Knowledge

Horn antenna

Source 📝

1061: 511: 754: 20: 1093: 352: 203: 1117: 163: 1012:. Also, the aperture isn't partially obstructed by the feed and its supports, as with ordinary front-fed parabolic dishes, allowing it to achieve aperture efficiencies of 70% as opposed to 55–60% for front-fed dishes. The disadvantage is that it is far larger and heavier for a given aperture area than a parabolic dish, and must be mounted on a cumbersome turntable to be fully steerable. This design was used for a few 503: 360: 174:(a metal pipe used to carry radio waves) out into space, or collect radio waves into a waveguide for reception. It typically consists of a short length of rectangular or cylindrical metal tube (the waveguide), closed at one end, flaring into an open-ended conical or pyramidal shaped horn on the other end. The radio waves are usually introduced into the waveguide by a 33: 429:, they can have pyramidal or conical cross sections. Exponential horns have minimum internal reflections, and almost constant impedance and other characteristics over a wide frequency range. They are used in applications requiring high performance, such as feed horns for communication satellite antennas and radio telescopes. 526:
For a given frequency and horn length, there is some flare angle that gives minimum reflection and maximum gain. The internal reflections in straight-sided horns come from the two locations along the wave path where the impedance changes abruptly; the mouth or aperture of the horn, and the throat
338:
As the size of a horn (expressed in wavelengths) is increased, the phase error increases, giving the horn a wider radiation pattern. Keeping the beamwidth narrow requires a longer horn (smaller flare angle) to keep the phase error constant. The increasing phase error limits the aperture size of
455:– This simple dual-mode horn superficially looks like a pyramidal horn with a square output aperture. On closer inspection, however, the square output aperture is seen to be rotated 45° relative to the waveguide. These horns are typically machined into split blocks and used at sub-mm wavelengths. 535:
of the antenna is low because the small mouth approximates an open-ended waveguide, with a large impedance step. As the angle is increased, the reflection at the mouth decreases rapidly and the antenna's gain increases. In contrast, in wide horns with flare angles approaching 90° most of the
1790: 1002:
in 1961. It is also referred to as the "sugar scoop" due to its characteristic shape. It consists of a horn antenna with a reflector mounted in the mouth of the horn at a 45 degree angle so the radiated beam is at right angles to the horn axis. The reflector is a segment of a parabolic
385:– A pyramidal horn with only one pair of sides flared and the other pair parallel. It produces a fan-shaped beam, which is narrow in the plane of the flared sides, but wide in the plane of the narrow sides. These types are often used as feed horns for wide search radar antennas. 249:). When radio waves travelling through the waveguide hit the opening, this impedance-step reflects a significant fraction of the wave energy back down the guide toward the source, so that not all of the power is radiated. This is similar to the reflection at an open-ended 435:– A horn with parallel slots or grooves, small compared with a wavelength, covering the inside surface of the horn, transverse to the axis. Corrugated horns have wider bandwidth and smaller sidelobes and cross-polarization, and are widely used as feed horns for 1791:
L. Chang, L. -L. Chen, J. -Q. Zhang and D. Li, "An Open Boundary Quad-Ridged Horn Antenna Operating at 1-18 GHz," 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xiamen, China, 2020, pp. 1-2, doi: 10.1109/APCAP50217.2020.9246141. (2020).
146:. The usable bandwidth of horn antennas is typically of the order of 10:1, and can be up to 20:1 (for example allowing it to operate from 1 GHz to 20 GHz). The input impedance is slowly varying over this wide frequency range, allowing low 23:
Pyramidal microwave horn antenna, with a bandwidth of 0.8 to 18 GHz. A coaxial cable feedline attaches to the connector visible at top. This type is called a ridged horn; the curving fins visible inside the mouth of the horn increase the antenna's
371:
Below are the main types of horn antennas. Horns can have different flare angles as well as different expansion curves (elliptic, hyperbolic, etc.) in the E-field and H-field directions, making possible a wide variety of different beam profiles.
327:
increases smoothly from the edges of the aperture plane to the center, because of the difference in length of the center point and the edge points from the apex point. The difference in phase between the center point and the edges is called the
1290: 628: 536:
reflection is at the throat. The horn's gain is again low because the throat approximates an open-ended waveguide. As the angle is decreased, the amount of reflection at this site drops, and the horn's gain again increases.
1007:
fed off-axis. The advantage of this design over a standard parabolic antenna is that the horn shields the antenna from radiation coming from angles outside the main beam axis, so its radiation pattern has very small
473:– a long narrow horn, long enough so the phase error is a negligible fraction of a wavelength, so it essentially radiates a plane wave. It has an aperture efficiency of 1.0 so it gives the maximum gain and minimum 379:(fig. a) – a horn antenna with the horn in the shape of a four-sided pyramid, with a rectangular cross section. They are a common type, used with rectangular waveguides, and radiate linearly polarized radio waves. 921: 332:. This phase error, which increases with the flare angle, reduces the gain and increases the beamwidth, giving horns wider beamwidths than similar-sized plane-wave antennas such as parabolic dishes. 852: 123:
in World War II stimulated horn research to design feed horns for radar antennas. The corrugated horn invented by Kay in 1962 has become widely used as a feed horn for microwave antennas such as
276:
To improve these poor characteristics, the ends of the waveguide are flared out to form a horn. The taper of the horn changes the impedance gradually along the horn's length. This acts like an
339:
practical horns to about 15 wavelengths; larger apertures would require impractically long horns. This limits the gain of practical horns to about 1000 (30 dBi) and the corresponding minimum
461:– A pyramidal horn with ridges or fins attached to the inside of the horn, extending down the center of the sides. The fins lower the cutoff frequency, increasing the antenna's bandwidth. 506:
Corrugated horn antenna with a bandwidth of 3.7 to 6 GHz designed to attach to SMA waveguide feedline. This was used as a feedhorn for a parabolic antenna on a British military base.
