Knowledge

Aircraft design process

Source 📝

273:. Even with the greatest attention to airworthiness, accidents still occur. Crashworthiness is the qualitative evaluation of how aircraft survive an accident. The main objective is to protect the passengers or valuable cargo from the damage caused by an accident. In the case of airliners the stressed skin of the pressurized fuselage provides this feature, but in the event of a nose or tail impact, large bending moments build all the way through the fuselage, causing fractures in the shell, causing the fuselage to break up into smaller sections. So the passenger aircraft are designed in such a way that seating arrangements are away from areas likely to be intruded in an accident, such as near a propeller, engine nacelle undercarriage etc. The interior of the cabin is also fitted with safety features such as oxygen masks that drop down in the event of loss of cabin pressure, lockable luggage compartments, safety belts, lifejackets, emergency doors and luminous floor strips. Aircraft are sometimes designed with emergency 314:
looking for ways to automate and simplify the calculation process and many relations and semi-empirical formulas were developed. Even after simplification, the calculations continued to be extensive. With the invention of the computer, engineers realized that a majority of the calculations could be automated, but the lack of design visualization and the huge amount of experimentation involved kept the field of aircraft design stagnant. With the rise of programming languages, engineers could now write programs that were tailored to design an aircraft. Originally this was done with mainframe computers and used low-level programming languages that required the user to be fluent in the language and know the architecture of the computer. With the introduction of personal computers, design programs began employing a more user-friendly approach.
586: 597:
as aerodynamics, propulsion, flight performance, structural and control systems. This is called design optimization. Fundamental aspects such as fuselage shape, wing configuration and location, engine size and type are all determined at this stage. Constraints to design like those mentioned above are all taken into account at this stage as well. The final product is a conceptual layout of the aircraft configuration on paper or computer screen, to be reviewed by engineers and other designers.
20: 547: 209:. To combat the pollution, ICAO set recommendations in 1981 to control aircraft emissions. Newer, environmentally friendly fuels have been developed and the use of recyclable materials in manufacturing have helped reduce the ecological impact due to aircraft. Environmental limitations also affect airfield compatibility. Airports around the world have been built to suit the topography of the particular region. Space limitations, pavement design, 440: 177:
expansion of airways over already congested and polluted cities have drawn heavy criticism, making it necessary to have environmental policies for aircraft noise. Noise also arises from the airframe, where the airflow directions are changed. Improved noise regulations have forced designers to create quieter engines and airframes. Emissions from aircraft include particulates,
613:
calculations of the flow field around the aircraft are done. Major structural and control analysis is also carried out in this phase. Aerodynamic flaws and structural instabilities if any are corrected and the final design is drawn and finalized. Then after the finalization of the design lies the key
596:
Aircraft conceptual design involves sketching a variety of possible configurations that meet the required design specifications. By drawing a set of configurations, designers seek to reach the design configuration that satisfactorily meets all requirements as well as go hand in hand with factors such
497:
The weight of the aircraft is the common factor that links all aspects of aircraft design such as aerodynamics, structure, and propulsion, all together. An aircraft's weight is derived from various factors such as empty weight, payload, useful load, etc. The various weights are used to then calculate
290:
progressed, the complexity of military and airline aircraft also grew. Modern military and airline design projects are of such a large scale that every design aspect is tackled by different teams and then brought together. In general aviation a large number of light aircraft are designed and built by
244:
sets international standards and recommended practices on which national authorities should base their regulations. The national regulatory authorities set standards for airworthiness, issue certificates to manufacturers and operators and the standards of personnel training. Every country has its own
119:
Budget limitations, market requirements and competition set constraints on the design process and comprise the non-technical influences on aircraft design along with environmental factors. Competition leads to companies striving for better efficiency in the design without compromising performance and
471:
The thrust provided by the engine must balance the drag at cruise speed and be greater than the drag to allow acceleration. The engine requirement varies with the type of aircraft. For instance, commercial airliners spend more time in cruise speed and need more engine efficiency. High-performance
31:
is a loosely defined method used to balance many competing and demanding requirements to produce an aircraft that is strong, lightweight, economical and can carry an adequate payload while being sufficiently reliable to safely fly for the design life of the aircraft. Similar to, but more exacting
313:
In the early years of aircraft design, designers generally used analytical theory to do the various engineering calculations that go into the design process along with a lot of experimentation. These calculations were labour-intensive and time-consuming. In the 1940s, several engineers started
68:
The design process starts with the aircraft's intended purpose. Commercial airliners are designed for carrying a passenger or cargo payload, long range and greater fuel efficiency whereas fighter jets are designed to perform high speed maneuvers and provide close support to ground troops. Some
289:
Aircraft designers normally rough-out the initial design with consideration of all the constraints on their design. Historically design teams used to be small, usually headed by a Chief Designer who knows all the design requirements and objectives and coordinated the team accordingly. As time
176:
An increase in the number of aircraft also means greater carbon emissions. Environmental scientists have voiced concern over the main kinds of pollution associated with aircraft, mainly noise and emissions. Aircraft engines have been historically notorious for creating noise pollution and the
303: 614:
decision with the manufacturer or individual designing it whether to actually go ahead with the production of the aircraft. At this point several designs, though perfectly capable of flight and performance, might have been opted out of production due to their being economically nonviable.
213:
end safety areas and the unique location of airport are some of the airport factors that influence aircraft design. However changes in aircraft design also influence airfield design as well, for instance, the recent introduction of new large aircraft (NLAs) such as the superjumbo
256:
The aircraft manufacturer makes sure that the aircraft meets existing design standards, defines the operating limitations and maintenance schedules and provides support and maintenance throughout the operational life of the aircraft. The aviation operators include the
265:
and owners of private aircraft. They agree to comply with the regulations set by the regulatory bodies, understand the limitations of the aircraft as specified by the manufacturer, report defects and assist the manufacturers in keeping up the airworthiness standards.
36:, the technique is highly iterative, involving high-level configuration tradeoffs, a mixture of analysis and testing and the detailed examination of the adequacy of every part of the structure. For some types of aircraft, the design process is regulated by 143:
in engineering and manufacturing allows faster and cheaper development. Technology advances from materials to manufacturing enable more complex design variations like multifunction parts. Once impossible to design or construct, these can now be
453:
Aircraft propulsion may be achieved by specially designed aircraft engines, adapted auto, motorcycle or snowmobile engines, electric engines or even human muscle power. The main parameters of engine design are:
630:, sections and other structural elements. All aerodynamic, structural, propulsion, control and performance aspects have already been covered in the preliminary design phase and only the manufacturing remains. 226:
The high speeds, fuel tanks, atmospheric conditions at cruise altitudes, natural hazards (thunderstorms, hail and bird strikes) and human error are some of the many hazards that pose a threat to air travel.
