 3054: 3049: 3037: 3035: 3034: 3029: 2998: 2996: 2995: 2990: 2988: 2986: 2978: 2970: 2965: 2962: 2954: 2953: 2952: 2939: 2937: 2929: 2921: 2920: 2912: 2911: 2887: 2885: 2884: 2879: 2874: 2873: 2848: 2846: 2845: 2840: 2832: 2830: 2822: 2799: 2796: 2795: 2794: 2784: 2772: 2770: 2762: 2761: 2760: 2747: 2742: 2741: 2723: 2721: 2713: 2705: 2696: 2694: 2693: 2688: 2686: 2684: 2682: 2677: 2668: 2667: 2654: 2645: 2643: 2642: 2637: 2635: 2634: 2609: 2607: 2606: 2601: 2580: 2578: 2577: 2572: 2558: 2556: 2555: 2550: 2529: 2528: 2527: 2517: 2508: 2506: 2505: 2493: 2469: 2467: 2466: 2461: 2443: 2441: 2440: 2435: 2433: 2432: 2416: 2414: 2413: 2408: 2406: 2405: 2389: 2387: 2386: 2381: 2369: 2367: 2366: 2361: 2359: 2347: 2345: 2344: 2339: 2337: 2335: 2324: 2319: 2314: 2313: 2295: 2293: 2292: 2287: 2285: 2283: 2281: 2276: 2267: 2266: 2256: 2255: 2254: 2232: 2201:focused ion beam 2172: 2170: 2169: 2164: 2162: 2161: 2145: 2143: 2142: 2137: 2135: 2134: 2116: 2114: 2113: 2108: 2106: 2104: 2103: 2094: 2093: 2092: 2080: 2079: 2069: 2042: 2040: 2039: 2034: 2029: 2024: 2023: 1996: 1994: 1993: 1988: 1986: 1985: 1959: 1957: 1956: 1951: 1949: 1948: 1932: 1930: 1929: 1924: 1912: 1910: 1909: 1904: 1902: 1901: 1885: 1883: 1882: 1877: 1875: 1874: 1858: 1856: 1855: 1850: 1836: 1834: 1833: 1828: 1823: 1822: 1801: 1800: 1788: 1787: 1748:grain boundaries 1740: 1738: 1737: 1732: 1730: 1729: 1561: 1558: 1529: 1528: 1521: 1410:gallium arsenide 1113:contemporary art 1021:Ostwald ripening 1016: 1014: 1013: 1008: 1003: 1002: 990: 985: 984: 963: 962: 953: 939: 938: 905: 903: 902: 897: 895: 893: 892: 888: 887: 885: 884: 872: 835: 834: 821: 813: 796: 794: 793: 788: 776: 774: 773: 768: 766: 765: 750:BET model where 747: 745: 744: 739: 737: 735: 731: 730: 708: 707: 706: 693: 676: 674: 673: 668: 666: 665: 645: 643: 642: 637: 615: 613: 612: 607: 605: 601: 600: 596: 594: 593: 584: 576: 559: 558: 537: 533: 532: 528: 526: 525: 516: 508: 485: 484: 455: 453: 452: 447: 445: 443: 442: 430: 416: 414: 406: 398: 387: 385: 384: 379: 367: 365: 364: 359: 357: 356: 340: 338: 337: 332: 320: 318: 317: 312: 284: 282: 281: 276: 274: 273: 254: 252: 251: 246: 244: 243: 227: 225: 224: 219: 217: 216: 200: 198: 197: 192: 190: 189: 83:optical coatings 32:Thin-film memory 21: 6399: 6398: 6394: 6393: 6392: 6390: 6389: 6388: 6359: 6358: 6357: 6351: 6329: 6323: 6304: 6285: 6261: 6259:Further reading 6256: 6246: 6244: 6235: 6234: 6230: 6187: 6183: 6132: 6128: 6077: 6073: 6026: 6022: 5975: 5971: 5937: 5931: 5927: 5878: 5874: 5831: 5827: 5820:1854/LU-8719549 5792: 5788: 5781: 5767: 5763: 5731: 5724: 5717: 5703: 5699: 5646: 5642: 5607: 5603: 5568: 5564: 5521: 5517: 5510: 5500:Nanoindentation 5496: 5489: 5446: 5439: 5396: 5392: 5347: 5343: 5330: 5329: 5325: 5316: 5314: 5312: 5286: 5282: 5231: 5227: 5195: 5189: 5185: 5142: 5131: 5116: 5090: 5086: 5041: 5032: 5025: 5009: 5005: 4962: 4955: 4910:Acta Materialia 4902: 4898: 4850: 4846: 4795: 4791: 4744: 4740: 4697: 4690: 4647: 4643: 4604: 4600: 4561: 4557: 4509: 4505: 4458: 4454: 4409: 4405: 4374: 4370: 4338: 4334: 4311: 4307: 4266: 4262: 4203: 4199: 4189: 4187: 4178: 4177: 4173: 4166: 4152: 4148: 4141: 4117: 4113: 4106: 4092: 4079: 4069: 4067: 4059: 4058: 4054: 4050: 4045: 3986:Hydrogenography 3951: 3939: 3916: 3860: 3854: 3827:(SPR) sensors. 