Knowledge

Transfer hydrogenation

Source 📝

624: 613: 675: 570: 699: 546: 429: 395: 503: 469: 499:. The gain of aromatic stabilization energy when the benzene is formed is the driving force of the reaction. Pd can be used as a catalyst and a temperature of 100 Â°C is employed. More exotic transfer hydrogenations have been reported, including this intramolecular one: 452:
Prior to the development of catalytic hydrogenation, many methods were developed for the hydrogenation of unsaturated substrates. Many of these methods are only of historical and pedagogical interest. One prominent transfer hydrogenation agent is
1197:
Rueping; Antonchick, A.; Theissmann, T. (2006). "A highly enantioselective BrĂžnsted acid catalyzed cascade reaction: organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids".
331: 432:
Complementing traditional diphosphine-based Noyori catalysts are arene-Ru catalysts, which operate similarly. The stoichiometric asymmetric reduction of ketones has long been known, e.g., using chiral borones.
914:
Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Ohta, T.; Takaya, H.; Noyori, R. (1988), "Homogeneous Asymmetric Hydrogenation of functionalized ketones",
865:
Shimizu, H., Nagasaki, I., Matsumura, K., Sayo, N., and Saito, T. "Developments in Asymmetric Hydrogenation from an Industrial Perspective" Acc. Chem. Res. 2007, vol. 40, pp. 1385-1393.
623: 942:
Noyori, R.; Ohkuma, T. (2001), "Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones",
612: 856:
T. Ikariya, K. Murata, R. Noyori "Bifunctional Transition Metal-Based Molecular Catalysts for Asymmetric Syntheses" Org. Biomol. Chem., 2006, volume 4, 393-406.
674: 1044:
Linden, M. V. D.; Roeters, T.; Harting, R.; Stokkingreef, E.; Gelpke, A. S.; Kemperman, G. (2008). "Debottlenecking the Synthesis Route of Asenapine".
698: 569: 216: 126:
respectively. Often, the donor molecules also function as solvents for the reaction. A large scale application of transfer hydrogenation is
545: 882:
Mashima, K.; Kusano, K.-h.; Sato, N.; Matsumura, Y.-i.; Nozaki, K.; Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki, T. (1994), "Cationic
886:-Ru(II) Halide Complexes: Highly Efficient Catalysts for Stereoselective Asymmetric Hydrogenation of α- and ÎČ-Functionalized Ketones", 726: 388: 822:
Muñiz, Kilian (2005). "Bifunctional Metal-Ligand Catalysis: Hydrogenations and New Reactions within the Metal-(Di)amine Scaffold13".
595:, then proton transfer is followed by hydrolysis of the iminium bond regenerating the catalyst. By adopting a chiral imidazolidinone 916: 944: 425:)(diamine). These catalysts preferentially reduce ketones and aldehydes, leaving olefins and many other substituents unaffected. 958: 980:
Dub, Pavel A.; Gordon, John C. (2018). "The role of the metal-bound N–H functionality in Noyori-type molecular catalysts".
54: 163: 809: 1248: 888: 576: 1073:"A metal-free transfer hydrogenation: organocatalytic conjugate reduction of alpha,beta-unsaturated aldehydes" 514:
as the proton donors, and alkali metals as electron donors. Of continuing value is the sodium metal-mediated
1243: 1148: 527: 413:
Even though the BINAP-Ru dihalide catalyst could reduce functionalized ketones, the hydrogenation of simple
1238: 398:
Transfer hydrogenation catalyzed by transition metal complexes proceeds by an "outer sphere mechanism."
376:
of the two chiral carbon centers. This work was recognized with the 2001 Nobel Prize in Chemistry to
391:; however their activities are relatively low by comparison with the transition metal-based systems. 87:. Transfer hydrogenation usually occurs at mild temperature and pressure conditions using organic or 596: 88: 1112:
Ouellet; Tuttle, J.; MacMillan, D. (2005). "Enantioselective organocatalytic hydride reduction".
