Knowledge

Zone axis

Source 📝

1501:" lattice planes, which in turn have small spatial frequencies (g-values) and hence large lattice periodicities (d-spacings). A possible intuition behind this is that in electron microscopy, for electron beams to be directed down wide (i.e. easily visible) tunnels between columns of atoms in a crystal, directing the beam down a low-index (and by association high-symmetry) zone axis may help. 25: 100:
High-symmetry zone axes through a crystal lattice, in particular, often lie in the direction of tunnels through the crystal between planes of atoms. This is because, as we see below, such zone axis directions generally lie within more than one plane of atoms in the crystal.
458:
The term "zone axis" more specifically refers to the direction of a direct-space lattice vector. For example, since the and lattice vectors are parallel, their orientations both correspond the ⟨120⟩ zone of the crystal. Just as a set of
406:, for instance, ⟨100⟩ represents , , , , and because each of these vectors is symmetrically equivalent under a 90 degree rotation along an axis. A bar over a coordinate is equivalent to a negative sign (e.g., 1002: 825: 563: 762: 698: 634: 266: 388: 1196: 1417: 75: 1062: 1478: 910: 303: 453: 569:) are used to refer to a symmetrically equivalent class of reciprocal lattice vectors, similar to angle brackets ⟨⟩ for classes of direct lattice vectors. 1281: 1585:
Zbigniew Dauter and Mariusz Jaskolski (2010) "How to read (and understand) Volume A of International Tables for Crystallography: an introduction for nonspecialists",
1315: 1095: 869: 845: 1127: 1230: 565:
instead, generally between round brackets () (similar to square brackets for direct lattice vectors). Curly brackets {} (not to be confused with a mathematical
335: 1332:
in 3D", e.g. reciprocal lattices, is that the condition for a direct lattice vector (or zone axis) to be perpendicular to a reciprocal lattice vector (
43: 915: 767: 390:. Angle brackets ⟨⟩ are used to refer to a symmetrically equivalent class of lattice vectors (i.e. the set of vectors 497: 132: 703: 639: 575: 566: 221: 1497:
One result of this, as illustrated in the figure above, is that "low-index" zones are generally perpendicular to "low-
340: 1730: 1710: 1673: 1626: 61: 1540: 1166: 1339: 1770: 1420: 93:) of a crystal in three dimensions. It is therefore indexed with direct lattice indices, instead of with 1470:
radius (1/λ), so that electron diffraction generally "lights up" diffraction spots with g-vectors (
85:, a term sometimes used to refer to "high-symmetry" orientations in a crystal, most generally refers to 1760: 1419:. This is true even if, as is often the case, the basis vector set used to describe the lattice is not 1007: 878: 271: 1775: 409: 391: 136: 1455:
traveling along a lattice direction specified by the zone-axis indices . Because of their small
1133:
Bracket conventions for direct lattice and reciprocal lattice Miller indices in crystallography
1253: 128: 116: 1287: 1067: 854: 830: 1780: 1535: 1100: 403: 8: 1484: 1463: 1440: 1202: 1520: 464: 90: 308: 1765: 1726: 1706: 1669: 1622: 1467: 1129:
planes, measured in spatial frequency units, e.g. of cycles per angstrom (cycles/Å).
479: 468: 215: 472: 152: 39: 1689: 1510: 120: 268:
and is generally placed between square brackets . Thus a direct lattice vector
1493:
viewed down the zone (left), with the corresponding zone-axis pattern (right).