3814: 3790:gallium nitride 3780: 3776: 3737: 3717: 3713: 3709: 3706: 3702: 3691: 3687: 3683: 3667:silicon nitride 3646: 3640:Optical coating 3636: 3610: 3605: 3582:optical coating 3577: 3538: 3517: 3496: 3493: 3492: 3476: 3473: 3472: 3456: 3453: 3452: 3433: 3428: 3425: 3424: 3402: 3398: 3391: 3387: 3380: 3378: 3363: 3359: 3352: 3350: 3333: 3329: 3324: 3322: 3319: 3318: 3292: 3288: 3286: 3283: 3282: 3251: 3247: 3237: 3232: 3221: 3218: 3217: 3185: 3181: 3179: 3171: 3168: 3167: 3149: 3146: 3145: 3126: 3122: 3116: 3112: 3092: 3089: 3088: 3069: 3065: 3063: 3060: 3059: 3043: 3040: 3039: 3023: 3020: 3019: 3007:Nanoindentation 3004: 3002:Nanoindentation 2979: 2971: 2969: 2955: 2948: 2944: 2940: 2930: 2922: 2919: 2907: 2903: 2895: 2892: 2891: 2869: 2865: 2857: 2854: 2853: 2823: 2800: 2798: 2790: 2786: 2785: 2780: 2763: 2756: 2752: 2748: 2746: 2737: 2733: 2714: 2706: 2704: 2702: 2699: 2698: 2678: 2673: 2663: 2659: 2658: 2653: 2651: 2648: 2647: 2630: 2626: 2615: 2612: 2611: 2586: 2583: 2582: 2566: 2563: 2562: 2523: 2519: 2518: 2513: 2501: 2497: 2492: 2478: 2475: 2474: 2449: 2446: 2445: 2428: 2424: 2422: 2419: 2418: 2401: 2397: 2395: 2392: 2391: 2375: 2372: 2371: 2355: 2353: 2350: 2349: 2325: 2320: 2318: 2309: 2305: 2303: 2300: 2299: 2277: 2272: 2262: 2258: 2257: 2250: 2246: 2233: 2231: 2223: 2220: 2219: 2213: 2180: 2157: 2153: 2151: 2148: 2147: 2130: 2126: 2124: 2121: 2120: 2099: 2095: 2088: 2084: 2075: 2071: 2070: 2068: 2060: 2057: 2056: 2051: 2025: 2019: 2015: 2004: 2001: 2000: 1981: 1977: 1975: 1972: 1971: 1967: 1944: 1940: 1938: 1935: 1934: 1918: 1915: 1914: 1897: 1893: 1891: 1888: 1887: 1870: 1866: 1864: 1861: 1860: 1844: 1841: 1840: 1818: 1814: 1796: 1792: 1783: 1779: 1765: 1762: 1761: 1756: 1725: 1721: 1719: 1716: 1715: 1712: 1667: 1662: 1626: 1620: 1562: 1556: 1553: 1530: 1526: 1519: 1379:heating element 1307: 1152: 1030: 998: 994: 986: 980: 976: 958: 954: 949: 934: 930: 928: 925: 924: 915: 880: 876: 871: 849: 845: 830: 826: 822: 814: 812: 804: 801: 800: 782: 779: 778: 761: 757: 755: 752: 751: 726: 722: 709: 702: 698: 694: 692: 684: 681: 680: 661: 657: 655: 652: 651: 631: 628: 627: 589: 585: 577: 575: 571: 564: 560: 554: 550: 521: 517: 509: 507: 503: 490: 486: 480: 476: 462: 459: 458: 438: 434: 429: 407: 399: 397: 395: 392: 391: 373: 370: 369: 352: 348: 346: 343: 342: 326: 323: 322: 306: 303: 302: 292: 269: 265: 263: 260: 259: 239: 235: 233: 230: 229: 212: 208: 206: 203: 202: 185: 181: 179: 176: 175: 146: 122: 93:) and storage ( 35: 28: 23: 22: 15: 12: 11: 5: 6397: 6387: 6386: 6381: 6379:Nanotechnology 6376: 6371: 6356: 6355: 6350:978-0815514954 6349: 6335: 6334: 6333: 6328: 6327: 6322:978-1437778731 6321: 6308: 6303:978-1493301720 6302: 6289: 6284:978-3527310524 6283: 6267: 6266: 6265: 6260: 6257: 6255: 6254: 6228: 6181: 6126: 6071: 6035:Optics Express 6020: 5984:Optics Express 5969: 5925: 5872: 5825: 5786: 5780:978-1461471646 5779: 5761: 5722: 5716:978-0131499331 5715: 5697: 5660:(5): 1803312. 5640: 5601: 5582:(3): 613–617. 5562: 5515: 5508: 5487: 5437: 5410:(2): 457–470. 5390: 5341: 5323: 5310: 5280: 5239:Applied Optics 5225: 5183: 5129: 5114: 5084: 5030: 5023: 5003: 4953: 4896: 4861:(42): 425205. 4844: 4789: 4738: 4688: 4641: 4614:(1): 277–301. 4598: 4571:(1): 351–364. 4555: 4503: 4452: 4403: 4368: 4349:(23): 235418. 4332: 4305: 4260: 4197: 4171: 4165:978-3527321902 4164: 4146: 4139: 4111: 4104: 4077: 4051: 4049: 4046: 4044: 4043: 4038: 4033: 4028: 4023: 4018: 4013: 4008: 4003: 4001:Layer by layer 3998: 3993: 3988: 3983: 3978: 3973: 3968: 3963: 3958: 3952: 3950: 3947: 3938: 3935: 3915: 3912: 3888:dye-sensitized 3853: 3850: 3813: 3810: 3794:semiconductors 3778: 3757:coaxial cables 3736: 3733: 3729:nanocomposites 3715: 3711: 3704: 3689: 3682: 3679: 3635: 3632: 3609: 3606: 3604: 3601: 3600: 3599: 3593: 3576: 3573: 3537: 3534: 3516: 3513: 3500: 3480: 3460: 3440: 3436: 3432: 3405: 3401: 3394: 3390: 3386: 3383: 3377: 3372: 3366: 3362: 3358: 3355: 3349: 3342: 3339: 3336: 3332: 3328: 3301: 3298: 3295: 3291: 3268: 3265: 