374:
and other detail aspects may be influenced by wing layout factors. The wing can be mounted to the fuselage in high, low and middle positions. The wing design depends on many parameters such as selection of
111:
Airports may also impose limits on aircraft, for instance, the maximum wingspan allowed for a conventional aircraft is 80 metres (260 ft) to prevent collisions between aircraft while taxiing.
366:
The wing of a fixed-wing aircraft provides the lift necessary for flight. Wing geometry affects every aspect of an aircraft's flight. The wing area will usually be dictated by the desired
2359: 2028: 2167: 2787: 2308: 1777: 1664: 88:, or fill a perceived "gap in the market"; that is, a class or design of aircraft which does not yet exist, but for which there would be significant demand. 233:
is the standard by which aircraft are determined fit to fly. The responsibility for airworthiness lies with the national civil aviation regulatory bodies,
1989: 605:
The design configuration arrived at in the conceptual design phase is then tweaked and remodeled to fit into the design parameters. In this phase,
1807: 642:
Some commercial aircraft have experienced significant schedule delays and cost overruns in the development phase. Examples of this include the
1693: 250: 1837: 622:
This phase simply deals with the fabrication aspect of the aircraft to be manufactured. It determines the number, design and location of
2370: 2803: 2569: 1874: 2250: 241: 1905: 402:
The wing must be designed and tested to ensure it can withstand the maximum loads imposed by maneuvering, and by atmospheric gusts.
2916: 123:
In the 1950s and '60s, unattainable project goals were regularly set, but then abandoned, whereas today troubled programs like the
2036: 131:
have proven far more costly and complex to develop than expected. More advanced and integrated design tools have been developed.
2943: 2450: 2420: 498:
the center of mass of the entire aircraft. The center of mass must fit within the established limits set by the manufacturer.
2178: 1961: 2819: 2671: 2603: 100:
for a new design of aircraft. These requirements are published by major national airworthiness authorities including the US
2316: 85: 530:
resistance, maintainability and ease of manufacturing. The structure must be able to withstand the stresses caused by
218:, have led to airports worldwide redesigning their facilities to accommodate its large size and service requirements. 2771: 2746: 2721: 2696: 2538: 2513: 2488: 2291: 1760: 1785: 695: 1672: 81:(vertical take-off and landing) ability, helicopters have the ability to hover over an area for a period of time. 1990:
http://www.icao.int/environmental-protection/Documents/Publications/FINAL.Doc%209889.1st%20Edition.alltext.en.pdf
246: 132: 105: 101: 2804:
Committee on Analysis of Air Force Engine Efficiency Improvement Options for Large Non-fighter Aircraft (2007).
3043: 2932: 2228: 336: 3006: 2089: 558: 2811: 610: 281:
has a 'ditching' switch that closes valves and openings beneath the aircraft slowing the ingress of water.
2002: 1605: 33: 1815: 2891: 2841: 2344: 1722: 590: 1701: 346: 73:
have a unique design that allows them to operate from both land and water, some fighters, like the
37: 682:
An existing aircraft program can be developed for performance and economy gains by stretching the
2963: 2644: 2141: 671: 2395: 2886: 2339: 813: 371: 234: 1848: 399:
which defines the airfoil shape. Ribs can be made of wood, metal, plastic or even composites.
3048: 2805: 1615: 1610: 643: 492: 149: 136: 2573: 1882: 2878: 2257: 1620: 753: 740: 531: 472:
fighter jets need very high acceleration and therefore have very high thrust requirements.
139:
and optimization allows designers to explore more options early in the process. Increasing
128: 2951: 2458: 1639: 8: 1913: 768: 659: 388: 352:
All aircraft designs involve compromises of these factors to achieve the design mission.
96:
Another important factor that influences the design are the requirements for obtaining a
70: 2882: 2869:
Antonio Filippone (2000), "Data and performances of selected aircraft and rotorcraft",
2829: 1935: 781: 699: 694:, new wings or new avionics. For a 9,100 nmi long range at Mach 0.8/FL360, a 10% lower 585: 511: 384: 361: 291: 2900: 84:
The purpose may be to fit a specific requirement, e.g. as in the historical case of a
2815: 2767: 2742: 2717: 2692: 2667: 2619: 2599: 2534: 2509: 2484: 2287: 2059: 1756: 262: 161: 2977: 2428: 2057: 2896: 1972: 1027: 799: 631: 515: 331: 97: 74: 2990: 3053: 2203: 1562: 1549: 1536: 1525: 1511: 1499: 691: 627: 519: 448: 270: 194: 1135: 1056: 1001: 973: 845: 623: 507: 396: 367: 258: 186: 178: 1971:. ICAO (International Civil Aviation Organisation). 2007-04-15. Archived from 3037: 1014: 924: 861: 274: 230: 3018: 1751:
Lloyd R. Jenkinson; Paul Simpkin; Darren Rhodes (1999). "Aircraft Market".
1750: 1275: 1262: 946: 885: 647: 481: 376: 326: 206: 19: 2788:"Program management in aerospace and defense - Still late and over budget" 1575: 1485: 1471: 1458: 1446: 1433: 1422: 1353: 1088: 1042: 962: 674:, which was delayed by four years and ended up with empty weight issues. 663: 655: 651: 606: 278: 215: 546: 1388: 1341: 1309: 1288: 1250: 1071: 1061: 823: 807: 794: 667: 145: 140: 124: 52: 1080: 1048: 527: 523: 429: 380: 302: 3022: 2907: 2859: 148:, but they have yet to prove their utility in applications like the 2115: 978: 683: 411: 202: 165: 48: 44: 2338:
Dennis F. Shanahan (2004). "Basic Principles of Crashworthiness".
2306: 439: 2807:
Improving the Efficiency of Engines for Large Nonfighter Aircraft
2741:. American institute of Aeronautics and Astronautics. p. 5. 2716:. American institute of Aeronautics and Astronautics. p. 4. 1236: 1223: 1210: 1198: 1185: 1172: 1159: 1146: 1032: 982: 417: 392: 157: 153: 654:
with a two-year delay and US$ 6.1 billion in cost overruns, the
2281: 2058:
Alexandre Gomes de Barros; Sumedha Chandana Wirasinghe (1997).
850: 307: 210: 198: 2933:"From preliminary aircraft cabin design to cabin optimization" 2315:. Defense Technical Information Center (DTIC). Archived from 905: 900: 889: 872: 836: 758: 16:
Establishing the configuration and plans for a new aeroplane
2923: 2504:
Jenkinson, Lloyd R.; Rhodes, Darren; Simpkin, Paul (1999).
2479:
Jenkinson, Lloyd R.; Rhodes, Darren; Simpkin, Paul (1999).