399: 1721:
P. Hirsch, A. Howie, R. Nicholson, D. W. Pashley and M. J. Whelan (1965/1977)
1686:
Transmission electron microscopy: Physics of image formation and microanalysis
1593: 1754: 872: 460: 1525: 1498: 1490: 491: 487: 395: 203:). Direct lattice vectors have components measured in distance units, like 110: 94: 1004:
has a direction perpendicular to a crystallographic plane and a magnitude
471:
and momenta, a "zone" is defined as a set of reciprocal lattice planes in
1530: 1436: 848: 1638:
cf. Charles W. Misner, Kip S. Thorne and John Archibald Wheeler (1973)
1515: 1456: 1329: 124: 1444: 483: 208: 1703:
Transmission electron microscopy: A textbook for materials science
997:{\displaystyle (hkl)=h{\bf {a}}^{*}+k{\bf {b}}^{*}+l{\bf {c}}^{*}} 1487: 1481: 1452: 89:
direction referenced to the direct lattice (as distinct from the
820:{\displaystyle V_{c}={\bf {a}}\cdot ({\bf {b}}\times {\bf {c}})} 74: 478:
The reciprocal space analog to a zone axis is a "lattice plane
1448: 558:{\displaystyle \{{\bf {a}}^{*},{\bf {b}}^{*},{\bf {c}}^{*}\}} 204: 1477: 1621:(Addison-Wesley, paperback edition by Dover Books 1990) 482:" or "g-vector direction". Reciprocal lattice vectors ( 1745: 475:
that corresponds to a lattice vector in direct space.
1342: 1328:
A useful and quite general rule of crystallographic "
1290: 1256: 1205: 1169: 1103: 1070: 1010: 918: 881: 857: 833: 770: 757:{\displaystyle {\bf {c}}^{*}\equiv (a\times b)/V_{c}} 706: 693:{\displaystyle {\bf {b}}^{*}\equiv (c\times a)/V_{c}} 642: 629:{\displaystyle {\bf {a}}^{*}\equiv (b\times c)/V_{c}} 578: 500: 412: 343: 311: 274: 224: 34:
may be too technical for most readers to understand
1666:Practical electron microscopy in materials science 1411: 1309: 1275: 1224: 1190: 1121: 1089: 1056: 996: 904: 863: 839: 819: 756: 692: 628: 557: 494:using coordinates in the reciprocal lattice basis 447: 382: 329: 297: 260: 1668:(N. V. Philips' Gloeilampenfabrieken, Eindhoven) 261:{\displaystyle \{{\bf {a}},{\bf {b}},{\bf {c}}\}} 1752: 1695: 383:{\displaystyle u{\bf {a}}+v{\bf {b}}+w{\bf {c}}} 1701:David B. Williams and C. Barry Carter (1996) 155:, i.e. the magnitudes of the vectors, called 78:Nanocrystal (left) zone-axis patterns (right) 1269: 1257: 1183: 1170: 552: 501: 255: 225: 1658: 1598: 1725:(Butterworths/Krieger, London/Malabar FL) 1645: 1632: 1611: 1579: 1553: 1306: 1272: 1221: 1187: 62:Learn how and when to remove this message 46:, without removing the technical details. 1746:International Tables for Crystallography 1566: 1476: 73: 1678: 1336:) can be written with a dot product as 1191:{\displaystyle \langle {uvw\rangle }\,} 1064:equal to the reciprocal of the spacing 1753: 1715: 1412:{\displaystyle \cdot (hkl)=uh+vk+wl=0} 167:, and the angles between them, called 16:High symmetry orientation of a crystal 1426: 467:vector in the complementary space of 104: 44:make it understandable to non-experts 1723:Electron microscopy of thin crystals 875:). Thus a reciprocal lattice vector 18: 1576:(Cambridge U. Press, Cambridge UK). 