3260: 3257: 3254: 3250: 3243: 3240: 3236: 3231: 3228: 3225: 3199: 3194: 3191: 3188: 3184: 3178: 3175: 3153: 3129: 3125: 3119: 3115: 3111: 3108: 3105: 3102: 3099: 3096: 3072: 3068: 3047: 3027: 3003: 3000: 2985: 2982: 2977: 2974: 2968: 2961: 2958: 2951: 2947: 2943: 2936: 2933: 2928: 2925: 2918: 2915: 2910: 2906: 2902: 2899: 2877: 2872: 2868: 2864: 2861: 2838: 2835: 2829: 2826: 2821: 2818: 2815: 2812: 2809: 2806: 2803: 2793: 2789: 2783: 2779: 2775: 2769: 2766: 2759: 2755: 2751: 2745: 2740: 2736: 2732: 2729: 2726: 2720: 2717: 2712: 2709: 2681: 2676: 2672: 2666: 2662: 2657: 2633: 2629: 2625: 2622: 2619: 2599: 2596: 2593: 2590: 2570: 2548: 2545: 2542: 2539: 2536: 2533: 2526: 2522: 2516: 2512: 2504: 2500: 2496: 2491: 2488: 2485: 2482: 2459: 2456: 2453: 2431: 2427: 2404: 2400: 2379: 2358: 2334: 2331: 2328: 2323: 2317: 2312: 2308: 2280: 2275: 2271: 2265: 2261: 2253: 2249: 2245: 2242: 2239: 2236: 2230: 2227: 2212: 2209: 2179: 2176: 2160: 2156: 2133: 2129: 2102: 2098: 2091: 2087: 2083: 2078: 2074: 2067: 2064: 2050: 2047: 2032: 2028: 2022: 2018: 2014: 2011: 2008: 1984: 1980: 1966: 1963: 1947: 1943: 1922: 1900: 1896: 1873: 1869: 1848: 1826: 1821: 1817: 1813: 1810: 1807: 1804: 1799: 1795: 1791: 1786: 1782: 1778: 1775: 1772: 1769: 1755: 1754:Thermal Strain 1752: 1728: 1724: 1711: 1708: 1666: 1663: 1661: 1658: 1619: 1616: 1564: 1563: 1533: 1531: 1524: 1518: 1515: 1398:vapor pressure 1375:vapor pressure 1333:, rather than 1306: 1303: 1266:organometallic 1202:organometallic 1188:electroplating 1165:, rather than 1154:Here, a fluid 1151: 1148: 1121:electroplating 1093:semiconductors 1029: 1026: 1006: 1001: 997: 993: 989: 983: 979: 975: 972: 969: 966: 961: 957: 952: 948: 945: 942: 937: 933: 914: 911: 891: 883: 879: 875: 870: 867: 864: 861: 858: 855: 852: 848: 844: 841: 838: 833: 829: 825: 820: 817: 811: 808: 786: 764: 760: 734: 729: 725: 721: 718: 715: 712: 705: 701: 697: 691: 688: 664: 660: 635: 620:Langmuir model 604: 599: 592: 588: 583: 580: 574: 570: 567: 563: 557: 553: 549: 546: 543: 540: 536: 531: 524: 520: 515: 512: 506: 502: 499: 496: 493: 489: 483: 479: 475: 472: 469: 466: 441: 437: 433: 428: 425: 422: 419: 413: 410: 405: 402: 377: 355: 351: 330: 310: 291: 288: 272: 268: 242: 238: 215: 211: 188: 184: 145: 142: 121: 118: 87:antireflective 26: 9: 6: 4: 3: 2: 6396: 6385: 6382: 6380: 6377: 6375: 6372: 6370: 6367: 6366: 6364: 6352: 6346: 6342: 6337: 6336: 6331: 6330: 6324: 6318: 6314: 6309: 6305: 6299: 6295: 6290: 6286: 6280: 6277:. Wiley-VCH. 6276: 6275: 6269: 6268: 6263: 6262: 6242: 6238: 6232: 6224: 6220: 6216: 6212: 6208: 6204: 6200: 6196: 6192: 6185: 6177: 6173: 6169: 6165: 6161: 6157: 6153: 6149: 6145: 6141: 6137: 6130: 6122: 6118: 6114: 6110: 6106: 6102: 6098: 6094: 6090: 6086: 6082: 6075: 6067: 6063: 6058: 6053: 6049: 6045: 6041: 6037: 6036: 6031: 6024: 6016: 6012: 6007: 6002: 5998: 5994: 5990: 5986: 5985: 5980: 5973: 5965: 5961: 5957: 5953: 5949: 5945: 5944: 5936: 5929: 5921: 5917: 5912: 5907: 5902: 5897: 5893: 5889: 5888: 5883: 5876: 5867: 5862: 5858: 5854: 5850: 5846: 5842: 5838: 5837: 5829: 5821: 5817: 5813: 5809: 5805: 5801: 5797: 5790: 5782: 5776: 5772: 5765: 5757: 5753: 5749: 5745: 5741: 5737: 5729: 5727: 5718: 5712: 5708: 5701: 5693: 5689: 5685: 5681: 5676: 5671: 5667: 5663: 5659: 5655: 5651: 5644: 5636: 5632: 5628: 5624: 5620: 5616: 5612: 5605: 5597: 5593: 5589: 5585: 5581: 5577: 5573: 5566: 5558: 5554: 5550: 5546: 5542: 5538: 5534: 5530: 5526: 5519: 5511: 5505: 5501: 5494: 5492: 5483: 5479: 5475: 5471: 5467: 5463: 5459: 5455: 5451: 5444: 5442: 5433: 5429: 5425: 5421: 5417: 5413: 5409: 5405: 5401: 5394: 5386: 5382: 5377: 5372: 5368: 5364: 5360: 5356: 5352: 5345: 5337: 5333: 5327: 5313: 5307: 5303: 5299: 5295: 5291: 5284: 5276: 5272: 5268: 5264: 5260: 5256: 5252: 5248: 5244: 5240: 5236: 5229: 5221: 5217: 5213: 5209: 5205: 5201: 5194: 5187: 5179: 5175: 5171: 5167: 5163: 5159: 5155: 5151: 5147: 5140: 5138: 5136: 5134: 5125: 5121: 5117: 5111: 5107: 5103: 5099: 5095: 5088: 5080: 5076: 5071: 5066: 5062: 5058: 5055:(2): 020801. 