1093: 1076: 1019: 951: 828: 773: 745: 687: 416:
The fuselage is the part of the aircraft that contains the
341: 78: 2060:"New Aircraft Characteristics Related To Airport Planning" 832: 703: 3023:"To Re-Engine or Not to Re-Engine: That is the Question" 646:
with a delay of 4 years with massive cost overruns, the
534:, if fitted, turbulence and engine or rotor vibrations. 168:
generation cannot cost more than the previous ones did.
23:
Advanced Supersonic Transport (AST) model in wind tunnel
2528: 2503: 2478: 577:
The design of any aircraft starts out in three phases
269:
Most of the design criticisms these days are built on
2307:
D. L. Greer; J. S. Breeden; T. L. Heid (1965-11-18).
506:
The aircraft structure focuses not only on strength,
135:
predicts potentially problematic interactions, while
2451:"Techniques for Aircraft Configuration Optimization" 297: 2029:"Aircraft Recycling: Life and times of an aircraft" 2337: 2069:. Air Transport Research Group of the WCTR Society 164:also recognize the economic limits, that the next 1814:. European Commission. 2010-10-30. Archived from 306:The external surfaces of an aircraft modelled in 3035: 2991:"Aircraft Design - an Open Educational Resource" 2761: 2686: 2286:. Great Britain: Arnold Publishers. p. 55. 1755:. Great Britain: Arnold Publishers. p. 10. 537: 391:. The cross-sectional shape of the wing is its 2598:. Momentum Press Engineering. pp. 77–100. 634:for aircraft are also developed at this stage. 395:. The construction of the wing starts with the 114: 69:aircraft have specific missions, for instance, 2087: 1775: 1700:. CASA - Australian Government. Archived from 2455:Aircraft Design : Synthesis and Analysis 1769: 690:, enhancing the aerodynamics, installing new 443:Aircraft engine being tested in a wind tunnel 120:incorporating new techniques and technology. 2661: 2282:L. Jenkinson; P. Simpkin; D. Rhodes (1999). 1872: 251:DGCA (Directorate General of Civil Aviation) 2666:(4th ed.). Elsevier Ltd. p. 353. 2553: 600: 2400:General Aviation and Recreational Aircraft 1962:"ICAO Airport Air Quality Guidance Manual" 1845:Convention on International Civil Aviation 1165:31.00–31.24 m (101.71–102.49 ft) 2908:"Aircraft Design: Synthesis and Analysis" 2890: 2736: 2711: 2596:Aircraft Performance and Sizing, Volume I 2593: 2343: 1903: 383:angle, thickness ratio, section profile, 322:The main aspects of aircraft design are: 242:International Civil Aviation Organization 2964:"chapter 4: Aircraft Basic Construction" 2529:John Cutler; Jeremy Liber (2006-02-10). 2067:First ATRG Conference, Vancouver, Canada 1954: 1427:53.61–54.08 m (175.9–177.4 ft) 584: 438: 301: 171: 18: 2739:Aircraft design - A conceptual approach 2714:Aircraft Design - A conceptual approach 1906:"Environment: Aircraft Noise Reduction" 1778:"Problems Aerospace Still Has To Solve" 1178:33.4–33.63 m (109.6–110.3 ft) 91: 3036: 2944:Hamburg University of Applied Sciences 2369:. www.smartcockpit.com. Archived from 2142:"The human component in air accidents" 677: 617: 284: 3005:Thomas C. Hayes (November 27, 1981). 2940:Deutscher Luft- und Raumfahrtkongress 2917:"Basic principles of Crashworthiness" 2861:Synthesis of Subsonic Airplane Design 2572:. Stanford University. Archived from 2457:. Stanford University. Archived from 2256:(Press release). ICAO. Archived from 1838:"Annex 16 - Environmental Protection" 706:saves 6% and all combined saves 28%. 58: 1782:Aviation Week & Space Technology 580: 541: 1129: 1104: 734: 658:with delays and cost overruns, the 237:, as well as owners and operators. 13: 2177:. www.navcanada.ca. Archived from 2033:Pressroom - Airlines International 1847:. ICAO. p. 29. Archived from 1671:. Transport Canada. Archived from 1665:"Airworthiness - Transport Canada" 86:British Air Ministry specification 14: 3065: 2993:. Hamburg Open Online University. 2915:Dennis F. Shanahan (8 Mar 2005). 2910:. Desktop Aeronautics, Inc. 2001. 2851: 2691:. McGraw-Hill. pp. 382–386. 2662:T.H.G Megson (16 February 2010). 2531:Understanding aircraft structures 2360:"Airbus A330-A340 Overhead Panel" 420:, passenger cabin or cargo hold. 317: 298:Computer-aided design of aircraft 292:amateur hobbyists and enthusiasts 2620:"Beginner's Guide to Propulsion" 702:increase saves 12%, a 10% lower 545: 43:This article deals with powered 2797: 2780: 2764:Aircraft performance and Design 2755: 2730: 2705: 2689:Aircraft Performance and design 2680: 2655: 2637: 2612: 2587: 2562: 2547: 2522: 2497: 2472: 2443: 2413: 2388: 2352: 2331: 2309:"Crashworthy Design Principles" 2300: 2275: 2243: 2221: 2196: 2160: 2134: 2108: 2090:"Airports prepare for the A380" 2081: 2051: 2021: 1995: 1928: 1897: 670:with a four-year delay and the 475: 458:Maximum engine thrust available 247:Federal Aviation Administration 133:Model-based systems engineering 106:European Aviation Safety Agency 102:Federal Aviation Administration 38:civil airworthiness authorities 3007:"BOEING'S 'RE-ENGINING' WORRY" 2998: 2871:Progress in Aerospace Sciences 2649:Pilot friend - Flight training 2556:Aero Engineering Vol II Part I 2003:"Biofuel Flight Demonstration" 1942:. NASA - Glenn Research Center 1866: 1830: 1808:"Travel(Air) - Aircraft Noise" 1800: 1776:Graham Warwick (May 6, 2016). 