1028:, which can achieve equally good sidelobe performance with a lighter more compact construction. Probably the most photographed and well-known example is the 15-meter-long (50-foot) 670: 982:= 0.522. So an approximate figure of 0.5 is often used. The aperture efficiency increases with the length of the horn, and for aperture-limited horns is approximately unity. 237:
If a simple open-ended waveguide is used as an antenna, without the horn, the sudden end of the conductive walls causes an abrupt impedance change at the aperture, from the
449:– (The Potter horn ) This horn can be used to replace the corrugated horn for use at sub-mm wavelengths where the corrugated horn is lossy and difficult to fabricate. 487:– A special type of horn antenna designed as a four-pronged structure with open boundaries. It covers width the frequency range and polarization is dual linear. 1122:
AT&T Long-Lines KS-15676 C-band (4–6 GHz) microwave relay horn-reflector antennas on roof of AT&T telephone switching center, Seattle, Washington, USA
531:
of the horn (the angle the sides make with the axis). In narrow horns with small flare angles most of the reflection occurs at the mouth of the horn. The
265:, wasting energy and possibly overheating the transmitter. In addition, the small aperture of the waveguide (less than one wavelength) causes significant 549: 280:, allowing most of the wave energy to radiate out the end of the horn into space, with minimal reflection. The taper functions similarly to a tapered 1850: 1600: 2188: 1681: 284:, or an optical medium with a smoothly varying refractive index. In addition, the wide aperture of the horn projects the waves in a narrow beam. 1854: 539:
This discussion shows that there is some flare angle between 0° and 90° which gives maximum gain and minimum reflection. This is called the
477:
for a given aperture size. The gain is not affected by the length but only limited by diffraction at the aperture. Used as feed horns in
519: 423:(fig. e) – A horn with curved sides, in which the separation of the sides increases as an exponential function of length. Also called a 493:– Similar to the open boundary quad-ridged horn above. It was designed to operate over a wide frequency range, low VSWR, and high gain. 863: 295:. However conical and pyramidal horns are most widely used, because they have straight sides and are easier to design and fabricate. 2296: 194:
of satellite dishes, the open mouth of the horn is often covered by a plastic sheet transparent to radio waves, to exclude moisture.
543:. Most practical horn antennas are designed as optimum horns. In a pyramidal horn, the dimensions that give an optimum horn are: 2099: 182:
antenna. The waves then radiate out the horn end in a narrow beam. In some equipment the radio waves are conducted between the
2559: 190:
and the antenna by a waveguide; in this case the horn is attached to the end of the waveguide. In outdoor horns, such as the
2554: 1813: 1659: 1571: 1273: 1711: 1549: 291:
taper. Exponential horns are used in special applications that require minimum signal loss, such as satellite antennas and
799: 1521: 2528: 2346: 2066: 2007: 1890: 1721: 1691: 1649: 1625: 1531: 1354: 1020:
ground antennas during the 1960s. Its largest use, however, was as fixed antennas for microwave relay links in the
757:
Large pyramidal horn used in 1951 to detect the 21 cm/8.3 inches (1.43 GHz) radiation from hydrogen gas in the
166:
Pyramidal horn antennas for a variety of frequencies. They have flanges at the top to attach to standard waveguides.
1997: 1908: 1263: 1880: 789:
of a pyramidal horn antenna (the ratio of the radiated power intensity along its beam axis to the intensity of an
2569: 467:– A horn which is divided into several subhorns by metal partitions (septums) inside, attached to opposite walls. 1237: 1083: 1041: 115:
in his pioneering experiments with microwaves. The modern horn antenna was invented independently in 1938 by
234:
of a tube to the impedance of free space, enabling the waves from the tube to radiate efficiently into space.
210:
on a Hughes Direcway home satellite dish. A transparent plastic sheet covers the horn mouth to keep out rain.
1756:
Johansson, Joakim F.; Whyborn, Nicholas D. (May 1992). "The Diagonal Horn as a Sub-Millimeter Wave Antenna".
143: 105: 25: 1942: 639: 2168: 968:
The aperture efficiency ranges from 0.4 to 0.8 in practical horn antennas. For optimum pyramidal horns,
2193: 2092: 1140: 750:. Tables showing dimensions for optimum horns for various frequencies are given in microwave handbooks. 323:, is a scaled-up reproduction of the fields in the waveguide. Because the wavefronts are spherical, the 1003:
reflector, and the focus of the reflector is at the apex of the horn, so the device is equivalent to a
2574: 1552:"A Broadband Double Ridged Horn Antenna for Radiated Immunity and Emissions Test from 18 GHz to 50 GHz" 1048:. Another more recent horn-reflector design is the cass-horn, which is a combination of a horn with a 510: 2564: 2431: 1550:
Tsung-Ching Lin; Chih-Hung Lee; Ming-Kun Hsieh; Cheng-Nan Chiu; Ding-Bing Lin; Hsin-Piao Lin (2021).
1060: 1843: 1593: 1391: 335:
At the flare angle, the radiation of the beam lobe is down about 20 dB from its maximum value.
2426: 2336: 1337: 1103: 2326: 2135: 1017: 527:
where the sides begin to flare out. The amount of reflection at these two sites varies with the
242: 2508: 2446: 2183: 2085: 2026: 1332: 1160: 1045: 762: 436: 2163: 2056: 1981: 1399: 1316: 1099: 1079: 1037: 112: 93: 2471: 2371: 2243: 2218: 1765: 1737:
Potter, P. D. (1963). "A new horn antenna with suppressed sidelobes and equal beamwidths".