5054: 5050: 5046: 5039: 5037: 5035: 5026: 5020: 5016: 5015: 5007: 4999: 4995: 4991: 4987: 4983: 4979: 4975: 4971: 4967: 4960: 4958: 4949: 4945: 4940: 4935: 4931: 4927: 4923: 4919: 4915: 4911: 4907: 4900: 4892: 4888: 4884: 4880: 4876: 4872: 4868: 4864: 4860: 4856: 4848: 4840: 4836: 4832: 4828: 4824: 4820: 4816: 4812: 4808: 4804: 4800: 4793: 4785: 4781: 4777: 4773: 4769: 4765: 4761: 4757: 4753: 4751: 4742: 4734: 4730: 4726: 4722: 4718: 4714: 4710: 4706: 4702: 4695: 4693: 4684: 4680: 4676: 4672: 4668: 4664: 4660: 4656: 4652: 4645: 4637: 4633: 4629: 4625: 4621: 4617: 4613: 4609: 4602: 4594: 4590: 4586: 4582: 4578: 4574: 4570: 4566: 4559: 4551: 4547: 4543: 4539: 4535: 4531: 4527: 4523: 4519: 4515: 4507: 4499: 4495: 4491: 4487: 4483: 4479: 4475: 4471: 4467: 4463: 4456: 4448: 4444: 4439: 4434: 4430: 4426: 4422: 4418: 4414: 4407: 4399: 4395: 4391: 4387: 4383: 4379: 4372: 4364: 4360: 4356: 4352: 4348: 4344: 4336: 4328: 4324: 4320: 4316: 4309: 4301: 4297: 4293: 4289: 4284: 4279: 4275: 4271: 4264: 4256: 4252: 4248: 4244: 4240: 4236: 4232: 4228: 4224: 4220: 4216: 4212: 4208: 4201: 4185: 4181: 4175: 4167: 4161: 4158:. Wiley-VCH. 4157: 4150: 4142: 4136: 4132: 4128: 4124: 4123: 4115: 4107: 4105:9780125249751 4101: 4097: 4090: 4088: 4086: 4084: 4082: 4066: 4062: 4056: 4052: 4042: 4039: 4037: 4034: 4032: 4029: 4027: 4024: 4022: 4019: 4017: 4014: 4012: 4009: 4007: 4004: 4002: 3999: 3997: 3994: 3992: 3989: 3987: 3984: 3982: 3979: 3977: 3974: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3953: 3946: 3944: 3934: 3932: 3928: 3924: 3920: 3911: 3909: 3905: 3901: 3897: 3894:, as well as 3893: 3889: 3885: 3882:and include, 3881: 3877: 3873: 3869: 3865: 3859: 3849: 3847: 3843: 3839: 3835: 3830: 3826: 3822: 3818: 3809: 3807: 3803: 3799: 3795: 3791: 3787: 3783: 3774: 3770: 3766: 3762: 3758: 3754: 3750: 3741: 3732: 3730: 3726: 3722: 3700: 3696: 3678: 3676: 3672: 3668: 3664: 3660: 3655: 3651: 3645: 3641: 3631: 3629: 3624: 3620: 3615: 3597: 3594: 3591: 3587: 3583: 3579: 3578: 3572: 3570: 3566: 3562: 3558: 3553: 3551: 3547: 3543: 3533: 3531: 3527: 3522: 3512: 3498: 3478: 3458: 3438: 3434: 3430: 3420: 3403: 3399: 3392: 3388: 3384: 3381: 3375: 3370: 3364: 3360: 3356: 3353: 3347: 3340: 3337: 3334: 3330: 3326: 3316: 3299: 3296: 3293: 3289: 3279: 3266: 3258: 3255: 3252: 3248: 3241: 3234: 3229: 3226: 3223: 3215: 3212: 3197: 3192: 3189: 3186: 3182: 3176: 3173: 3165: 3151: 3142: 3127: 3117: 3113: 3109: 3106: 3100: 3097: 3094: 3086: 3070: 3066: 3045: 3025: 3016: 3011: 3008: 2999: 2983: 2980: 2975: 2972: 2966: 2959: 2949: 2945: 2934: 2926: 2916: 2908: 2904: 2897: 2889: 2870: 2866: 2859: 2849: 2836: 2833: 2827: 2816: 2813: 2810: 2804: 2791: 2787: 2781: 2777: 2773: 2767: 2757: 2753: 2738: 2734: 2727: 2724: 2718: 2715: 2710: 2707: 2679: 2674: 2670: 2664: 2660: 2655: 2631: 2627: 2620: 2594: 2588: 2568: 2559: 2546: 2543: 2537: 2531: 2524: 2520: 2514: 2510: 2502: 2498: 2494: 2489: 2483: 2472: 2454: 2429: 2425: 2402: 2398: 2377: 2332: 2329: 2326: 2315: 2310: 2306: 2296: 2278: 2273: 2269: 2263: 2259: 2251: 2247: 2240: 2234: 2228: 2225: 2217: 2208: 2206: 2202: 2198: 2194: 2189: 2185: 2175: 2158: 2154: 2131: 2127: 2117: 2100: 2096: 2089: 2085: 2081: 2076: 2072: 2065: 2062: 2054: 2046: 2043: 2030: 2026: 2020: 2016: 2012: 2009: 2006: 1998: 