1744: 1715: 1686: 1657: 1632: 355: 1: 2989:Dieter Scholz (9 July 2018). 2901:10.1016/S0376-0421(00)00011-7 2645:"Aircraft weight and balance" 2088:Sandra Arnoult (2005-02-28). 1936:"Safeguarding our atmosphere" 1626: 1403:62.81 m (206.08 ft) 1394:56.72 m (186.08 ft) 538:Design process and simulation 434: 370:but the overall shape of the 259:passenger and cargo airliners 2956:Nonresident Training Courses 2812:US National Research Council 2210:. The Free online Dictionary 1590:73.59 m (241.4 ft) 1581:66.61 m (218.5 ft) 1567:75.36 m (247.2 ft) 1554:67.93 m (222.9 ft) 1541:59.40 m (194.9 ft) 1530:63.69 m (209.0 ft) 1517:58.82 m (193.0 ft) 1505:63.67 m (208.9 ft) 1491:44.51 m (146.0 ft) 1477:33.84 m (111.0 ft) 1463:31.44 m (103.1 ft) 1452:37.57 m (123.3 ft) 1438:46.66 m (153.1 ft) 1369:73.86 m (242.3 ft) 1347:63.73 m (209.1 ft) 1334:61.37 m (201.3 ft) 1324:54.94 m (180.2 ft) 1315:48.51 m (159.2 ft) 1280:76.25 m (250.2 ft) 1256:70.66 m (231.8 ft) 1242:43.80 m (143.7 ft) 1229:42.11 m (138.2 ft) 1216:39.47 m (129.5 ft) 1203:36.40 m (119.4 ft) 1191:35.56 m (116.7 ft) 1140:28.65 m (94.00 ft) 709: 501: 423: 245:regulatory body such as the 115:Financial factors and market 7: 2976:Guy Norris (Mar 10, 2014). 2958:. U.S. Navy. December 2012. 2931:M. Nila; D. Scholz (2010). 2594:Takahashi, Timothy (2016). 2096:. ATW (Air Transport World) 1599: 1151:30.5 m (100.2 ft) 650:with a two-year delay, the 611:computational fluid dynamic 405: 10: 3070: 2421:"Aircraft Design Software" 2168:"Aviation Weather Hazards" 1875:"Airframe Noise Reduction" 1723:"ICAO Aerodrome Standards" 1606:Index of aviation articles 1414:68.28 m (224 ft) 490: 479: 446: 427: 409: 359: 277:in mind, for instance the 63: 34:engineering design process 2858:Egbert Torenbeek (1976), 2762:John D. Anderson (1999). 2687:John D. Anderson (1999). 2506:Civil Jet Aircraft design 2481:Civil jet aircraft design 2284:Civil Jet Aircraft Design 1753:Civil Jet Aircraft Design 1532: 1529: 1524: 1454: 1451: 1445: 1396: 1393: 1387: 1380:76.7 m (252 ft) 1359:69.8 m (229 ft) 1349: 1346: 1340: 1317: 1314: 1308: 1302:54.4 m (178 ft) 1293:47.3 m (155 ft) 1267:56.3 m (185 ft) 1258: 1255: 1249: 1142: 1139: 1134: 698:saves 13% of fuel, a 10% 637: 486: 221: 2978:"Boeing's 'Wonder Wall'" 2877:(8), Elsevier: 629–654, 2864:, Delft University Press 2396:"Amateur Built Aircraft" 1698:Airworthiness Directives 1669:Airworthiness Directives 601:Preliminary design phase 2009:. Virgin Atlantic. 2008 1646:. www.dynamicflight.com 672:Mitsubishi Regional Jet 589:Conceptual design of a 29:aircraft design process 2651:. www.pilotfriend.com. 2427:. NASA. Archived from 2035:. IATA. Archived from 1912:. NASA. Archived from 1881:. NASA. Archived from 1812:Mobility and Transport 1694:"Airworthiness - CASA" 593: 591:Bréguet 763 Deux-Ponts 444: 310: 137:computational analysis 24: 3044:Aerospace engineering 3027:Aviation Week Network 2982:Aviation Week Network 2148:. www.pilotfriend.com 1616:Aircraft manufacturer 1611:Aerospace engineering 644:Boeing 787 Dreamliner 588: 493:Aircraft gross weight 442: 305: 172:Environmental factors 150:Northrop Grumman B-21 22: 2554:Hugh Nelson (1938). 2094:Airline Finance/Data 1978:on December 14, 2013 1621:Iron bird (aviation) 853:/CF6-80/RB211-524G/H 532:cabin pressurization 129:Lockheed Martin F-35 92:Aircraft regulations 71:amphibious airplanes 2883:2000PrAeS..36..629F 2664:Aircraft Structures 2425:Computer Technology 2184:on 16 December 2011 1992:for updated manual. 1111: 769:Boeing 737 Original 716: 678:Program development 660:Bombardier C Series 618:Detail design phase 285:Design optimization 2737:D. Raymer (1992). 2712:D. Raymer (1992). 2229:"ICAO regulations" 1873:William Wilshire. 1854:on October 5, 2011 1788:on January 2, 2018 1109: 915:Boeing 737 Classic 782:Boeing 737 Classic 714: 594: 557:. You can help by 445: 362:Wing configuration 311: 152:or the re-engined 59:Design constraints 25: 3021:(December 2010). 2821:978-0-309-66765-4 2793:. Deloitte. 2016. 