443: 167: 804:
Speight, J. G. "The Chemistry and Technology of Coal" Marcel Dekker; New York, 1983; p. 226 ff.
1253: 690: 384: 373: 175: 58: 92: 523: 502: 468: 383:
Another family of hydrogen-transfer agents are those based on aluminium alkoxides, such as
96: 561:
transfer hydrogenation has been described by the group of List in 2004 in a system with a
8: 731: 604: 187: 65: 1179: 997: 751: 600: 203: 1215: 1171: 1129: 1094: 1001: 963: 839: 805: 787: 631: 143: 127: 108: 50: 40: 36: 28: 1183: 1207: 1163: 1121: 1084: 1053: 1026: 1017: 989: 953: 925: 897: 866: 831: 779: 686: 681:
With another organocatalyst altogether, hydrogenation can also be accomplished for
736: 588: 558: 515: 783: 377: 770:
Wang, Dong; Astruc, Didier (2015). "The Golden Age of Transfer Hydrogenation".
746: 714: 562: 488: 417:
remained unsolved. This challenge was solved with precatalysts of the type RuCl
993: 146:, a useful family of hydrogen-transfer catalysts have been developed based on 1232: 791: 741: 84: 1219: 1211: 1175: 1133: 1098: 1089: 1072: 967: 843: 835: 207: 1015:
M. M. Midland (1989). "Asymmetric reductions with organoborane reagents".
202:
upon donation of hydrogen. Transfer hydrogenations can proceed with high
706: 592: 484: 422: 349: 195: 104: 100: 1030: 929: 901: 913: 643: 326:{\displaystyle {\ce {RR'C=O{}+Me2CHOH->RR'C^{\star }H-OH{}+Me2C=O}}} 123: 1167: 1125: 1057: 870: 959:
10.1002/1521-3773(20010105)40:1<40::aid-anie40>3.0.co;2-5
539: 531: 477: 171: 159: 147: 20: 710: 639: 635: 580: 535: 131: 32: 461:, also called diazene. This becomes oxidized to the very stable N 194:, respectively. The hydrogen-donor (transfer agent) is typically 662: 496: 454: 447: 414: 403: 199: 155: 151: 119: 1043: 658: 650: 492: 428: 179: 61: 883: 682: 669:) and of the Hantzsch ester (add more bulky t-butyl groups): 666: 654: 511: 407: 394: 191: 183: 162:
ligands. A representative catalyst precursor is derived from
73: 69: 1196: 1070: 591:
for this reaction the amine and the aldehyde first form an
584: 881: 1149:"Organocatalytic transfer hydrogenation of cyclic enones" 553: 308: 255: 583:
form and resembles the biochemically relevant coenzyme
483:
Two hydrocarbons that can serve as hydrogen donors are
1146: 1111: 709:. Traditional metal-based catalysts, hydrogenation of 219: 941: 538:
is used in alkene reductions, e.g. the synthesis of
549:
Magnesium methanol reduction in asenapine synthesis
406:was demonstrated with ruthenium-based complexes of 1200:Angewandte Chemie International Edition in English 1077:Angewandte Chemie International Edition in English 325: 76:. It avoids the need for high-pressure molecular 1230: 1071:Yang; Hechavarria Fonseca, M.; List, B. (2004). 575:In this particular reaction the substrate is an 16:Addition of non-molecular hydrogen to a compound 763: 1014: 649:Extending the scope of this reaction towards 49:. It is applied in laboratory and industrial 657:requires fine tuning of the catalyst (add a 340:is a chiral product. A typical catalyst is 1147:Tuttle; Ouellet, S.; MacMillan, D. (2006). 