1982: 1978: 1965:Growth Strain 1962: 1945: 1941: 1920: 1898: 1894: 1871: 1867: 1846: 1837: 1819: 1815: 1811: 1808: 1797: 1793: 1789: 1784: 1780: 1773: 1770: 1767: 1759: 1751: 1749: 1745: 1726: 1722: 1707: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1657: 1655: 1651: 1647: 1642: 1640: 1639:Heteroepitaxy 1635: 1630: 1625: 1615: 1611: 1607: 1604: 1602: 1598: 1596: 1588: 1580: 1572: 1568: 1560: 1551: 1547: 1543: 1539: 1538: 1532: 1523: 1522: 1514: 1512: 1508: 1503: 1499: 1497: 1493: 1489: 1485: 1481: 1477: 1476:power density 1473: 1469: 1465: 1463: 1459: 1455: 1451: 1449: 1445: 1441: 1437: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1402: 1399: 1395: 1391: 1386: 1384: 1380: 1376: 1372: 1367: 1359: 1355: 1351: 1345: 1341: 1338: 1336: 1332: 1327: 1323: 1318: 1316: 1312: 1302: 1300: 1295: 1291: 1287: 1283: 1281: 1277: 1273: 1269: 1267: 1263: 1259: 1255: 1251: 1247: 1244: 1240: 1238: 1233: 1229: 1225: 1221: 1219: 1218:nanoparticles 1214: 1209: 1207: 1203: 1199: 1195: 1191: 1189: 1185: 1181: 1177: 1173: 1170: 1168: 1164: 1163: 1157: 1147: 1145: 1141: 1136: 1134: 1130: 1127:and enriched 1126: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1065: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1025: 1022: 1017: 999: 995: 991: 987: 981: 977: 970: 967: 959: 955: 950: 946: 940: 935: 931: 922: 919: 910: 906: 889: 881: 877: 873: 865: 862: 859: 853: 850: 846: 839: 836: 831: 827: 818: 815: 809: 806: 798: 784: 762: 758: 748: 727: 723: 719: 716: 713: 703: 699: 695: 689: 686: 678: 662: 658: 648: 633: 625: 621: 616: 602: 597: 590: 586: 581: 578: 572: 568: 565: 561: 555: 551: 547: 544: 541: 538: 534: 529: 522: 518: 513: 510: 504: 500: 497: 494: 491: 487: 481: 477: 473: 470: 467: 464: 456: 439: 435: 431: 426: 423: 420: 417: 411: 408: 403: 400: 389: 375: 353: 349: 328: 308: 299: 297: 287: 270: 266: 256: 240: 236: 213: 209: 186: 182: 173: 172:Van der Waals 169: 168:chemisorption 165: 164:physisorption 160: 158: 154: 150: 141: 139: 135: 131: 126: 117: 115: 114:superlattices 111: 106: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 49:) to several 48: 44: 40: 33: 19: 6340: 6312: 6293: 6273: 6245:. Retrieved 6241:mpoweruk.com 6240: 6231: 6198: 6194: 6184: 6143: 6139: 6129: 6088: 6084: 6074: 6039: 6033: 6023: 5988: 5982: 5972: 5947: 5941: 5928: 5891: 5885: 5875: 5840: 5834: 5828: 5803: 5799: 5789: 5770: 5764: 5739: 5735: 5706: 5700: 5657: 5653: 5643: 5621:(1): 27–32. 5618: 5614: 5604: 5579: 5575: 5565: 5532: 5528: 5518: 5499: 5457: 5453: 5407: 5403: 5393: 5358: 5354: 5344: 5335: 5326: 5315:, retrieved 5293: 5283: 5242: 5238: 5228: 5203: 5199: 5186: 5153: 5149: 5097: 5087: 5052: 5048: 5013: 5006: 4973: 4969: 4913: 4909: 4899: 4858: 4854: 4847: 4806: 4802: 4792: 4759: 4755: 4749: 4741: 4708: 4704: 4658: 4654: 4644: 4611: 4607: 4601: 4568: 4564: 4558: 4517: 4513: 4506: 4465: 4461: 4455: 4420: 4416: 4406: 4381: 4377: 4371: 4346: 4342: 4335: 4318: 4314: 4308: 4273: 4269: 4263: 4214: 4210: 4200: 4188:. Retrieved 4183: 4174: 4155: 4149: 4121: 4114: 4095: 4068:. Retrieved 4064: 4055: 3971:Ellipsometry 3940: 3917: 3876:roll-to-roll 3861: 3815: 3792:and similar 3784: 3746: 3684: 3675:solar panels 3647: 3611: 3603:Applications 3568: 3556: 3554: 3545: 3541: 3539: 3518: 3421: 3317: 3280: 3216: 3213: 3166: 3143: 3087: 3012: 3005: 2890: 2850: 2560: 2473: 2297: 2218: 2214: 2181: 2118: 2055: 2052: 2044: 1999: 1968: 1838: 1760: 1757: 1744:dislocations 1713: 1703:delamination 1668: 1643: 1638: 1633: 1631: 1627: 1612: 1608: 1605: 1599: 1593: 1567: 1554: 1544:from it and 1535: 1517:Growth modes 1500: 1484:dissociation 1466: 1452: 1438: 1403: 1394:electron gun 1387: 1363: 1339: 1334: 1330: 1319: 1308: 1284: 1270: 1248: 1241: 1239:substrates. 