2673:978-1-85617-932-4 2605:978-1-60650-683-7 2570:"Fuselage Layout" 2431:on 24 August 1999 2122:. www.airsafe.com 1597: 1596: 1366:Boeing 777-300/ER 1321:Boeing 767-300/ER 1102: 1101: 686:, increasing the 632:Flight simulators 581:Conceptual design 575: 574: 162:Airbus and Boeing 3061: 3030: 3014: 2994: 2985: 2970: 2968: 2959: 2947: 2937: 2927: 2921: 2911: 2903: 2894: 2865: 2846: 2845: 2839: 2835: 2833: 2825: 2801: 2795: 2794: 2792: 2784: 2778: 2777: 2766:. Mc Graw Hill. 2759: 2753: 2752: 2734: 2728: 2727: 2709: 2703: 2702: 2684: 2678: 2677: 2659: 2653: 2652: 2641: 2635: 2634: 2632: 2631: 2624:Beginner's Guide 2616: 2610: 2609: 2591: 2585: 2584: 2582: 2581: 2566: 2560: 2559: 2558:. George Newnes. 2551: 2545: 2544: 2526: 2520: 2519: 2501: 2495: 2494: 2476: 2470: 2469: 2467: 2466: 2447: 2441: 2440: 2438: 2436: 2417: 2411: 2410: 2408: 2407: 2392: 2386: 2385: 2383: 2381: 2376:on 30 March 2012 2375: 2364: 2356: 2350: 2349: 2347: 2335: 2329: 2328: 2326: 2324: 2319:on April 8, 2013 2313:Technical Report 2304: 2298: 2297: 2279: 2273: 2272: 2270: 2268: 2262: 2255: 2251:"Annex 8 - ICAO" 2247: 2241: 2240: 2238: 2236: 2225: 2219: 2218: 2216: 2215: 2200: 2194: 2193: 2191: 2189: 2183: 2172: 2164: 2158: 2157: 2155: 2153: 2138: 2132: 2131: 2129: 2127: 2112: 2106: 2105: 2103: 2101: 2085: 2079: 2078: 2076: 2074: 2064: 2055: 2049: 2048: 2046: 2044: 2025: 2019: 2018: 2016: 2014: 1999: 1993: 1987: 1985: 1983: 1977: 1966: 1958: 1952: 1951: 1949: 1947: 1932: 1926: 1925: 1923: 1921: 1910:NASA Aeronautics 1901: 1895: 1894: 1892: 1890: 1879:NASA Aeronautics 1870: 1864: 1863: 1861: 1859: 1853: 1842: 1834: 1828: 1827: 1825: 1823: 1804: 1798: 1797: 1795: 1793: 1784:. Archived from 1773: 1767: 1766: 1748: 1742: 1741: 1739: 1737: 1730:ICAO Regulations 1727: 1719: 1713: 1712: 1710: 1709: 1690: 1684: 1683: 1681: 1680: 1661: 1655: 1654: 1652: 1651: 1644:Flight maneuvers 1636: 1331:Boeing 767-400ER 1253:-100/200/300/400 1127:Stretched length 1112: 1108: 1105:Fuselage stretch 1028:Embraer E-Jet E2 940:PW4000/CF6/RB211 800:Rolls-Royce Spey 723:Previous engines 717: 713: 570: 567: 549: 542: 516:damage tolerance 461:Fuel consumption 98:type certificate 75:Harrier jump jet 32:than, the usual 3069: 3068: 3064: 3063: 3062: 3060: 3059: 3058: 3034: 3033: 3017: 3004: 3001: 2988: 2975: 2966: 2962: 2950: 2935: 2930: 2919: 2914: 2906: 2892:10.1.1.539.1597 2868: 2857: 2854: 2849: 2837: 2836: 2827: 2826: 2822: 2802: 2798: 2790: 2786: 2785: 2781: 2774: 2760: 2756: 2749: 2735: 2731: 2724: 2710: 2706: 2699: 2685: 2681: 2674: 2660: 2656: 2643: 2642: 2638: 2629: 2627: 2618: 2617: 2613: 2606: 2592: 2588: 2579: 2577: 2568: 2567: 2563: 2552: 2548: 2541: 2527: 2523: 2516: 2502: 2498: 2491: 2483:. p. 105. 2477: 2473: 2464: 2462: 2449: 2448: 2444: 2434: 2432: 2419: 2418: 2414: 2405: 2403: 2394: 2393: 2389: 2379: 2377: 2373: 2362: 2358: 2357: 2353: 2345:10.1.1.214.8052 2336: 2332: 2322: 2320: 2305: 2301: 2294: 2280: 2276: 2266: 2264: 2260: 2253: 2249: 2248: 2244: 2234: 2232: 2227: 2226: 2222: 2213: 2211: 2204:"Airworthiness" 2202: 2201: 2197: 2187: 2185: 2181: 2170: 2166: 2165: 2161: 2151: 2149: 2140: 2139: 2135: 2125: 2123: 2114: 2113: 2109: 2099: 2097: 2086: 2082: 2072: 2070: 2062: 2056: 2052: 2042: 2040: 2027: 2026: 2022: 2012: 2010: 2001: 2000: 1996: 1981: 1979: 1975: 1969:ICAO Guidelines 1964: 1960: 1959: 1955: 1945: 1943: 1934: 1933: 1929: 1919: 1917: 1904:Neal Nijhawan. 1902: 1898: 1888: 1886: 1871: 1867: 1857: 1855: 1851: 1840: 1836: 1835: 1831: 1821: 1819: 1806: 1805: 1801: 1791: 1789: 1774: 1770: 1763: 1749: 1745: 1735: 1733: 1725: 1721: 1720: 1716: 1707: 1705: 1692: 1691: 1687: 1678: 1676: 1663: 1662: 1658: 1649: 1647: 1638: 1637: 1633: 1629: 1602: 1563:Airbus A340-600 1550:Airbus A340-500 1537:Airbus A340-200 1526:Airbus A340-300 1512:Airbus A330-200 1500:Airbus A330-300 1107: 814:Rolls-Royce Tay 712: 680: 640: 620: 603: 583: 571: 565: 562: 555:needs expansion 540: 504: 495: 489: 484: 478: 467:Engine geometry 451: 449:Aircraft engine 437: 432: 426: 414: 408: 379:, taper ratio, 364: 358: 320: 300: 287: 271:crashworthiness 253:in India, etc. 224: 195:carbon monoxide 192: 184: 174: 117: 94: 66: 61: 17: 12: 11: 5: 3067: 3057: 3056: 3051: 3046: 3032: 3031: 3015: 3000: 2997: 2996: 2995: 2986: 2973: 2972: 2971: 2948: 2928: 2912: 2904: 2866: 2853: 2852:External links 2850: 2848: 2847: 2820: 2814:. p. 15. 