137: 99:. It uses hydrogen donor compounds such as 1046:Organic Process Research & Development 907: 769: 402:The catalytic asymmetric hydrogenation of 1088: 979: 957: 935: 1156:Journal of the American Chemical Society 1114:Journal of the American Chemical Society 917:Journal of the American Chemical Society 875: 565:as hydride donor and an amine catalyst: 427: 393: 945:Angewandte Chemie International Edition 824:Angewandte Chemie International Edition 1231: 579:. The proton donor is oxidized to the 554:Organocatalytic transfer hydrogenation 480:or certain other organic precursors. 973: 821: 510:Many reactions exist with alcohol or 526:). Less important presently is the 437: 705:The reaction proceeds via a chiral 13: 1008: 727:Meerwein–Ponndorf–Verley reduction 544: 501: 476:The diimide can be generated from 467: 164:(cymene)ruthenium dichloride dimer 14: 1265: 577:α,ÎČ-unsaturated carbonyl compound 889:The Journal of Organic Chemistry 697: 673: 622: 611: 568: 1190: 1140: 1105: 1064: 1037: 642:in this reaction yield the (S)- 530:of esters. The combination of 130:using "donor solvents" such as 859: 850: 815: 798: 261: 206:when the starting material is 1: 757: 91:catalysts, many of which are 174:are mainly employed for the 7: 784:10.1021/acs.chemrev.5b00203 720: 10: 1270: 441: 111:, dehydrogenating them to 31:involving the addition of 994:10.1038/s41570-018-0049-z 717:substrates tend to fail. 528:Bouveault–Blanc reduction 39:from a source other than 982:Nature Reviews Chemistry 597:MacMillan organocatalyst 495:is formed, along with a 138:Organometallic catalysts 1249:Organic redox reactions 444:reductions with diimide 348:, where Ts refers to a 168:diphenylethylenediamine 1212:10.1002/anie.200600191 1090:10.1002/anie.200461816 836:10.1002/anie.200501787 691:chiral phosphoric acid 661:group and replace the 550: 507: 506:Transfer hydrogenation 473: 472:Transfer hydrogenation 434: 399: 385:aluminium isopropoxide 374:absolute configuration 327: 154:complexes, often with 57:organic compounds and 25:transfer hydrogenation 548: 524:aromatic hydrocarbons 505: 471: 431: 397: 328: 95:, allowing efficient 83:used in conventional 1244:Industrial processes 491:. In this case, an 217: 204:enantioselectivities 198:, which converts to 97:asymmetric synthesis 1162:(39): 12662–12663. 1031:10.1021/cr00097a010 930:10.1021/ja00210a070 902:10.1021/jo00090a026 732:Oppenauer oxidation 310: 257: 1239:Chemical processes 752:Borrowing hydrogen 689:is catalyzed by a 601:enantioselectivity 551: 522:(another name for 508: 474: 435: 400: 323: 298: 245: 166:and the tosylated 1206:(22): 3683–3686. 1168:10.1021/ja0653066 1126:10.1021/ja043834g 1083:(48): 6660–6662. 1058:10.1021/op700240c 896:(11): 3064–3076, 871:10.1021/ar700101x 830:(41): 6622–6627. 778:(13): 6621–6686. 632:stereoconvergence 438:Metal-free routes 321: 313: 301: 292: 284: 275: 267: 260: 248: 239: 231: 224: 144:organic synthesis 128:coal liquefaction 109:dihydroanthracene 51:organic synthesis 29:chemical reaction 1261: 1224: 1223: 1194: 1188: 1187: 1153: 1144: 1138: 1137: 1109: 1103: 1102: 1092: 1068: 1062: 1061: 1041: 1035: 1034: 1025:(7): 1553–1561. 