1224:Spin coating 1222: 1210: 1192: 1184:noble metals 1174: 1171: 1166: 1160: 1153: 1137: 1066: 1033: 1031: 1018: 923: 916: 907: 799: 749: 679: 649: 617: 457: 390: 300: 293: 257: 161: 147: 123: 107: 38: 36: 5866:10261/87212 5535:(1): 3–20. 5206:: 431–462. 4939:2262/101841 4070:17 November 4011:Organic LED 3904:nanocrystal 3896:quantum dot 3864:solar cells 3817:Noble metal 3769:transistors 3663:multilayers 3659:aberrations 3614:gold leaves 2888:as:   1634:homoepitaxy 1511:Taylor cone 1331:directional 1243:Dip coating 1167:directional 1087:(layers of 1085:electronics 51:micrometers 6384:Thin films 6363:Categories 6332:Historical 5806:: 154844. 4916:: 118432. 4048:References 3927:substrates 3650:refractive 3542:multilayer 1492:excitation 1488:ionization 1480:ionization 1446:, such as 1440:Sputtering 1371:scattering 1366:evaporator 1364:A thermal 1117:Larry Bell 1111:), and in 1097:conductors 1089:insulators 1073:reflective 1042:nanometres 1028:Deposition 157:Desorption 149:Adsorption 134:desorption 130:adsorption 125:Nucleation 120:Nucleation 103:multilayer 63:sputtering 6264:Textbooks 6247:3 October 6223:235510269 6215:1754-5692 6176:226973268 6160:1944-8244 6121:104297006 6105:1948-7185 5756:0257-8972 5684:1521-4095 5635:1946-4274 5596:2044-5326 5557:2044-5326 5482:0040-6090 5432:1544-1024 5385:0950-1207 5267:0003-6935 5178:2379-0180 5079:0734-2101 4998:0734-2101 4948:1359-6454 4891:120309363 4883:1361-6463 4831:0163-1829 4784:0021-8979 4733:0040-6090 4711:: 90–93. 4683:0021-8979 4636:100018452 4628:0942-9352 4585:0343-7329 4550:122413983 4498:137401458 4321:: 13–18. 4283:1303.2741 4255:205251007 4239:1521-4095 3848:designs. 3834:germanium 3821:plasmonic 3697:films in 3561:monolayer 3550:interface 3389:ν 3385:− 3361:ν 3357:− 3264:√ 3242:π 3239:√ 3230:β 3110:− 3101:α 2976:κ 2957:∂ 2942:∂ 2932:∂ 2927:κ 2924:∂ 2917:∝ 2898:σ 2860:σ 2825:∂ 2805:σ 2802:∂ 2778:∫ 2765:∂ 2750:∂ 2728:σ 2725:∝ 2711:κ 2624:⟩ 2621:σ 2618:⟨ 2589:σ 2532:σ 2511:∫ 2487:⟩ 2484:σ 2481:⟨ 2458:⟩ 2455:σ 2452:⟨ 2378:υ 2333:υ 2330:− 2244:⟩ 2241:σ 2238:⟨ 2226:κ 2188:curvature 2082:− 2066:≈ 2063:ε 2013:− 2007:ε 1895:α 1868:α 1847:ε 1812:− 1794:α 1790:− 1781:α 1774:− 1768:ε 1632:The term 1557:June 2021 1444:noble gas 1377:than the 1335:conformal 1322:energetic 1294:conformal 1280:microwave 1232:viscosity 1162:conformal 1156:precursor 1105:packaging 1038:substrate 971:⁡ 932:τ 863:− 837:− 807:θ 687:θ 624:BET model 587:τ 579:− 569:⁡ 552:τ 548:σ 519:τ 511:− 501:⁡ 495:− 478:τ 474:σ 436:τ 427:− 424:σ 376:σ 350:τ 85:(such as 59:silvering 47:monolayer 43:nanometer 39:thin film 6168:33190484 6113:30964305 6066:25321220 6015:19498679 5964:28967257 5920:25905685 5894:: 9929. 5692:30515861 5460:: 1–14. 5275:12064380 5124:31642146 4593:93219029 4300:96130259 4247:24302266 4190:20 April 3949:See also 3842:chromium 3838:titanium 3721:abrasion 3575:Examples 3015:hardness 2348:, where 1699:buckling 1695:cracking 1679:lattices 1671:stresses 1496:ion flux 1458:ablation 1326:entropic 1180:reagents 1144:physical 1140:chemical 321:, where 6044:Bibcode 5993:Bibcode 5911:4407725 5845:Bibcode 5662:Bibcode 5537:Bibcode 5462:Bibcode 5412:Bibcode 5363:Bibcode 5247:Bibcode 5208:Bibcode 5158:Bibcode 5057:Bibcode 4978:Bibcode 4918:Bibcode 4863:Bibcode 4839:9999944 4811:Bibcode 4764:Bibcode 4750:In-situ 4713:Bibcode 4663:Bibcode 4522:Bibcode 4470:Bibcode 4425:Bibcode 4386:Bibcode 4351:Bibcode 4219:Bibcode 3956:Coating 3884:organic 3654:mirrors 3565:bilayer 3563:" and " 3532:(PZT). 