1561:Mathematical methods for physicists 218:in the direct lattice basis system 214:A lattice vector is indexed by its 13: 1642:(W. H. Freeman, San Francisco CA). 1574:Principles of the theory of solids 14: 1792: 1739: 1057:{\displaystyle g_{hkl}=1/d_{hkl}} 463:in direct space corresponds to a 1541:Transmission electron microscopy 1462:, high energy electrons used in 983: 963: 943: 885: 809: 799: 786: 764:, where the unit cell volume is 710: 646: 582: 541: 524: 507: 440: 375: 362: 349: 278: 250: 240: 230: 23: 905:{\displaystyle {\bf {g}}_{hkl}} 298:{\displaystyle {\bf {s}}_{uvw}} 1474:) that are perpendicular to . 1373: 1361: 1355: 1343: 1303: 1291: 1218: 1206: 1116: 1104: 931: 919: 814: 794: 736: 724: 672: 660: 608: 596: 429: 413: 324: 312: 1: 1684:Ludwig Reimer (1997 4th ed) 1546: 1240: 1153: 421: 7: 1655:(North-Holland, Amsterdam). 1563:(Academic Press, New York). 1504: 1131: 448:{\displaystyle =-{\bf {a}}} 10: 1797: 1572:J. M. Ziman (1972 2nd ed) 108: 1606:X-ray diffraction methods 1276:{\displaystyle \{hkl\}\,} 151:, or equivalently by the 123:is described by a set of 117:translational invariance 1319:reciprocal space, e.g. 1310:{\displaystyle (hkl)\,} 1237:contravariant or polar 1155:zone or lattice-vector 1090:{\displaystyle d_{hkl}} 864:{\displaystyle \times } 1664:J. W. Edington (1976) 1651:John M. Cowley (1975) 1604:E. W. Nuffield (1966) 1494: 1439:pattern taken with an 1413: 1311: 1277: 1226: 1192: 1123: 1091: 1058: 998: 906: 865: 841: 840:{\displaystyle \cdot } 821: 758: 694: 630: 559: 449: 384: 331: 299: 262: 79: 1587:J. Appl. Crystallogr. 1559:George Arfken (1970) 1480: 1414: 1312: 1278: 1227: 1193: 1124: 1122:{\displaystyle (hkl)} 1092: 1059: 999: 907: 866: 842: 822: 759: 695: 631: 560: 450: 402:). In the case of a 385: 332: 300: 263: 77: 1617:B. E. Warren (1969) 1536:Electron diffraction 1464:electron microscopes 1340: 1288: 1254: 1203: 1167: 1101: 1068: 1008: 916: 879: 855: 831: 768: 704: 640: 576: 498: 410: 341: 309: 272: 222: 1771:Electron microscopy 1705:(Plenum Press, NY) 1688:(Springer, Berlin) 1653:Diffraction Physics 1485:face centered cubic 1322:covariant or axial 1234:direct space, e.g. 1134: 469:spatial frequencies 1521:Reciprocal lattice 1495: 1466:have a very large 1427:Zone-axis patterns 1409: 1330:dual vector spaces 1307: 1273: 1242:plane or g-vector 1225:{\displaystyle \,} 1222: 1188: 1132: 1119: 1087: 1054: 994: 902: 861: 837: 817: 754: 690: 626: 555: 465:reciprocal lattice 445: 380: 327: 295: 258: 153:lattice parameters 105:Zone-axis indexing 91:reciprocal lattice 80: 1761:Materials science 1619:X-ray diffraction 1608:(John Wiley, NY). 