1324: 1209: 1153: 1067: 1029: 288: 215: 179: 97: 753: 111:
One of the first horn antennas was constructed in 1897 by Bengali-Indian radio researcher
8: 2391: 2283: 2238: 991: 960: 262: 254: 178:
attached to the side, with the central conductor projecting into the waveguide to form a
147: 65: 2058:
Practical Conic Sections: The Geometric Properties of Ellipses, Parabolas and Hyperbolas
1769: 1328: 2533: 2381: 2321: 2316: 2213: 2125: 1961: 1831: 1819: 1581: 1477: 1438: 1379: 1360: 1049: 1021: 790: 515: 277: 32: 2518: 2411: 2331: 2253: 2148: 2062: 2003: 1886: 1823: 1809: 1717: 1687: 1655: 1621: 1567: 1527: 1350: 1269: 1025: 1004: 320: 281: 270: 250: 81: 1805: 1563: 1481: 1442: 994:
is known as a Hogg-horn, or horn-reflector antenna, invented by Alfred C. Beck and
2492: 2306: 2268: 2233: 1957: 1801: 1773: 1559: 1469: 1457: 1430: 1418: 1364: 1342: 623:{\displaystyle a_{E}={\sqrt {2\lambda L_{E}}}\qquad a_{H}={\sqrt {3\lambda L_{H}}}} 37: 2498: 2461: 2436: 2361: 2351: 2208: 2178: 2158: 2143: 2108: 1615: 1102:
in Andover, Maine, USA, used in 1960s to communicate with the first direct relay
1013: 995: 478: 440: 414: 304: 292: 219: 128: 61: 53: 1024:
microwave network. Since the 1970s this design has been superseded by shrouded
2523: 2456: 2441: 2416: 2291: 2248: 2223: 2173: 1793: 1551: 1473: 1434: 402: 392: 316: 312: 303:
The waves travel down a horn as spherical wavefronts, with their origin at the
238: 231: 187: 124: 1919: 1501: 1346: 1175: 2548: 2503: 2396: 2386: 2341: 2228: 1683:
Quasioptical Systems: Gaussian beam quasioptical propagation and applications
324: 258: 175: 116: 417:, with a circular cross section. They are used with cylindrical waveguides. 2451: 2421: 2406: 2401: 2376: 2273: 2258: 2203: 2198: 1075: 1033: 783: 779: 704: 532: 308: 85: 73: 19: 2301: 2153: 775: 266: 183: 101: 946: 223: 150:(VSWR) over the bandwidth. The gain of horn antennas ranges up to 25 64:
to direct radio waves in a beam. Horns are widely used as antennas at
1967: 1777: 1556:
2021 7th International Conference on Applied System Innovation (ICASI)
1092: 401:(fig. c) – A sectoral horn flared in the direction of the magnetic or 391:(fig. b) – A sectoral horn flared in the direction of the electric or 202: 2356: 2263: 1116: 1071: 1009: 999: 758: 474: 364: 351: 340: 319:
at the aperture plane at the mouth of the horn, which determines the
207: 191: 171: 139: 89: 77: 69: 57: 1798:
2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP)
162: 2513: 2311: 2117: 135: 1713:
Astrophysics, Volume 12 of Methods of experimental physics, Part 2
633:
For a conical horn, the dimensions that give an optimum horn are:
1794:"An Open Boundary Quad-Ridged Horn Antenna Operating at 1-18 GHz" 1400:"The work of Jagadis Chandra Bose: 100 years of MM-wave research" 1317:"The work of Jagadis Chandra Bose: 100 years of MM-wave research" 1107: 916:{\displaystyle G=\left({\frac {\pi d}{\lambda }}\right)^{2}e_{A}} 227: 151: 88:
of other antennas, and as directive antennas for such devices as
2077: 1943:"Project Echo: A Horn-Reflector Antenna for Space Communication" 359: 2487: 746:
horn). The optimum horn yields maximum gain for a given horn
2466: 502: 120: 1406:. Vol. 2, no. 3. Belgorod, Russia. pp. 87–96. 230:. It provides a gradual transition structure to match the 1924:, filed November 26, 1941, Alfred C. Beck, Harold T. Friis 1180:, filed November 26, 1941, Alfred C. Beck, Harold T. Friis 253:
or a boundary between optical mediums with a low and high
1419:"Metal Horns as Directive Receivers of Ultra-Short Waves" 246: 134:
An advantage of horn antennas is that since they have no
1321:
1997 IEEE MTT-S International Microwave Symposium Digest
958:
is a dimensionless parameter between 0 and 1 called the
738:
An optimum horn does not yield maximum gain for a given
716:
is the slant height of the side in the H-field direction
287:
The horn shape that gives minimum reflected power is an
1904: 1902: 1098:
Large 54-meter (177 ft) horn reflector antenna at
257:, like at a glass surface. The reflected waves cause 1941:
Crawford, A.B.; Hogg, D. C.; Hunt, L. E. (July 1961).
1878: 1613: 170:
A horn antenna is used to transmit radio waves from a
108:, low losses, and simple construction and adjustment. 866: 847:{\displaystyle G={\frac {4\pi A}{\lambda ^{2}}}e_{A}} 802: 694:
is the width of the aperture in the H-field direction
685:
is the width of the aperture in the E-field direction
642: 552: 1977: 1975: 1899: 1758:
IEEE Transactions on Microwave Theory and Techniques
1648:
Bakshi, K. A.; Bakshi, A. V.; Bakshi, U. A. (2009).