1675:strains 1624:Epitaxy 1618:Epitaxy 1550:Discuss 1430:furnace 1418:arsenic 1414:gallium 1258:hydride 1237:crystal 1228:sol-gel 1206:sol-gel 1176:Plating 1129:uranium 1125:silicon 1107:(i.e., 6347:  6319:  6300:  6281:  6221:  6213:  6174:  6166:  6158:  6119:  6111:  6103:  6064:  6013:  5962:  5918:  5908:  5777:  5754:  5713:  5690:  5682:  5633:  5594:  5555:  5506:  5480:  5430:  5383:  5317:11 May 5308:  5273:  5265:  5176:  5122:  5112:  5077:  5021:  4996:  4946:  4889:  4881:  4837:  4829:  4782:  4762:(21). 4731:  4681:  4634:  4626:  4591:  4583:  4548:  4540:  4496:  4488:  4445:  4298:  4253:  4245:  4237:  4162:  4137:  4102:  4016:Sarfus 3890:, and 3569:single 3451:where 3281:Where 2561:where 2298:where 2184:wafers 2119:where 1839:where 1746:, and 1710:Strain 1691:grains 1665:Stress 1652:, and 1546:merged 1507:nozzle 1276:plasma 1254:halide 1095:, and 1069:optics 1048:, the 296:adatom 136:, and 112:, and 55:mirror 6219:S2CID 6172:S2CID 6117:S2CID 5938:(PDF) 5196:(PDF) 5120:S2CID 4887:S2CID 4632:S2CID 4589:S2CID 4546:S2CID 4542:98394 4538:JSTOR 4494:S2CID 4490:98166 4486:JSTOR 4447:98165 4443:JSTOR 4296:S2CID 4278:arXiv 4251:S2CID 3621:like 3526:phase 1701:, or 1542:split 1462:laser 1448:argon 1311:frost 1264:, an 1131:by a 1099:form 1071:(for 1062:atoms 6345:ISBN 6317:ISBN 6298:ISBN 6279:ISBN 6249:2019 6211:ISSN 6164:PMID 6156:ISSN 6109:PMID 6101:ISSN 6062:PMID 6011:PMID 5960:PMID 5916:PMID 5775:ISBN 5752:ISSN 5711:ISBN 5688:PMID 5680:ISSN 5631:ISSN 5592:ISSN 5553:ISSN 5504:ISBN 5478:ISSN 5428:ISSN 5381:ISSN 5319:2024 5306:ISBN 5271:PMID 5263:ISSN 5174:ISSN 5110:ISBN 5075:ISSN 5019:ISBN 4994:ISSN 4944:ISSN 4879:ISSN 4835:PMID 4827:ISSN 4780:ISSN 4729:ISSN 4679:ISSN 4624:ISSN 4612:119U 4581:ISSN 4243:PMID 4235:ISSN 4192:2021 4160:ISBN 4135:ISBN 4100:ISBN 4072:2023 3906:and 3763:and 3642:and 2146:and 1997:by: 1490:and 1211:The 1056:and 622:and 166:and 6203:doi 6148:doi 6093:doi 6052:doi 6001:doi 5952:doi 5906:PMC 5896:doi 5861:hdl 5853:doi 5841:108 5816:hdl 5808:doi 5804:606 5744:doi 5740:204 5670:doi 5623:doi 5619:522 5584:doi 5545:doi 5470:doi 5458:526 5420:doi 5371:doi 5298:doi 5255:doi 5216:doi 5166:doi 5102:doi 5065:doi 4986:doi 4934:hdl 4926:doi 4914:242 4871:doi 4819:doi 4772:doi 4760:125 4721:doi 4709:604 4671:doi 4616:doi 4573:doi 4569:146 4530:doi 4518:198 4478:doi 4466:198 4433:doi 4421:198 4394:doi 4382:110 4359:doi 4323:doi 4288:doi 4274:205 4227:doi 4127:doi 3840:or 3788:of 3777:SiO 3703:SiO 3695:TiN 3580:An 3557:not 3544:or 1552:) 1540:be 1436:). 1404:In 1388:An 1256:or 1196:or 1142:or 1103:), 1079:or 968:exp 566:exp 498:exp 6365:: 6239:. 6217:. 6209:. 6199:14 6197:. 6193:. 6170:. 6162:. 6154:. 6144:12 6142:. 6138:. 6115:. 6107:. 6099:. 6089:10 6087:. 6083:. 6060:. 6050:. 6040:22 6038:. 6032:. 6009:. 5999:. 5989:13 5987:. 5981:. 5958:. 5946:. 5940:. 5914:. 5904:. 5890:. 5884:. 5859:. 5851:. 5839:. 5814:. 5802:. 5798:. 5750:. 5738:. 5725:^ 5686:. 5678:. 5668:. 5658:31 5656:. 5652:. 5629:. 5617:. 5613:. 5590:. 5578:. 5574:. 5551:. 5543:. 5533:19 5531:. 5527:. 5490:^ 5476:. 5468:. 5456:. 5452:. 5440:^ 5426:. 5418:. 5408:27 5406:. 5402:. 5379:. 5369:. 5359:82 5357:. 5353:. 5334:. 5304:, 5292:, 5269:. 5261:. 5253:. 5243:41 5241:. 5237:. 5214:. 5204:26 5202:. 5198:. 5172:. 5164:. 5154:20 5152:. 5148:. 5132:^ 5118:. 5108:. 5096:. 5073:. 5063:. 5053:36 5051:. 5047:. 5033:^ 4992:. 4984:. 4972:. 4968:. 4956:^ 4942:. 4932:. 4924:. 4912:. 4908:. 4885:. 4877:. 4869:. 4859:43 4857:. 4833:. 4825:. 4817:. 4807:44 4805:. 4801:. 4778:. 4770:. 4758:. 4754:. 4727:. 4719:. 4707:. 4703:. 4691:^ 4677:. 4669:. 4659:89 4657:. 4653:. 4630:. 4622:. 4610:. 4587:. 4579:. 4567:. 4544:. 4536:. 4528:. 4516:. 4492:. 4484:. 4476:. 4464:. 4441:. 4431:. 4419:. 