2796: 2779: 2772: 2754: 2747: 2729: 2722: 2704: 2697: 2679: 2672: 2654: 2636: 2611: 2604: 2586: 2561: 2546: 2539: 2521: 2514: 2496: 2489: 2471: 2442: 2412: 2387: 2351: 2330: 2299: 2292: 2274: 2242: 2220: 2195: 2159: 2133: 2116:"Bird hazards" 2107: 2080: 2050: 2020: 1994: 1953: 1927: 1896: 1865: 1829: 1799: 1768: 1761: 1743: 1714: 1685: 1656: 1630: 1628: 1625: 1624: 1623: 1618: 1613: 1608: 1601: 1598: 1595: 1594: 1591: 1588: 1585: 1582: 1579: 1572: 1571: 1568: 1565: 1559: 1558: 1555: 1552: 1546: 1545: 1542: 1539: 1534: 1531: 1528: 1522: 1521: 1518: 1515: 1509: 1506: 1503: 1496: 1495: 1492: 1489: 1482: 1481: 1478: 1475: 1468: 1467: 1464: 1461: 1456: 1453: 1450: 1443: 1442: 1439: 1436: 1431: 1428: 1425: 1419: 1418: 1415: 1412: 1408: 1407: 1404: 1401: 1398: 1395: 1392: 1385: 1384: 1381: 1378: 1374: 1373: 1370: 1367: 1363: 1362: 1360: 1357: 1351: 1348: 1345: 1338: 1337: 1335: 1332: 1328: 1327: 1325: 1322: 1319: 1316: 1313: 1306: 1305: 1303: 1300: 1299:Boeing 757-300 1297: 1294: 1291: 1285: 1284: 1281: 1278: 1272: 1271: 1268: 1265: 1260: 1257: 1254: 1247: 1246: 1243: 1240: 1233: 1232: 1230: 1227: 1220: 1219: 1217: 1214: 1207: 1206: 1204: 1201: 1195: 1194: 1192: 1189: 1182: 1181: 1179: 1176: 1169: 1168: 1166: 1163: 1156: 1155: 1152: 1149: 1144: 1141: 1138: 1136:Boeing 737-100 1132: 1131: 1128: 1125: 1122: 1119: 1116: 1110:Jet airliners 1106: 1103: 1100: 1099: 1096: 1091: 1086: 1083: 1074: 1068: 1067: 1064: 1059: 1057:Airbus A330neo 1054: 1051: 1045: 1039: 1038: 1035: 1030: 1025: 1022: 1017: 1011: 1010: 1007: 1004: 1002:Boeing 737 MAX 999: 996: 993: 989: 988: 985: 976: 974:Airbus A320neo 971: 968: 965: 959: 958: 955: 949: 944: 941: 938: 937:Boeing 747-400 934: 933: 930: 927: 922: 919: 916: 912: 911: 908: 903: 898: 895: 892: 882: 881: 878: 875: 870: 867: 864: 858: 857: 854: 848: 846:Boeing 747-400 843: 840: 826: 820: 819: 816: 811: 805: 802: 797: 791: 790: 787: 784: 779: 776: 771: 765: 764: 761: 756: 751: 748: 743: 737: 736: 733: 730: 727: 724: 721: 715:Jet airliners 711: 708: 679: 676: 666:and 8000, the 639: 636: 619: 616: 602: 599: 582: 579: 573: 572: 552: 550: 539: 536: 522:, but also on 508:aeroelasticity 503: 500: 491:Main article: 488: 485: 480:Main article: 477: 474: 469: 468: 465: 462: 459: 447:Main article: 436: 433: 428:Main article: 425: 422: 410:Main article: 407: 404: 368:stalling speed 357: 354: 350: 349: 344: 339: 334: 329: 319: 318:Design aspects 316: 299: 296: 286: 283: 223: 220: 197:(CO), various 190: 187:sulfur dioxide 182: 179:carbon dioxide 173: 170: 116: 113: 93: 90: 65: 62: 60: 57: 15: 9: 6: 4: 3: 2: 3066: 3055: 3052: 3050: 3047: 3045: 3042: 3041: 3039: 3028: 3024: 3020: 3016: 3012: 3008: 3003: 3002: 2992: 2987: 2983: 2979: 2974: 2965: 2961: 2960: 2957: 2953: 2949: 2945: 2941: 2934: 2929: 2925: 2918: 2913: 2909: 2905: 2902: 2898: 2893: 2888: 2884: 2880: 2876: 2872: 2867: 2863: 2862: 2856: 2855: 2843: 2831: 2823: 2817: 2813: 2809: 2808: 2800: 2789: 2783: 2775: 2773:0-07-001971-1 2769: 2765: 2758: 2750: 2748:0-930403-51-7 2744: 2740: 2733: 2725: 2723:0-930403-51-7 2719: 2715: 2708: 2700: 2698:0-07-001971-1 2694: 2690: 2683: 2675: 2669: 2665: 2658: 2650: 2646: 2640: 2625: 2621: 2615: 2607: 2601: 2597: 2590: 2576:on 2001-03-07 2575: 2571: 2565: 2557: 2550: 2542: 2540:1-4051-2032-0 2536: 2532: 2525: 2517: 2515:0-340-74152-X 2511: 2507: 2500: 2492: 2490:0-340-74152-X 2486: 2482: 2475: 2461:on 2012-07-01 2460: 2456: 2452: 2446: 2430: 2426: 2422: 2416: 2401: 2397: 2391: 2372: 2368: 2361: 2355: 2346: 2341: 2334: 2318: 2314: 2310: 2303: 2295: 2293:0-340-74152-X 2289: 2285: 2278: 2263:on 2012-09-05 2259: 2252: 2246: 2230: 2224: 2209: 2205: 2199: 2180: 2176: 2175:LAKP Prairies 2169: 2163: 2147: 2143: 2137: 2121: 2117: 2111: 2095: 2091: 2084: 2068: 2061: 2054: 2039:on 2011-10-27 2038: 2034: 2030: 2024: 2008: 2004: 1998: 1991: 1974: 1970: 1963: 1957: 1941: 1937: 1931: 1916:on 2011-10-18 1915: 1911: 1907: 1900: 1885:on 2011-10-21 1884: 1880: 1876: 1869: 1850: 1846: 1839: 1833: 1818:on 2009-04-17 1817: 1813: 1809: 1803: 1787: 1783: 1779: 1772: 1764: 1762:0-340-74152-X 1758: 1754: 1747: 1731: 1724: 1718: 1704:on 2011-12-13 1703: 1699: 1695: 1689: 1675:on 2011-04-17 1674: 1670: 1666: 1660: 1645: 1641: 1635: 1631: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1603: 1593:Nov 24, 2016 1592: 1589: 1586: 1584:Jun 14, 2013 1583: 1580: 1577: 1574: 1573: 1570:Apr 23, 2001 1569: 1566: 1564: 1561: 1560: 1557:Feb 11, 2002 1556: 1553: 1551: 1548: 1547: 1543: 1540: 1538: 1535: 1533:Oct 25, 1991 1527: 1523: 1520:Aug 13, 1997 1519: 1516: 1513: 1510: 1507: 1504: 1501: 1498: 1497: 1494:Mar 11, 1993 1493: 1490: 1487: 1484: 1483: 1480:Aug 25, 1995 1479: 1476: 1473: 1470: 1469: 1466:Jan 15, 2002 1465: 1462: 1460: 1457: 1455:Feb 22, 1987 1448: 1444: 1440: 1437: 1435: 1432: 1430:Oct 28, 1972 1429: 1426: 1424: 1421: 1420: 1417:Mar 31, 2017 1416: 1413: 1411:Boeing 787-10 1410: 1409: 1406:Sep 17, 2013 1405: 1402: 1399: 1397:Dec 15, 2009 1390: 1386: 1383:Jan 25, 2020 1382: 1379: 1377:Boeing 777X-9 1376: 1375: 1372:Oct 16, 1997 1371: 1368: 1365: 1364: 1361: 1358: 1355: 1352: 1350:Jun 12, 1994 1343: 