1018:Chemical Reviews 1012: 1006: 1005: 977: 971: 970: 961: 939: 933: 932: 911: 905: 904: 879: 873: 863: 857: 854: 848: 847: 819: 813: 802: 796: 795: 767: 701: 687:cascade reaction 677: 626: 615: 572: 367: 347: 339: 332: 330: 329: 324: 322: 319: 318: 311: 309: 306: 299: 294: 290: 289: 282: 281: 280: 273: 271: 265: 258: 256: 253: 246: 241: 237: 236: 229: 228: 222: 117: 82: 48: 1269: 1268: 1264: 1263: 1262: 1260: 1259: 1258: 1229: 1228: 1227: 1195: 1191: 1151: 1145: 1141: 1110: 1106: 1069: 1065: 1042: 1038: 1013: 1009: 988:(12): 396–408. 978: 974: 940: 936: 912: 908: 880: 876: 864: 860: 855: 851: 820: 816: 803: 799: 768: 764: 760: 737:Dehydrogenation 723: 589:catalytic cycle 559:Organocatalytic 556: 516:Birch reduction 464: 460: 450: 440: 420: 365: 361: 357: 353: 341: 337: 314: 307: 302: 293: 285: 276: 272: 264: 254: 249: 240: 232: 221: 220: 218: 215: 214: 142:In the area of 140: 116: 112: 81: 77: 47: 43: 17: 12: 11: 5: 1267: 1257: 1256: 1251: 1246: 1241: 1226: 1225: 1189: 1139: 1104: 1063: 1052:(2): 196–201. 1036: 1007: 972: 934: 924:(2): 629–631, 906: 874: 858: 849: 814: 797: 761: 759: 756: 755: 754: 749: 747:Hydrogenolysis 744: 739: 734: 729: 722: 719: 715:heteroaromatic 703: 702: 679: 678: 628: 627: 617: 616: 607:was obtained: 563:Hantzsch ester 555: 552: 489:cyclohexadiene 462: 458: 439: 436: 418: 372:refers to the 363: 359: 355: 346:-HNCHPhCHPhNTs 334: 333: 317: 305: 297: 288: 279: 270: 263: 252: 244: 235: 227: 139: 136: 114: 89:organometallic 79: 45: 15: 9: 6: 4: 3: 2: 1266: 1255: 1254:Hydrogenation 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1236: 1234: 1221: 1217: 1213: 1209: 1205: 1201: 1193: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1150: 1143: 1135: 1131: 1127: 1123: 1119: 1115: 1108: 1100: 1096: 1091: 1086: 1082: 1078: 1074: 1067: 1059: 1055: 1051: 1047: 1040: 1032: 1028: 1024: 1020: 1019: 1011: 1003: 999: 995: 991: 987: 983: 976: 969: 965: 960: 955: 951: 947: 946: 938: 931: 927: 923: 919: 918: 910: 903: 899: 895: 891: 890: 885: 878: 872: 868: 862: 853: 845: 841: 837: 833: 829: 825: 818: 811: 810:0-8247-1915-8 807: 801: 793: 789: 785: 781: 777: 773: 766: 762: 753: 750: 748: 745: 743: 742:Hydrogenation 740: 738: 735: 733: 730: 728: 725: 724: 718: 716: 712: 708: 700: 696: 695: 694: 692: 688: 684: 676: 672: 671: 670: 668: 664: 660: 656: 652: 647: 645: 641: 637: 633: 630:In a case of 625: 621: 620: 619: 614: 610: 609: 608: 606: 602: 598: 594: 590: 586: 582: 578: 573: 571: 566: 564: 560: 547: 543: 541: 537: 533: 529: 525: 521: 517: 513: 504: 500: 498: 494: 490: 486: 481: 479: 470: 466: 456: 449: 445: 430: 426: 424: 416: 411: 409: 405: 396: 392: 390: 389:MPV reduction 386: 381: 379: 375: 371: 351: 345: 315: 303: 295: 286: 277: 268: 250: 242: 233: 225: 213: 212: 211: 209: 205: 201: 197: 193: 189: 185: 181: 177: 173: 169: 165: 161: 157: 153: 149: 145: 135: 133: 129: 125: 121: 110: 106: 102: 98: 94: 90: 86: 85:hydrogenation 75: 71: 67: 63: 60: 56: 52: 42: 38: 34: 30: 26: 22: 1203: 1199: 1192: 1159: 1155: 1142: 1120:(1): 32–33. 