1433:zone-axis pattern 1431:By extension, a 1326: 1325: 1141:Equivalence Class 424: 398:of the lattice's 127:, direct lattice 72: 71: 64: 1788: 1733: 1719: 1713: 1699: 1693: 1682: 1676: 1662: 1656: 1649: 1643: 1636: 1630: 1615: 1609: 1602: 1596: 1583: 1577: 1570: 1564: 1557: 1418: 1416: 1415: 1410: 1316: 1314: 1313: 1308: 1282: 1280: 1279: 1274: 1231: 1229: 1228: 1223: 1197: 1195: 1194: 1189: 1186: 1135: 1128: 1126: 1125: 1120: 1096: 1094: 1093: 1088: 1086: 1085: 1063: 1061: 1060: 1055: 1053: 1052: 1037: 1026: 1025: 1003: 1001: 1000: 995: 993: 992: 987: 986: 973: 972: 967: 966: 953: 952: 947: 946: 911: 909: 908: 903: 901: 900: 889: 888: 870: 868: 867: 862: 846: 844: 843: 838: 826: 824: 823: 818: 813: 812: 803: 802: 790: 789: 780: 779: 763: 761: 760: 755: 753: 752: 743: 720: 719: 714: 713: 699: 697: 696: 691: 689: 688: 679: 656: 655: 650: 649: 635: 633: 632: 627: 625: 624: 615: 592: 591: 586: 585: 564: 562: 561: 556: 551: 550: 545: 544: 534: 533: 528: 527: 517: 516: 511: 510: 454: 452: 451: 446: 444: 443: 425: 417: 389: 387: 386: 381: 379: 378: 366: 365: 353: 352: 337:, is defined as 336: 334: 333: 330:{\displaystyle } 328: 304: 302: 301: 296: 294: 293: 282: 281: 267: 265: 264: 259: 254: 253: 244: 243: 234: 233: 67: 60: 56: 53: 47: 27: 26: 19: 1796: 1795: 1791: 1790: 1789: 1787: 1786: 1785: 1776:Crystallography 1751: 1750: 1742: 1737: 1736: 1720: 1716: 1700: 1696: 1683: 1679: 1663: 1659: 1650: 1646: 1637: 1633: 1616: 1612: 1603: 1599: 1584: 1580: 1571: 1567: 1558: 1554: 1549: 1511:Crystallography 1507: 1429: 1341: 1338: 1337: 1289: 1286: 1285: 1255: 1252: 1251: 1248: 1204: 1201: 1200: 1173: 1168: 1165: 1164: 1161: 1150:Transformation 1144:Specific Vector 1102: 1099: 1098: 1075: 1071: 1069: 1066: 1065: 1042: 1038: 1033: 1015: 1011: 1009: 1006: 1005: 988: 982: 981: 980: 968: 962: 961: 960: 948: 942: 941: 940: 917: 914: 913: 890: 884: 883: 882: 880: 877: 876: 856: 853: 852: 832: 829: 828: 808: 807: 798: 797: 785: 784: 775: 771: 769: 766: 765: 748: 744: 739: 715: 709: 708: 707: 705: 702: 701: 684: 680: 675: 651: 645: 644: 643: 641: 638: 637: 620: 616: 611: 587: 581: 580: 579: 577: 574: 573: 546: 540: 539: 538: 529: 523: 522: 521: 512: 506: 505: 504: 499: 496: 495: 473:frequency space 439: 438: 416: 411: 408: 407: 374: 373: 361: 360: 348: 347: 342: 339: 338: 310: 307: 306: 283: 277: 276: 275: 273: 270: 269: 249: 248: 239: 238: 229: 228: 223: 220: 219: 121:crystal lattice 113: 107: 68: 57: 51: 48: 40:help improve it 37: 28: 24: 17: 12: 11: 5: 1794: 1784: 1783: 1778: 1773: 1768: 1763: 1749: 1748: 1741: 1740:External links 1738: 1735: 1734: 1714: 1694: 1677: 1657: 1644: 1631: 1610: 1597: 1578: 1565: 1551: 1550: 1548: 1545: 1544: 1543: 1538: 1533: 1528: 1523: 1518: 1513: 1506: 1503: 1443:beam, e.g. of 1428: 1425: 1408: 1405: 1402: 1399: 1396: 1393: 1390: 1387: 1384: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1360: 1357: 1354: 1351: 1348: 1345: 1324: 1323: 1320: 1317: 1305: 1302: 1299: 1296: 1293: 1283: 