1339: 1336: 1333: 1330: 1329: 1326: 1323: 1320: 1318:Sep 26, 1981 1311: 1307: 1304: 1301: 1298: 1296:Feb 19, 1982 1295: 1292: 1290: 1287: 1286: 1282: 1279: 1277: 1274: 1273: 1269: 1266: 1264: 1261: 1252: 1248: 1244: 1241: 1238: 1235: 1234: 1231: 1228: 1225: 1222: 1221: 1218: 1215: 1212: 1209: 1208: 1205: 1202: 1200: 1197: 1196: 1193: 1190: 1187: 1184: 1183: 1180: 1177: 1174: 1171: 1170: 1167: 1164: 1161: 1158: 1157: 1153: 1150: 1148: 1145: 1137: 1133: 1130:First flight 1126: 1123: 1120: 1117: 1114: 1113: 1098:Jan 25, 2020 1097: 1095: 1092: 1090: 1087: 1085:Jun 12, 1994 1084: 1082: 1078: 1075: 1073: 1070: 1069: 1066:Oct 19, 2017 1065: 1063: 1060: 1058: 1055: 1052: 1050: 1046: 1044: 1041: 1040: 1037:May 23, 2016 1036: 1034: 1031: 1029: 1026: 1024:Feb 19, 2002 1023: 1021: 1018: 1016: 1015:Embraer E-Jet 1013: 1012: 1009:Jan 29, 2016 1008: 1005: 1003: 1000: 997: 994: 992:Boeing 737 NG 991: 990: 987:Sep 25, 2014 986: 984: 980: 977: 975: 972: 970:Feb 22, 1987 969: 966: 964: 961: 960: 956: 953: 950: 948: 945: 943:Apr 29, 1988 942: 939: 936: 935: 931: 928: 926: 925:Boeing 737 NG 923: 921:Feb 24, 1984 920: 917: 914: 913: 910:Feb 22, 1993 909: 907: 904: 902: 899: 897:Feb 25, 1965 896: 893: 891: 887: 884: 883: 880:Jan 10, 1990 879: 877:PW4000/CF6-80 876: 874: 871: 869:Aug 29, 1970 868: 865: 863: 862:Douglas DC-10 860: 859: 856:Apr 29, 1988 855: 852: 849: 847: 844: 841: 838: 834: 830: 827: 825: 822: 821: 818:Nov 30, 1986 817: 815: 812: 809: 806: 803: 801: 798: 796: 793: 792: 789:Feb 24, 1984 788: 785: 783: 780: 777: 775: 772: 770: 767: 766: 762: 760: 757: 755: 754:DC-8 Super 70 752: 750:May 30, 1958 749: 747: 744: 742: 741:DC-8 Super 60 739: 738: 735:First flight 731: 728: 725: 722: 719: 718: 707: 705: 701: 697: 693: 689: 685: 675: 673: 669: 665: 661: 657: 653: 649: 645: 635: 633: 629: 625: 615: 612: 608: 598: 592: 587: 578: 569: 566:December 2011 560: 556: 553:This section 551: 548: 544: 543: 535: 533: 529: 525: 521: 517: 513: 509: 499: 494: 483: 473: 466: 463: 460: 457: 456: 455: 450: 441: 431: 421: 419: 413: 403: 400: 398: 394: 390: 386: 382: 378: 373: 369: 363: 353: 348: 345: 343: 340: 338: 335: 333: 330: 328: 325: 324: 323: 315: 309: 304: 295: 293: 282: 280: 276: 275:water landing 272: 267: 264: 260: 254: 252: 248: 243: 238: 236: 235:manufacturers 232: 231:Airworthiness 228: 219: 217: 212: 208: 204: 200: 196: 188: 180: 169: 167: 163: 159: 155: 151: 147: 142: 138: 134: 130: 126: 121: 112: 109: 107: 103: 99: 89: 87: 82: 80: 76: 72: 56: 54: 50: 46: 41: 39: 35: 30: 21: 3049:Aerodynamics 3026: 3019:Oliver Wyman 3010: 2981: 2955: 2942:– via 2939: 2874: 2870: 2860: 2806: 2799: 2782: 2763: 2757: 2738: 2732: 2713: 2707: 2688: 2682: 2663: 2657: 2648: 2639: 2628:. Retrieved 2623: 2614: 2595: 2589: 2578:. Retrieved 2574:the original 2564: 2555: 2549: 2530: 2524: 2505: 2499: 2480: 2474: 2463:. Retrieved 2459:the original 2454: 2445: 2433:. Retrieved 2429:the original 2424: 2415: 2404:. Retrieved 2399: 2390: 2378:. Retrieved 2371:the original 2366: 2354: 2333: 2321:. Retrieved 2317:the original 2312: 2302: 2283: 2277: 2265:. Retrieved 2258:the original 2245: 2233:. Retrieved 2223: 2212:. Retrieved 2207: 2198: 2186:. Retrieved 2179:the original 2174: 2162: 2150:. Retrieved 2145: 2136: 2124:. Retrieved 2119: 2110: 2098:. Retrieved 2093: 2083: 2071:. Retrieved 2066: 2053: 2041:. Retrieved 2037:the original 2032: 2023: 2011:. Retrieved 2006: 1997: 1980:. Retrieved 1973:the original 1968: 1956: 1944:. Retrieved 1939: 1930: 1918:. Retrieved 1914:the original 1909: 1899: 1887:. Retrieved 1883:the original 1878: 1868: 1856:. Retrieved 1849:the original 1844: 1832: 1820:. Retrieved 1816:the original 1811: 1802: 1790:. Retrieved 1786:the original 1781: 1771: 1752: 1746: 1734:. Retrieved 1729: 1717: 1706:. Retrieved 1702:the original 1697: 1688: 1677:. Retrieved 1673:the original 1668: 1659: 1648:. Retrieved 1643: 1634: 1544:Apr 1, 1992 1508:Nov 2, 1992 1441:Apr 3, 1982 1400:Boeing 787-9 1283:Feb 8, 2010 1276:Boeing 747-8 1270:Jul 4, 1975 1263:Boeing 747SP 1259:Feb 9, 1969 1154:Aug 8, 1967 1143:Apr 9, 1967 1121:First flight 1053:Nov 2, 1992 998:Feb 9, 1997 957:Feb 8, 2010 947:Boeing 747-8 932:Feb 9, 1997 886:Douglas DC-9 842:Feb 9, 1969 804:May 9, 1967 778:Apr 9, 1967 726:First flight 681: 648:Boeing 747-8 641: 621: 609:testing and 604: 595: 576: 563: 559:adding to it 554: 505: 496: 482:Landing gear 476:Landing gear 470: 452: 415: 401: 377:aspect ratio 365: 351: 327:Aerodynamics 321: 312: 288: 268: 255: 239: 229: 225: 207:hydrocarbons 205:and unburnt 175: 122: 118: 110: 95: 83: 67: 42: 28: 26: 2838:|work= 2435:29 December 2007:Environment 1576:Airbus A350 1486:Airbus A321 1472:Airbus A319 