36:
The first modern horn antenna in 1938 with inventor
2034:
Bell System Practices, Issue 3, Section 402-421-100
1506:, filed: December 10, 1946, granted: April 19, 1949 1168:
Bell System Practices, Issue 3, Section 402-421-100
998:in 1941 and further developed by David C. Hogg at 72:frequencies, above 300 MHz. They are used as 1647: 915: 846: 664: 622: 269:of the waves issuing from it, resulting in a wide 84:, as standard calibration antennas to measure the 1972: 2546: 1940: 1755: 1032:at Bell Labs in Holmdel, New Jersey, with which 722:is the diameter of the cylindrical horn aperture 514:Exponential feed horn for 26-meter (85 ft) 138:elements, they can operate over a wide range of 1999:Satellite systems: principles and technologies 1416: 1143:(uses 1 horn antenna for Jupiter observations) 990:A type of antenna that combines a horn with a 2093: 2027:"KS-15676 Horn-Reflector Antenna Description" 1417:Southworth, G. C.; King, A. P. (March 1939). 1410: 1161:"KS-15676 Horn-Reflector Antenna Description" 742:. That is achieved with a very long horn (an 728:is the slant height of the cone from the apex 1879:Tasuku, Teshirogi; Tsukasa Yoneyama (2001). 1675: 1673: 1671: 1654:. Technical Publications. pp. 6.1–6.3. 1614:Stutzman, Warren L.; Gary A. Thiele (1998). 1495: 1203: 1201: 1199: 1197: 1195: 214:A horn antenna serves the same function for 1936: 1934: 1932: 1456:Barrow, W. L.; Chu, L. J. (February 1939). 520:Goldstone Deep Space Communications Complex 518:spacecraft communication antenna at NASA's 2100: 2086: 2021: 2019: 1853:) CS1 maint: numeric names: authors list ( 1207: 1100:AT&T satellite communications facility 975:= 0.511., while for optimum conical horns 939:is the aperture diameter of a conical horn 206:Corrugated conical horn antenna used as a 119:and G. C. Southworth The development of 1991: 1989: 1874: 1872: 1870: 1868: 1866: 1864: 1849:CS1 maint: multiple names: authors list ( 1679: 1668: 1643: 1641: 1639: 1637: 1599:CS1 maint: multiple names: authors list ( 1455: 1336: 1288: 1192: 985: 1929: 1705: 1703: 1449: 1074:in Holmdel, New Jersey, USA, with which 752: 509: 501: 358: 350: 201: 161: 80:) for larger antenna structures such as 31: 18: 2016: 1515: 1513: 1314: 1268:. Technical Publications. p. 159. 1261: 1231: 1229: 2547: 1995: 1986: 1861: 1736: 1634: 1308: 665:{\displaystyle d={\sqrt {3\lambda L}}} 2081: 2054: 1709: 1700: 1686:. USA: IEEE Press. pp. 173–174. 1545: 1543: 1519: 1502:Barrow, Wilmer L, US patent 2467578 1044:in 1965, for which they won the 1978 1913: 1510: 1458:"Theory of the Electromagnetic Horn" 1397: 1323:. Vol. 45. pp. 2267–2273. 1226: 774:Horns have very little loss, so the 761:galaxy. Currently on display at the 707:of the side in the E-field direction 413:(fig. d) – A horn in the shape of a 298: 16:Funnel-shaped waveguide radio device 1882:Modern millimeter-wave technologies 1716:. USA: Academic Press. p. 11. 481:and other high-resolution antennas. 13: 1962:10.1002/j.1538-7305.1961.tb01639.x 1885:. USA: IOS Press. pp. 87–89. 1540: 778:of a horn is roughly equal to its 765:in Green Bank, West Virginia, U.S. 261:in the waveguide, increasing the 226:in a musical instrument such as a 100:. Their advantages are moderate 14: 2586: 2529:Circularly disposed antenna array 2347:Folded inverted conformal antenna 2107: 1235: 1208:Bevelacqua, Peter Joseph (2009). 1147: 56:that consists of a flaring metal 1710:Meeks, Marion Littleton (1976). 1315:Emerson, D. T. (December 1997). 1115: 1091: 1059: 857:For conical horns, the gain is: 491:Open boundary double-ridged horn 307:of the horn, a point called the 154:, with 10–20 dBi being typical. 2048: 1806:10.1109/APCAP50217.2020.9246141 1784: 1749: 1730: 1607: 1564:10.1109/ICASI52993.2021.9568460 793:with the same input power) is: 586: 497: 197: 2002:. USA: Springer. p. 275. 1620:. USA: J. Wiley. p. 299. 1282: 1255: 1170:. AT&T Co. September 1975. 