4415:. 4392:. 4380:. 4357:. 4347:72 4345:. 4319:74 4317:. 4294:. 4286:. 4272:. 4249:. 4241:. 4233:. 4225:. 4215:25 4213:. 4209:. 4182:. 4133:. 4080:^ 4063:. 3910:. 3902:, 3898:, 3886:, 3836:, 3808:. 3731:. 3710:Al 3688:CO 3677:. 3630:. 2207:. 1697:, 1656:. 1648:, 1486:, 1337:. 1324:, 1317:. 1169:. 1146:. 1091:, 1075:, 1052:, 1044:. 255:. 140:. 132:, 105:. 81:, 77:, 73:, 69:, 37:A 6353:. 6325:. 6306:. 6287:. 6251:. 6225:. 6205:: 6178:. 6150:: 6123:. 6095:: 6068:. 6054:: 6046:: 6017:. 6003:: 5995:: 5966:. 5954:: 5948:9 5922:. 5898:: 5892:5 5869:. 5863:: 5855:: 5847:: 5822:. 5818:: 5810:: 5783:. 5758:. 5746:: 5719:. 5694:. 5672:: 5664:: 5637:. 5625:: 5598:. 5586:: 5580:7 5559:. 5547:: 5539:: 5512:. 5484:. 5472:: 5464:: 5434:. 5422:: 5414:: 5387:. 5373:: 5365:: 5300:: 5277:. 5257:: 5249:: 5222:. 5218:: 5210:: 5180:. 5168:: 5160:: 5126:. 5104:: 5081:. 5067:: 5059:: 5027:. 5000:. 4988:: 4980:: 4974:9 4950:. 4936:: 4928:: 4920:: 4893:. 4873:: 4865:: 4841:. 4821:: 4813:: 4786:. 4774:: 4766:: 4735:. 4723:: 4715:: 4685:. 4673:: 4665:: 4638:. 4618:: 4595:. 4575:: 4552:. 4532:: 4524:: 4500:. 4480:: 4472:: 4449:. 4435:: 4427:: 4400:. 4396:: 4388:: 4365:. 4361:: 4353:: 4329:. 4325:: 4302:. 4290:: 4280:: 4257:. 4229:: 4221:: 4194:. 4168:. 4143:. 4129:: 4108:. 4074:. 3874:( 3779:2 3716:3 3714:O 3712:2 3705:2 3690:2 3592:. 3499:h 3479:t 3459:a 3439:t 3435:/ 3431:a 3404:i 3400:E 3393:2 3382:1 3376:+ 3371:E 3365:2 3354:1 3348:= 3341:f 3338:f 3335:e 3331:E 3327:1 3300:f 3297:f 3294:e 3290:E 3267:A 3259:f 3256:f 3253:e 3249:E 3235:2 3227:= 3224:S 3198:A 3193:x 3190:a 3187:m 3183:P 3177:= 3174:H 3152:A 3128:m 3124:) 3118:f 3114:h 3107:h 3104:( 3098:= 3095:P 3071:f 3067:h 3046:h 3026:P 2984:h 2981:d 2973:d 2967:= 2960:t 2950:f 2946:h 2935:t 2914:) 2909:f 2905:h 2901:( 2876:) 2871:f 2867:h 2863:( 2837:z 2834:d 2828:t 2820:) 2817:t 2814:, 2811:z 2808:( 2792:f 2788:h 2782:0 2774:+ 2768:t 2758:f 2754:h 2744:) 2739:f 2735:h 2731:( 2719:t 2716:d 2708:d 2680:2 2675:s 2671:h 2665:s 2661:M 2656:6 2632:f 2628:h 2598:) 2595:z 2592:( 2569:z 2547:z 2544:d 2541:) 2538:z 2535:( 2525:f 2521:h 2515:0 2503:f 2499:h 2495:1 2490:= 2430:f 2426:h 2403:s 2399:h 2357:E 2327:1 2322:E 2316:= 2311:s 2307:M 2279:2 2274:s 2270:h 2264:s 2260:M 2252:f 2248:h 2235:6 2229:= 2159:f 2155:a 2132:s 2128:a 2101:f 2097:a 2090:f 2086:a 2077:s 2073:a 2031:3 2027:/ 2021:T 2017:e 2010:= 1983:T 1979:e 1946:0 1942:T 1921:T 1899:s 1872:f 1825:) 1820:0 1816:T 1809:T 1806:( 1803:) 1798:s 1785:f 1777:( 1771:= 1727:T 1723:e 1559:) 1555:( 1005:) 1000:s 996:T 992:k 988:/ 982:d 978:E 974:( 965:) 960:1 956:v 951:/ 947:1 944:( 941:= 936:d 890:] 882:e 878:p 874:p 869:) 866:1 860:X 857:( 854:+ 851:1 847:[ 843:) 840:p 832:e 828:p 824:( 819:p 816:X 810:= 785:p 763:e 759:p 733:) 728:A 724:P 720:b 717:+ 714:1 711:( 704:A 700:P 696:b 690:= 663:A 659:P 634:b 603:] 598:) 591:a 582:t 573:( 562:[ 556:a 545:J 542:= 539:n 535:] 530:) 523:a 514:t 505:( 492:1 488:[ 482:a 471:J 468:= 465:n 440:a 432:n 421:J 418:= 412:t 409:d 404:n 401:d 354:a 329:J 309:n 271:a 267:E 241:a 237:E 214:c 210:E 187:p 183:E 45:( 34:. 20:)

Index

Thin-film deposition
Thin-film memory
nanometer
monolayer
micrometers
mirror
silvering
sputtering
magnetic recording media
electronic semiconductor devices
integrated passive devices
light-emitting diodes
optical coatings
antireflective
thin-film solar cells
thin-film batteries
thin-film drug delivery
multilayer
multiferroic materials
superlattices
Nucleation
adsorption
desorption
surface diffusion
Adsorption
sticking coefficient
Desorption
physisorption
chemisorption
Van der Waals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