1459:Airbus A318 1447:Airbus A320 1434:Airbus A310 1423:Airbus A300 1354:Boeing 777X 1245:plan. 2020 1118:Base length 1089:Boeing 777X 1047:CF6/PW4000/ 1043:Airbus A330 967:CFM56/V2500 963:Airbus A320 866:JT9D/CF6-50 732:New engines 664:Global 7000 656:Airbus A350 652:Airbus A380 607:wind tunnel 524:fail-safety 464:Engine mass 356:Wing design 279:Airbus A330 216:Airbus A380 3038:Categories 2630:2011-10-10 2580:2011-09-18 2465:2011-09-20 2406:2011-10-10 2214:2011-10-10 2208:Dictionary 2188:12 October 2152:12 October 2146:Air Safety 2126:12 October 1940:Fact Sheet 1792:January 2, 1708:2011-12-05 1679:2011-12-05 1650:2011-10-10 1640:"Hovering" 1627:References 1389:Boeing 787 1344:-200/ER/LR 1342:Boeing 777 1310:Boeing 767 1289:Boeing 757 1251:Boeing 747 1072:Boeing 777 1062:Trent 7000 824:Boeing 747 808:Fokker 100 795:Fokker F28 729:Re-engined 668:Comac C919 512:durability 435:Propulsion 360:See also: 332:Propulsion 263:air forces 146:3D printed 141:automation 125:Boeing 787 53:helicopter 2999:Re-engine 2887:CiteSeerX 2840:ignored ( 2830:cite book 2380:9 October 2340:CiteSeerX 2323:9 October 2100:7 October 2073:7 October 2043:7 October 2013:7 October 1982:7 October 1946:7 October 1920:7 October 1889:7 October 1858:8 October 1822:7 October 1736:5 October 1587:A350-1000 1124:Stretched 1081:Trent 800 1049:Trent 700 710:Re-engine 528:corrosion 520:stability 502:Structure 430:Empennage 424:Empennage 381:sweepback 347:Structure 55:designs. 49:airplanes 3011:NY Times 2952:"Airman" 1600:See also 1079:/PW4000/ 1006:CFM LEAP 979:CFM LEAP 684:fuselage 412:Fuselage 406:Fuselage 389:dihedral 372:planform 337:Controls 249:in USA, 203:nitrates 166:airliner 127:and the 104:and the 47:such as 45:aircraft 2879:Bibcode 2120:Hazards 1312:-200/ER 1237:737 MAX 1224:737-900 1211:737-800 1199:737-400 1186:737 MAX 1173:737-300 1160:737-500 1147:737-200 1033:PW1000G 983:PW1100G 929:CFM56-7 918:CFM56-3 692:engines 418:cockpit 393:airfoil 385:washout 158:737 MAX 154:A320neo 77:, have 64:Purpose 3054:Design 2889:  2818:  2770:  2745:  2720:  2695:  2670:  2626:. NASA 2602:  2537:  2512:  2487:  2342:  2290:  2267:May 5, 2235:May 5, 2231:. ICAO 1759:  1732:. ICAO 1226:/MAX 9 1213:/MAX 8 851:PW4000 638:Delays 487:Weight 308:MATLAB 222:Safety 211:runway 199:oxides 2967:(PDF) 2936:(PDF) 2920:(PDF) 2791:(PDF) 2402:. FAA 2374:(PDF) 2363:(PDF) 2261:(PDF) 2254:(PDF) 2182:(PDF) 2171:(PDF) 2063:(PDF) 1988:(see 1976:(PDF) 1965:(PDF) 1852:(PDF) 1841:(PDF) 1726:(PDF) 1488:(neo) 1474:(neo) 1449:(neo) 995:CFM56 906:V2500 901:MD-90 890:MD-80 873:MD-11 837:RB211 786:CFM56 763:1982 759:CFM56 628:spars 2924:NATO 2842:help 2816:ISBN 2768:ISBN 2743:ISBN 2718:ISBN 2693:ISBN 2668:ISBN 2600:ISBN 2535:ISBN 2510:ISBN 2485:ISBN 2437:2014 2382:2011 2367:Data 2325:2011 2288:ISBN 2269:2012 2237:2012 2190:2011 2154:2011 2128:2011 2102:2011 2075:2011 2045:2011 2015:2011 1984:2011 1948:2011 1922:2011 1891:2011 1860:2011 1824:2011 1794:2018 1757:ISBN 1738:2011 1578:-900 1514:/800 1502:/900 1175:/700 1162:/600 1115:Base 1094:GE9X 1077:GE90 1020:CF34 952:GEnx 894:JT8D 839:-524 835:-50/ 829:JT9D 774:JT8D 746:JT3D 720:Base 696:TSFC 688:MTOW 624:ribs 387:and 342:Mass 240:The 156:and 79:VTOL 51:and 27:The 2897:doi 954:-2b 833:CF6 810:/70 704:OEW 700:L/D 561:. 397:rib 201:of 193:), 189:(SO 185:), 181:(CO 40:. 3040:: 3025:. 3009:. 2980:. 2954:. 2938:. 2922:. 2895:, 2885:, 2875:36 2873:, 2834:: 2832:}} 2828:{{ 2810:. 2647:. 2622:. 2533:. 2508:. 2453:. 2423:. 2398:. 2365:. 2311:. 2206:. 2173:. 2144:. 2118:. 2092:. 2065:. 2031:. 2005:. 1967:. 1938:. 1908:. 1877:. 1843:. 1810:. 1780:. 1728:. 1696:. 1667:. 1642:. 1391:-8 1356:-8 1239:10 662:, 626:, 526:, 518:, 514:, 510:, 294:. 261:, 160:. 108:. 3029:. 3013:. 2984:. 2969:. 2946:. 2926:. 2899:: 2881:: 2844:) 2824:. 2776:. 2751:. 2726:. 2701:. 2676:. 2633:. 2608:. 2583:. 2543:. 2518:. 2493:. 2468:. 2439:. 2409:. 2384:. 2348:. 2327:. 2296:. 2271:. 2239:. 2217:. 2192:. 2156:. 2130:. 2104:. 2077:. 2047:. 2017:. 1986:. 1950:. 1924:. 1893:. 1862:. 1826:. 1796:. 1765:. 1740:. 1711:. 1682:. 1653:. 1188:7 981:/ 888:/ 831:/ 568:) 564:( 191:2 183:2

Index


engineering design process
civil airworthiness authorities
aircraft
airplanes
helicopter
amphibious airplanes
Harrier jump jet
VTOL
British Air Ministry specification
type certificate
Federal Aviation Administration
European Aviation Safety Agency
Boeing 787
Lockheed Martin F-35
Model-based systems engineering
computational analysis
automation
3D printed
Northrop Grumman B-21
A320neo
737 MAX
Airbus and Boeing
airliner
carbon dioxide
sulfur dioxide
carbon monoxide
oxides
nitrates
hydrocarbons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.