1084:microwave background radiation 1042:microwave background radiation 485:Open boundary quad-ridged horn 278:impedance matching transformer 157: 1: 2560:Radio frequency antenna types 2036:. AT&T Co. September 1975 1950:Bell System Technical Journal 1651:Antennas And Wave Propagation 1242:Radio-Electronics.com website 1186: 2555:Telecommunications equipment 2169:Dielectric resonator antenna 1289:Rodriguez, Vincente (2010). 1050:cassegrain parabolic antenna 933:is the area of the aperture, 367:for air search radar antenna 7: 2061:. Courier. pp. 49–50. 2045:on Albert LaFrance website 1680:Goldsmith, Paul F. (1998). 1172:on Albert LaFrance website 1141:Microwave Radiometer (Juno) 1134: 148:voltage standing wave ratio 10: 2591: 1526:. USA: IET. pp. 2–4. 1474:10.1109/JRPROC.1939.228693 1435:10.1109/JRPROC.1939.229011 1291:"A brief history of horns" 1244:. Adrio Communications Ltd 1214:Antenna-theory.com website 273:without much directivity. 2480: 2432:Regenerative loop antenna 2282: 2134: 2116: 1920:U. S. patent no. 2416675 1617:Antenna theory and design 1523:Microwave horns and feeds 1347:10.1109/MWSYM.1997.602853 1176:U. S. patent no. 2416675 2427:Reflective array antenna 2337:Corner reflector antenna 1520:Olver, A. David (1994). 1265:Antennas And Propagation 1104:communications satellite 346: 241:in the waveguide to the 2327:Collinear antenna array 1262:Narayan, C. P. (2007). 1128:Horn-reflector antennas 1026:parabolic dish antennas 1018:communication satellite 769: 243:impedance of free space 2570:Bangladeshi inventions 2509:Reconfigurable antenna 2472:Yagi–Uda antenna 2447:Short backfire antenna 2184:Folded unipole antenna 1996:Pattan, Bruno (1993). 1968:Alcatel-Lucent website 1462:Proceedings of the IRE 1423:Proceedings of the IRE 1398:Grigorov, Igor (ed.). 1297:. Same Page Publishing 1295:In Compliance Magazine 1210:"Horn antenna - Intro" 1066:15-meter (50 ft) 1052:using two reflectors. 1046:Nobel Prize in Physics 986:Horn-reflector antenna 917: 848: 766: 763:Green Bank Observatory 666: 624: 523: 507: 447:Dual-mode conical horn 368: 356: 211: 167: 94:automatic door openers 41: 29: 2164:Crossed field antenna 2055:Downs, J. W. (1993). 918: 849: 756: 667: 625: 513: 505: 471:Aperture-limited horn 362: 354: 216:electromagnetic waves 205: 180:quarter-wave monopole 165: 113:Jagadish Chandra Bose 98:microwave radiometers 35: 22: 2481:Application-specific 2372:Log-periodic antenna 2244:Rubber ducky antenna 2219:Inverted vee antenna 2194:Ground-plane antenna 1909:Narayan 2007, p. 168 1504:Electromagnetic horn 1068:Holmdel horn antenna 1030:Holmdel Horn Antenna 864: 800: 640: 550: 2392:Offset dish antenna 2239:Random wire antenna 1922:Horn antenna system 1770:1992ITMTT..40..795J 1329:1997imsd.conf..553E 1178:Horn antenna system 1022:AT&T Long Lines 992:parabolic reflector 961:aperture efficiency 255:index of refraction 2534:Television antenna 2382:Microstrip antenna 2322:Choke ring antenna 2317:Cassegrain antenna 2214:Inverted-F antenna 2126:Isotropic radiator 1558:. pp. 63–66. 1156:Antenna-Theory.com 1082:discovered cosmic 1040:discovered cosmic 913: 844: 767: 662: 620: 524: 508: 369: 363:Stack of sectoral 357: 355:Horn antenna types 311:. The pattern of 212: 168: 82:parabolic antennas 42: 30: 2575:Indian inventions 2542: 2541: 2519:Reference antenna 2412:Parabolic antenna 2332:Conformal antenna 2254:Turnstile antenna 2149:Biconical antenna 1982:Meeks, 1976, p.13 1926:on Google Patents 1815:978-1-7281-9805-7 1778:10.1109/22.137380 1661:978-81-8431-278-2 1573:978-1-6654-4143-8 1275:978-81-8431-176-1 1182:on Google Patents 1005:parabolic antenna 891: 832: 791:isotropic antenna 734:is the wavelength 660: 618: 584: 405:in the waveguide. 395:in the waveguide. 321:radiation pattern 299:Radiation pattern 282:transmission line 271:radiation pattern 251:transmission line 2582: 2565:Antennas (radio) 2493:Corner reflector 2307:Beverage antenna 2269:Umbrella antenna 2234:Monopole antenna 2189:Franklin antenna 2102: 2095: 2088: 2079: 2078: 2073: 2072: 2052: 2046: 2044: 2042: 2041: 2031: 2023: 2014: 2013: 1993: 1984: 1979: 1970: 1965: 1956:(4): 1095–1099. 1947: 1938: 1927: 1917: 1911: 1906: 1897: 1896: 1876: 1859: 1858: 1847: 1841: 1837: 1835: 1827: 1800:. pp. 1–2. 