1271: 1268: 1265: 1262: 1259: 1249: 1246: 1239: 1238: 1235: 1232: 1220: 1217: 1214: 1211: 1208: 1198: 1185: 1182: 1179: 1176: 1172: 1162: 1159: 1152: 1151: 1148: 1145: 1142: 1139: 1118: 1115: 1112: 1109: 1106: 1097:between those 1084: 1081: 1078: 1074: 1051: 1048: 1045: 1041: 1036: 1032: 1029: 1024: 1021: 1018: 1014: 991: 985: 979: 976: 971: 965: 959: 956: 951: 945: 939: 936: 933: 930: 927: 924: 921: 899: 896: 893: 887: 860: 836: 816: 811: 806: 801: 796: 793: 788: 783: 778: 774: 751: 747: 742: 738: 735: 732: 729: 726: 723: 718: 712: 687: 683: 678: 674: 671: 668: 665: 662: 659: 654: 648: 623: 619: 614: 610: 607: 604: 601: 598: 595: 590: 584: 554: 549: 543: 537: 532: 526: 520: 515: 509: 503: 492:Miller-indexed 461:lattice planes 442: 437: 434: 431: 428: 423: 420: 415: 400:symmetry group 377: 372: 369: 364: 359: 356: 351: 346: 326: 323: 320: 317: 314: 292: 289: 286: 280: 257: 252: 247: 242: 237: 232: 227: 109:Main article: 106: 103: 95:Miller indices 70: 69: 31: 29: 22: 15: 9: 6: 4: 3: 2: 1793: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1758: 1756: 1747: 1744: 1743: 1732: 1731:0-88275-376-2 1728: 1724: 1718: 1712: 1711:0-306-45324-X 1708: 1704: 1698: 1691: 1687: 1681: 1675: 1674:1-878907-35-2 1671: 1667: 1661: 1654: 1648: 1641: 1635: 1628: 1627:0-486-66317-5 1624: 1620: 1614: 1607: 1601: 1595: 1591: 1588: 1582: 1575: 1569: 1562: 1556: 1552: 1542: 1539: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1509: 1508: 1502: 1500: 1492: 1489: 1486: 1483: 1479: 1475: 1473: 1469: 1465: 1461: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1424: 1422: 1406: 1403: 1400: 1397: 1394: 1391: 1388: 1385: 1382: 1379: 1376: 1370: 1367: 1364: 1358: 1352: 1349: 1346: 1335: 1331: 1321: 1318: 1300: 1297: 1294: 1284: 1266: 1263: 1260: 1250: 1245: 1241: 1236: 1233: 1215: 1212: 1209: 1199: 1180: 1177: 1174: 1163: 1158: 1154: 1149: 1146: 1143: 1140: 1137: 1136: 1130: 1113: 1110: 1107: 1082: 1079: 1076: 1072: 1049: 1046: 1043: 1039: 1034: 1030: 1027: 1022: 1019: 1016: 1012: 989: 977: 974: 969: 957: 954: 949: 937: 934: 928: 925: 922: 897: 894: 891: 874: 873:cross product 858: 850: 834: 804: 791: 781: 776: 772: 749: 745: 740: 733: 730: 727: 721: 716: 685: 681: 676: 669: 666: 663: 657: 652: 621: 617: 612: 605: 602: 599: 593: 588: 570: 568: 547: 535: 530: 518: 513: 493: 489: 485: 481: 476: 474: 470: 466: 462: 456: 435: 432: 426: 418: 405: 404:cubic lattice 401: 397: 393: 370: 367: 357: 354: 344: 321: 318: 315: 290: 287: 284: 245: 235: 217: 212: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 134: 133:contravariant 130: 129:basis vectors 126: 122: 118: 112: 102: 98: 96: 92: 88: 84: 76: 66: 63: 55: 45: 41: 35: 32:This article 30: 21: 20: 1722: 1717: 1702: 1697: 1685: 1680: 1665: 1660: 1652: 1647: 1639: 1634: 1618: 1613: 1605: 1600: 1592:, 1150–1171 1589: 1586: 1581: 1573: 1568: 1560: 1555: 1526:Miller index 1499:Miller index 1496: 