1117: 1113: 1107: 1080: 1076: 1066: 1049: 1045: 1039: 1022: 1016: 1010: 985: 981: 975: 952:(1): 40–73, 949: 943: 937: 921: 915: 909: 893: 887: 877: 861: 852: 827: 823: 817: 800: 775: 771: 765: 704: 680: 648: 629: 618: 574: 567: 557: 519: 509: 482: 475: 451: 412: 401: 382: 378:Ryƍji Noyori 369: 343: 335: 141: 24: 18: 707:iminium ion 665:group by a 634:, both the 593:iminium ion 485:cyclohexene 423:diphosphane 350:tosyl group 196:isopropanol 105:isopropanol 101:formic acid 1233:Categories 758:References 653:or rather 644:enantiomer 442:See also: 124:anthracene 1002:106394152 792:0009-2665 772:Chem. Rev 587:. In the 540:asenapine 532:magnesium 478:hydrazine 338:RR'C*H−OH 287:− 278:⋆ 262:⟶ 208:prochiral 176:reduction 172:catalysts 160:phosphine 148:ruthenium 41:molecular 21:chemistry 1220:16639754 1184:12456921 1176:17002356 1134:15631434 1099:15540245 968:11169691 844:16187395 721:See also 711:aromatic 640:Z-isomer 638:and the 636:E-isomer 581:pyridine 536:methanol 342:(cymene) 269:′ 226:′ 188:alcohols 170:. These 132:tetralin 66:alcohols 55:saturate 37:compound 33:hydrogen 663:t-butyl 651:ketones 603:of 81% 497:benzene 457:or (NH) 455:diimide 448:quinone 415:ketones 404:ketones 387:in the 200:acetone 180:ketones 156:diamine 152:rhodium 120:acetone 62:ketones 1218:  1182:  1174:  1132:  1097:  1000:  966:  842:  808:  790:  685:. One 683:imines 659:benzyl 655:enones 520:arenes 512:amines 493:alkane 368:) and 336:where 192:amines 184:imines 93:chiral 74:amines 70:imines 68:, and 59:reduce 1180:S2CID 1152:(PDF) 998:S2CID 884:BINAP 667:furan 408:BINAP 122:, or 35:to a 27:is a 1216:PMID 1172:PMID 1130:PMID 1095:PMID 964:PMID 840:PMID 806:ISBN 788:ISSN 585:NADH 534:and 446:and 259:CHOH 190:and 182:and 158:and 150:and 1208:doi 1164:doi 1160:128 1122:doi 1118:127 1085:doi 1054:doi 1027:doi 990:doi 954:doi 926:doi 922:110 898:doi 867:doi 832:doi 780:doi 776:115 713:or 599:an 518:of 487:or 370:R,R 344:R,R 186:to 178:of 107:or 103:, 72:to 64:to 53:to 19:In 1235:: 1214:. 1204:45 1202:. 1178:. 1170:. 1158:. 1154:. 1128:. 1116:. 1093:. 1081:43 1079:. 1075:. 1050:12 1048:. 1023:89 1021:. 996:. 984:. 962:, 950:40 948:, 920:, 894:59 892:, 838:. 828:44 826:. 786:. 774:. 693:: 646:. 605:ee 542:: 465:: 410:. 380:. 366:Me 354:SO 300:Me 291:OH 266:RR 247:Me 223:RR 210:: 134:. 118:, 113:CO 23:, 1222:. 1210:: 1186:. 1166:: 1136:. 1124:: 1101:. 1087:: 1060:. 1056:: 1033:. 1029:: 1004:. 992:: 986:2 956:: 928:: 900:: 869:: 846:. 834:: 812:. 794:. 782:: 463:2 459:2 421:( 419:2 364:4 362:H 360:6 358:C 356:2 352:( 320:O 316:= 312:C 304:2 296:+ 283:H 274:C 251:2 243:+ 238:O 234:= 230:C 115:2 80:2 78:H 46:2 44:H

Index

chemistry
chemical reaction
hydrogen
compound
molecular
organic synthesis
saturate
reduce
ketones
alcohols
imines
amines
hydrogenation
organometallic
chiral
asymmetric synthesis
formic acid
isopropanol
dihydroanthracene
acetone
anthracene
coal liquefaction
tetralin
organic synthesis
ruthenium
rhodium
diamine
phosphine
(cymene)ruthenium dichloride dimer
diphenylethylenediamine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