1788: 1782: 1781: 1753: 1747: 1746: 1734: 1728: 1727: 1707: 1698: 1697: 1677: 1666: 1665: 1645: 1632: 1631: 1611: 1605: 1604: 1597: 1591: 1587: 1585: 1577: 1547: 1538: 1537: 1517: 1508: 1499: 1493: 1492: 1490: 1488: 1453: 1447: 1446: 1414: 1408: 1407: 1395: 1389: 1385: 1383: 1375: 1373: 1371: 1340: 1312: 1306: 1305: 1303: 1302: 1286: 1280: 1279: 1259: 1253: 1252: 1250: 1249: 1233: 1224: 1223: 1221: 1220: 1205: 1171: 1165: 1119: 1095: 1063: 1014:radio telescopes 922: 920: 919: 914: 912: 911: 902: 901: 896: 892: 887: 879: 853: 851: 850: 845: 843: 842: 833: 831: 830: 821: 810: 744:aperture limited 671: 669: 668: 663: 661: 650: 629: 627: 626: 621: 619: 617: 616: 601: 596: 595: 585: 583: 582: 567: 562: 561: 479:radio telescopes 441:radio telescopes 437:satellite dishes 421:Exponential horn 343:to about 5–10°. 293:radio telescopes 129:radio telescopes 125:satellite dishes 38:Wilmer L. Barrow 2590: 2589: 2585: 2584: 2583: 2581: 2580: 2579: 2545: 2544: 2543: 2538: 2499:Evolved antenna 2476: 2462:Vivaldi antenna 2437:Rhombic antenna 2362:Helical antenna 2352:Fractal antenna 2297:AS-2259 Antenna 2278: 2209:Helical antenna 2179:Discone antenna 2159:Coaxial antenna 2144:Batwing antenna 2136:Omnidirectional 2130: 2112: 2106: 2076: 2069: 2053: 2049: 2039: 2037: 2029: 2025: 2024: 2017: 2010: 1994: 1987: 1980: 1973: 1945: 1939: 1930: 1918: 1914: 1907: 1900: 1893: 1877: 1862: 1848: 1839: 1838: 1829: 1828: 1816: 1789: 1785: 1754: 1750: 1735: 1731: 1724: 1708: 1701: 1694: 1678: 1669: 1662: 1646: 1635: 1628: 1612: 1608: 1598: 1589: 1588: 1579: 1578: 1574: 1548: 1541: 1534: 1518: 1511: 1500: 1496: 1486: 1484: 1454: 1450: 1415: 1411: 1387: 1386: 1377: 1376: 1369: 1367: 1357: 1313: 1309: 1300: 1298: 1287: 1283: 1276: 1260: 1256: 1247: 1245: 1234: 1227: 1218: 1216: 1206: 1193: 1189: 1163: 1159: 1150: 1137: 1132: 1131: 1130: 1129: 1125: 1124: 1123: 1120: 1112: 1111: 1096: 1088: 1087: 1064: 996:Harald T. Friis 988: 980: 973: 956: 907: 903: 897: 880: 878: 874: 873: 865: 862: 861: 838: 834: 826: 822: 811: 809: 801: 798: 797: 772: 714: 701: 692: 683: 649: 641: 638: 637: 612: 608: 600: 591: 587: 578: 574: 566: 557: 553: 551: 548: 547: 500: 433:Corrugated horn 349: 317:magnetic fields 301: 220:acoustical horn 200: 160: 17: 12: 11: 5: 2588: 2578: 2577: 2572: 2567: 2562: 2557: 2540: 2539: 2537: 2536: 2531: 2526: 2524:Spiral antenna 2521: 2516: 2511: 2506: 2501: 2496: 2490: 2484: 2482: 2478: 2477: 2475: 2474: 2469: 2464: 2459: 2457:Sterba antenna 2454: 2449: 2444: 2442:Sector antenna 2439: 2434: 2429: 2424: 2419: 2417:Plasma antenna 2414: 2409: 2404: 2399: 2394: 2389: 2384: 2379: 2374: 2369: 2364: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2292:Adcock antenna 2288: 2286: 2280: 2279: 2277: 2276: 2271: 2266: 2261: 2256: 2251: 2249:Sloper antenna 2246: 2241: 2236: 2231: 2226: 2224:J-pole antenna 2221: 2216: 2211: 2206: 2201: 2196: 2191: 2186: 2181: 2176: 2174:Dipole antenna 2171: 2166: 2161: 2156: 2151: 2146: 2140: 2138: 2132: 2131: 2129: 2128: 2122: 2120: 2114: 2113: 2105: 2104: 2097: 2090: 2082: 2075: 2074: 2067: 2047: 2015: 2008: 1985: 1971: 1928: 1912: 1898: 1891: 1860: 1840:|website= 1814: 1783: 1764:(5): 795–800. 1748: 1729: 1722: 1699: 1692: 1667: 1660: 1633: 1626: 1606: 1590:|website= 1572: 1539: 1532: 1509: 1494: 1448: 1409: 1388:|journal= 1355: 1338:10.1.1.39.8748 1307: 1281: 1274: 1254: 1238:"Horn antenna" 1225: 1190: 1188: 1185: 1184: 1183: 1173: 1157: 1149: 1148:External links 1146: 1145: 1144: 1136: 1133: 1127: 1126: 1121: 1114: 1113: 1097: 1090: 1089: 1065: 1058: 1057: 1056: 1055: 1054: 987: 984: 978: 971: 966: 965: 954: 950: 940: 934: 924: 923: 910: 906: 900: 895: 890: 886: 883: 877: 872: 869: 855: 854: 841: 837: 829: 825: 820: 817: 814: 808: 805: 771: 768: 736: 735: 729: 723: 717: 712: 708: 699: 695: 690: 686: 681: 673: 672: 659: 656: 653: 648: 645: 631: 630: 615: 611: 607: 604: 599: 594: 590: 581: 577: 573: 570: 565: 560: 556: 499: 496: 495: 494: 488: 482: 468: 462: 456: 450: 444: 430: 418: 408: 407: 406: 396: 380: 377:Pyramidal horn 348: 345: 300: 297: 259:standing waves 239:wave