1491:atom cluster 1471: 1468:Ewald sphere 1459: 1432: 1430: 1333: 1327: 1243: 1156: 571: 477: 457: 213: 200: 196: 192: 188: 184: 180: 176: 172: 168: 164: 160: 156: 148: 144: 140: 114: 111:Miller index 99: 86: 82: 81: 58: 52:October 2014 49: 33: 1781:Diffraction 1640:Gravitation 1531:Diffraction 1437:diffraction 1435:(ZAP) is a 849:dot product 216:coordinates 1755:Categories 1516:Dual basis 1457:wavelength 847:denotes a 1547:Footnotes 1445:electrons 1421:Cartesian 1359:⋅ 1184:⟩ 1171:⟨ 990:∗ 970:∗ 950:∗ 859:× 835:⋅ 805:× 792:⋅ 731:× 722:≡ 717:∗ 667:× 658:≡ 653:∗ 603:× 594:≡ 589:∗ 548:∗ 531:∗ 514:∗ 436:− 422:¯ 392:generated 209:angstroms 195:(between 183:(between 171:(between 139:) called 125:unit cell 83:Zone axis 1766:Crystals 1505:See also 1453:neutrons 1441:incident 484:one-form 1690:preview 1488:silicon 1482:Diamond 207:(m) or 191:), and 38:Please 1729:  1709:  1672:  1625:  1460:λ 1449:X-rays 1138:Object 700:, and 572:Here, 490:) are 480:normal 396:action 394:by an 205:meters 193:γ 181:β 169:α 147:, and 1147:Units 488:axial 305:, or 211:(Å). 137:polar 119:of a 1727:ISBN 1707:ISBN 1670:ISBN 1623:ISBN 851:and 199:and 187:and 175:and 163:and 115:The 1594:pdf 1472:hkl 1451:or 1334:hkl 1247:hkl 1160:uvw 912:or 567:set 486:or 455:). 179:), 135:or 87:any 42:to 1757:: 1590:43 1447:, 1423:. 871:a 636:, 427:00 159:, 143:, 97:. 1692:. 1629:. 1407:0 1404:= 1401:l 1398:w 1395:+ 1392:k 1389:v 1386:+ 1383:h 1380:u 1377:= 1374:) 1371:l 1368:k 1365:h 1362:( 1356:] 1353:w 1350:v 1347:u 1344:[ 1304:) 1301:l 1298:k 1295:h 1292:( 1270:} 1267:l 1264:k 1261:h 1258:{ 1244:g 1219:] 1216:w 1213:v 1210:u 1207:[ 1181:w 1178:v 1175:u 1157:s 1117:) 1114:l 1111:k 1108:h 1105:( 1083:l 1080:k 1077:h 1073:d 1050:l 1047:k 1044:h 1040:d 1035:/ 1031:1 1028:= 1023:l 1020:k 1017:h 1013:g 984:c 978:l 975:+ 964:b 958:k 955:+ 944:a 938:h 935:= 932:) 929:l 926:k 923:h 920:( 898:l 895:k 892:h 886:g 827:( 815:) 810:c 800:b 795:( 787:a 782:= 777:c 773:V 750:c 746:V 741:/ 737:) 734:b 728:a 725:( 711:c 686:c 682:V 677:/ 673:) 670:a 664:c 661:( 647:b 622:c 618:V 613:/ 609:) 606:c 600:b 597:( 583:a 553:} 542:c 536:, 525:b 519:, 508:a 502:{ 441:a 433:= 430:] 419:1 414:[ 376:c 371:w 368:+ 363:b 358:v 355:+ 350:a 345:u 325:] 322:w 319:v 316:u 313:[ 291:w 288:v 285:u 279:s 256:} 251:c 246:, 241:b 236:, 231:a 226:{ 201:b 197:a 189:a 185:c 177:c 173:b 165:c 161:b 157:a 149:c 145:b 141:a 131:( 65:) 59:( 54:) 50:( 36:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message

reciprocal lattice
Miller indices
Miller index
translational invariance
crystal lattice
unit cell
basis vectors
contravariant
polar
lattice parameters
meters
angstroms
coordinates
generated
action
symmetry group
cubic lattice
lattice planes
reciprocal lattice
spatial frequencies
frequency space
normal
one-form
axial
Miller-indexed
set

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.