impedance 199: 196: 159: 156: 60:shaped like a 50:microwave horn 15: 9: 6: 4: 3: 2: 2587: 2576: 2573: 2571: 2568: 2566: 2563: 2561: 2558: 2556: 2553: 2552: 2550: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2504:Ground dipole 2502: 2500: 2497: 2494: 2491: 2489: 2486: 2485: 2483: 2479: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2397:Patch antenna 2395: 2393: 2390: 2388: 2387:Moxon antenna 2385: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2342:Curtain array 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2289: 2287: 2285: 2281: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2229:Mast radiator 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2172: 2170: 2167: 2165: 2162: 2160: 2157: 2155: 2152: 2150: 2147: 2145: 2142: 2141: 2139: 2137: 2133: 2127: 2124: 2123: 2121: 2119: 2115: 2110: 2103: 2098: 2096: 2091: 2089: 2084: 2083: 2080: 2070: 2068:0-486-42876-1 2064: 2060: 2059: 2051: 2035: 2028: 2022: 2020: 2011: 2009:0-442-01357-4 2005: 2001: 2000: 1992: 1990: 1983: 1978: 1976: 1969: 1963: 1959: 1955: 1951: 1944: 1937: 1935: 1933: 1925: 1923: 1916: 1910: 1905: 1903: 1894: 1892:1-58603-098-1 1888: 1884: 1883: 1875: 1873: 1871: 1869: 1867: 1865: 1856: 1852: 1845: 1833: 1825: 1821: 1817: 1811: 1807: 1803: 1799: 1795: 1787: 1779: 1775: 1771: 1767: 1763: 1759: 1752: 1744: 1740: 1733: 1725: 1723:0-12-475952-1 1719: 1715: 1714: 1706: 1704: 1695: 1693:0-7803-3439-6 1689: 1685: 1684: 1676: 1674: 1672: 1663: 1657: 1653: 1652: 1644: 1642: 1640: 1638: 1629: 1627:0-471-02590-9 1623: 1619: 1618: 1610: 1602: 1595: 1583: 1575: 1569: 1565: 1561: 1557: 1553: 1546: 1544: 1535: 1533:0-85296-809-4 1529: 1525: 1524: 1516: 1514: 1507: 1505: 1498: 1483: 1479: 1475: 1471: 1467: 1463: 1459: 1452: 1444: 1440: 1436: 1432: 1429:(2): 95–102. 1428: 1424: 1420: 1413: 1405: 1401: 1396:reprinted in 1393: 1381: 1366: 1362: 1358: 1356:0-7803-3814-6 1352: 1348: 1344: 1339: 1334: 1330: 1326: 1322: 1318: 1311: 1296: 1292: 1285: 1277: 1271: 1267: 1266: 1258: 1243: 1239: 1232: 1230: 1215: 1211: 1204: 1202: 1200: 1198: 1196: 1191: 1181: 1179: 1174: 1169: 1162: 1158: 1155: 1154:Horn Antennas 1152: 1151: 1142: 1139: 1138: 1118: 1109: 1105: 1101: 1094: 1085: 1081: 1080:Robert Wilson 1077: 1073: 1069: 1062: 1053: 1051: 1047: 1043: 1039: 1038:Robert Wilson 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1006: 1001: 997: 993: 983: 981: 974: 963: 962: 957: 951: 948: 944: 941: 938: 935: 932: 929: 928: 927: 908: 904: 898: 893: 888: 884: 881: 875: 870: 867: 860: 859: 858: 839: 835: 827: 823: 818: 815: 812: 806: 803: 796: 795: 794: 792: 788: 785: 781: 777: 764: 760: 755: 751: 749: 745: 741: 740:aperture size 733: 730: 727: 724: 721: 718: 715: 709: 706: 702: 696: 693: 687: 684: 678: 677: 676: 657: 654: 651: 646: 643: 636: 635: 634: 613: 609: 605: 602: 597: 592: 588: 579: 575: 571: 568: 563: 558: 554: 546: 545: 544: 542: 537: 534: 530: 521: 517: 512: 504: 492: 489: 486: 483: 480: 476: 472: 469: 466: 463: 460: 457: 454: 453:Diagonal horn 451: 448: 445: 442: 438: 434: 431: 428: 427: 422: 419: 416: 412: 409: 404: 400: 397: 394: 390: 387: 386: 384: 383:Sectoral horn 381: 378: 375: 374: 373: 366: 361: 353: 344: 342: 336: 333: 331: 326: 322: 318: 314: 310: 306: 296: 294: 290: 285: 283: 279: 274: 272: 268: 264: 260: 256: 252: 248: 245:, (about 377 244: 240: 235: 233: 229: 225: 221: 217: 209: 204: 195: 193: 189: 185: 181: 177: 176:coaxial cable 173: 164: 155: 153: 149: 145: 141: 137: 132: 130: 126: 122: 118: 117:Wilmer Barrow 114: 109: 107: 103: 99: 95: 91: 87: 83: 79: 75: 74:feed antennas 71: 67: 63: 59: 55: 51: 47: 39: 34: 27: 21: 2452:Slot antenna 2422:Quad antenna 2407:Planar array 2402:Phased array 2377:Loop antenna 2367:Horn antenna 2366: 2274:Whip antenna 2259:T2FD antenna 2204:Halo antenna 2199:G5RV antenna 2057: 2050: 2038:. Retrieved 2033: 1998: 1953: 1949: 1921: 1915: 1881: 1797: 1786: 1761: 1757: 1751: 1742: 1738: 1732: 1712: 1682: 1650: 1616: 1609: 1555: 1522: 1503: 1497: 1485:. Retrieved 1468:(1): 51–64. 1465: 1461: 1451: 1426: 1422: 1412: 1403: 1368:. Retrieved 1320: 1310: 1299:. Retrieved 1294: 1284: 1264: 1257: 1246:. Retrieved 1241: 1236:Poole, Ian. 1217:. Retrieved 1213: 1177: 1167: 1076:Arno Penzias 1034:Arno Penzias 989: 976: 969: 967: 959: 952: 942: 936: 930: 925: 856: 786: 773: 747: 743: 739: 737: 731: 725: 719: 710: 705:slant height 697: 688: 679: 674: 632: 541:optimum horn 540: 538: 528: 525: 498:Optimum horn 490: 484: 470: 464: 458: 452: 446: 432: 425: 424: 420: 411:Conical horn 410: 399:H-plane horn 398: 389:E-plane horn 388: 382: 376: 370: 337: 334: 329: 309:phase center 302: 286: 275: 236: 213: 198:How it works 169: 133: 110: 49: 46:horn antenna 45: 43: 2302:AWX antenna 2284:Directional 2154:Cage aerial 1739:Microwave J 1487:October 28, 776:directivity 529:flare angle 465:Septum horn 459:Ridged horn 426:scalar horn 330:phase error 289:exponential 267:diffraction 224:sound waves 184:transmitter 158:Description 140:frequencies 102:directivity 2549:Categories 2040:2011-12-20 1301:2010-11-12 1248:2010-11-11 1219:2010-11-11 1187:References 947:wavelength 516:Cassegrain 365:feed horns 192:feed horns 90:radar guns 78:feed horns 2495:(passive) 2357:Gizmotchy 2264:T-antenna 2118:Isotropic 1842:ignored ( 1832:cite book 1824:226852649 1592:ignored ( 1582:cite book 1390:ignored ( 1380:cite book 1370:March 15, 1333:CiteSeerX 1072:Bell Labs 1010:sidelobes 1000:Bell Labs 889:λ 882:π 824:λ 816:π 759:Milky Way 655:λ 606:λ 572:λ 475:beamwidth 341:beamwidth 232:impedance 222:does for 208:feed horn 172:waveguide 144:bandwidth 142:, a wide 106:bandwidth 70:microwave 58:waveguide 26:bandwidth 2514:Rectenna 2312:Cantenna 1745:: 71–78. 1482:51635676 1443:51632525 1404:Antentop 1135:See also 1086:in 1964. 782:. The 313:electric 218:that an 188:receiver 136:resonant 104:, broad 96:, and 76:(called 2109:Antenna 1766:Bibcode 1365:9039614 1325:Bibcode 1108:Telstar 945:is the 703:is the 403:H-field 393:E-field 228:trumpet 54:antenna 2488:ALLISS 2065:  2006:  1889:  1822:  1812:  1720:  1690:  1658:  1624:  1570:  1530:  1480:  1441:  1363:  1353:  1335:  1272:  926:where 748:length 675:where 52:is an 2467:WokFi 2111:types 2030:(PDF) 1946:(PDF) 1820:S2CID 1478:S2CID 1439:S2CID 1361:S2CID 1164:(PDF) 347:Types 325:phase 121:radar 2063:ISBN 2004:ISBN 1887:ISBN 1855:link 1851:link 1844:help 1810:ISBN 1718:ISBN 1688:ISBN 1656:ISBN 1622:ISBN 1601:link 1594:help 1568:ISBN 1528:ISBN 1489:2015 1392:help 1372:2012 1351:ISBN 1270:ISBN 1078:and 1036:and 1016:and 784:gain 780:gain 770:Gain 533:gain 439:and 415:cone 315:and 305:apex 127:and 86:gain 68:and 62:horn 1966:on 1958:doi 1802:doi 1774:doi 1560:doi 1470:doi 1431:doi 1343:doi 1070:at 263:SWR 186:or 152:dBi 92:, 66:UHF 48:or 40:. 2551:: 2032:. 2018:^ 1988:^ 1974:^ 1954:40 1952:. 1948:. 1931:^ 1901:^ 1863:^ 1836:: 1834:}} 1830:{{ 1818:. 1808:. 1796:. 1772:. 1762:40 1760:. 1741:. 1702:^ 1670:^ 1636:^ 1586:: 1584:}} 1580:{{ 1566:. 1554:. 1542:^ 1512:^ 1476:. 1466:27 1464:. 1460:. 1437:. 1427:27 1425:. 1421:. 1402:. 1384:: 1382:}} 1378:{{ 1359:. 1349:. 1341:. 1331:. 1319:. 1293:. 1240:. 1228:^ 1212:. 1194:^ 1166:. 1106:, 131:. 44:A 28:. 2101:e 2094:t 2087:v 2071:. 2043:. 2012:. 1964:. 1960:: 1895:. 1857:) 1846:) 1826:. 1804:: 1780:. 1776:: 1768:: 1743:6 1726:. 1696:. 1664:. 1630:. 1603:) 1596:) 1576:. 1562:: 1536:. 1491:. 1472:: 1445:. 1433:: 1394:) 1374:. 1345:: 1327:: 1304:. 1278:. 1251:. 1222:. 1110:. 979:A 977:e 972:A 970:e 964:, 955:A 953:e 949:, 943:λ 937:d 931:A 909:A 905:e 899:2 894:) 885:d 876:( 871:= 868:G 840:A 836:e 828:2 819:A 813:4 807:= 804:G 787:G 732:λ 726:L 720:d 713:H 711:L 700:E 698:L 691:H 689:a 682:E 680:a 658:L 652:3 647:= 644:d 614:H 610:L 603:3 598:= 593:H 589:a 580:E 576:L 569:2 564:= 559:E 555:a 522:. 443:. 247:Ω

Index


bandwidth

Wilmer L. Barrow
antenna
waveguide
horn
UHF
microwave
feed antennas
feed horns
parabolic antennas
gain
radar guns
automatic door openers
microwave radiometers
directivity
bandwidth
Jagadish Chandra Bose
Wilmer Barrow
radar
satellite dishes
radio telescopes
resonant
frequencies
bandwidth
voltage standing wave ratio
dBi

waveguide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.