Knowledge

Amphidromic point

Source đź“ť

638:λ increases. This effect will be more pronounced in shallow seas and coastal regions, as the relative water depth increase due to sea-level rise will be larger, when compared to the open ocean. Moreover, the amount of sea-level rise differs per region. Some regions will be subject to a higher rate of sea-level rise than other regions and nearby amphidromic points will be more susceptible to change location. Lastly, sea-level rise results in less bottom friction and therefore less energy dissipation. This causes the amphidromic points to move further away from the coastal boundaries and more towards the centre its channel/basin. 219: 2160: 314:) and Poincaré waves are generated. The amplitude of a Kelvin wave is highest near the coast and, when considering a wave on the northern hemisphere, decreases to further away from its right-hand coastal boundary. The propagation of Kelvin waves is always alongshore and its amplification falls off according to the Rossby radius of deformation. In contrast, Poincaré waves are able to propagate both alongshore as a free wave with a propagating wave pattern and cross-shore as a trapped wave with a 334:, the tide propagates as an incident and a reflective Kelvin wave. The amplitude of the waves decreases further away from the coast and at certain points in the middle of the basin, the amplitude of the total wave becomes zero. Moreover, the phase of the tide seems to rotate around these points of zero amplitude. These points are called amphidromic points. The sense of rotation of the wave around the amphidromic point is in the direction of the Coriolis force; anticlockwise in the 466:λ) of the nodes decreases. Secondly, energy losses due to friction in shallow seas and coastal boundaries result in additional adjustments of the tidal pattern. Tidal waves are not perfectly reflected, resulting in energy loss which causes a smaller reflected wave compared to the incoming wave. Consequently, on the northern hemisphere, the amphidromic point will be displaced from the centre line of the channel towards the left of the direction of the incident wave. 3048: 3069: 38: 383:λ. In an idealized situation, amphidromic points can be found at the position of these nodes of the total tidal wave. When neglecting friction, the position of the amphidromic points would be in the middle of the basin, as the initial amplitude and the amplitude decay of the incident wave and the reflected wave are equal, this can be seen in Animations 1 and 2 However, tidal waves in the ocean are subject to friction from the 2149: 3058: 355:. As such, the tidal waves observed cross-shore are predominantly Poincaré waves. The tides observed in a semi-enclosed basin are therefore chiefly the summation of the incident Kelvin wave, reflected Kelvin wave and cross-shore standing Poincaré wave. An animation of the tidal amplitude, tidal currents and its amphidromic behaviour is shown in Animation 2. 132:, there is almost no vertical change in sea level from tidal action; that is, there is little or no difference between high tide and low tide at these locations. There can still be tidal currents since the water levels on either side of the amphidromic point are not the same. A separate amphidromic system is created by each periodic tidal component. 150:
connect points which reach high tide at the same time and low tide at the same time. In Figure 1, the low tide lags or leads by 1 hr 2 min from its neighboring lines. Where the lines meet are amphidromes, and the tide rotates around them; for example, along the Chilean coast, and from southern Mexico
222:
Figure 2. Resonance between an incident and reflected wave and the resulting total wave. At certain points (nodes), the amplitude of the incident wave and the reflected wave cancel each other out. At other points (antinodes), the amplitude of the incident wave and the reflected wave amplify each
661: 81:, or the height difference between high tide and low tide) for that harmonic constituent increases with distance from this point, though not uniformly. As such, the concept of amphidromic points is crucial to understanding tidal behaviour. The term derives from the 350:
In a semi-enclosed basin, such as the North Sea, Kelvin waves, though being the dominant tidal wave propagating in alongshore direction, are not able to propagate cross shore as they rely on the presence of lateral boundaries or the
298:, the water in the ocean is deflected towards the right in the northern hemisphere and conversely in the southern hemisphere. This side-way component of the flow due to the Coriolis force causes a build-up of water that results in a 601:
It can occur that the amphidromic point moves inland of the coastal boundary. In this case, the amplitude and the phase of the tidal wave will still rotate around an inland point, which is called a virtual or degenerate amphidrome.
531: 48:
tidal constituent, the amplitude indicated by color. The white lines are cotidal lines spaced at phase intervals of 30° (a bit over 1 hr). The amphidromic points are the dark blue areas where the lines come
429: 243:
between the reflected and the incident wave, the amplitude of the total wave can either be suppressed or amplified. The points at which the two waves amplify each other are known as
628:λ in semi-enclosed systems will move further away from the cross-shore coastal boundary. Furthermore, amphidromic points will move further away from each other as the interval of 808:
are amphidromic points in the sense that the tide goes around them in about 12 and a half hours, but the amplitude of the tides on their coasts is in some places large.
675:. The light-blue lines are lines of equal tidal phase for the vertical tide (surface elevation) along such a line, and the amphidromic points are denoted by 1, 2 and 3. 239:
wave that propagates in the opposite direction to the incident wave. The combination of the reflected wave and the incident wave is the total wave. Due to
294:
A long, progressive wave travelling in a channel on a rotating Earth behaves differently from a wave travelling along a non-rotating channel. Due to the
610:
The position of amphidromic points and their movement predominantly depends on the wavelength of the tidal wave and friction. As a result of enhanced
2788: 1421: 2778: 1837: 594:
is smaller and the displacement of the amphidromic point from the centre is larger. Similar amphidromic movement is expected in other seas where
618:. As the water depth increases, the wavelength of the tidal wave will increase. Consequently the position of the amphidromic points located at 223:
other. The respective distance between the nodes and antinodes are shown in the bottom right of the Figure and expressed in terms of wavelength.
559:
is the ratio between amplitudes of the reflected wave and the incident wave. Because the reflected wave is smaller than the incident wave,
1027: 474: 1052: 387:
and from interaction with coastal boundaries. Moreover, variation in water depth influences the spacing between amphidromic points.
61:, is a geographical location where there is little or no difference in sea height between high tide and low tide; it has zero tidal 1302:"Physical Oceanography. Albert Defant. Pergamon, New York, 1961. vol. 1, xvi + 729 pp.; vol. 2, viii + 598 pp. Illus. + maps. $ 35" 590:. During spring tides, more energy is absorbed from the tidal wave compared to neap tides. As a result, the reflection coefficient 2694: 3061: 2109: 1877: 1397: 1279: 1183: 1139: 946: 878:"Tides and their seminal impact on the geology, geography, history, and socio-economics of the Bay of Fundy, eastern Canada" 456:
Locations with more shallow water depth have their amphidromic points closer to each other as the distance of the interval (
2341: 1830: 2231: 2936: 2363: 2251: 2783: 2054: 311: 2241: 2201: 395: 179:. The ocean reacts to this external forcing by generating, in particular relevant for describing tidal behaviour, 2971: 1957: 1741:
Arns, Arne; Dangendorf, Sönke; Jensen, Jürgen; Talke, Stefan; Bender, Jens; Pattiaratchi, Charitha (2017-01-06).
109: 93:("running"), referring to the rotary tides which circulate around amphidromic points. It was first discovered by 3051: 2644: 1823: 1066: 151:
to Peru, the tide propagates southward, while from Baja California to Alaska the tide propagates northward.
2099: 192: 17: 2159: 2296: 938: 438: 2831: 2236: 2196: 136: 2961: 2336: 2326: 2266: 1902: 1872: 698: 611: 160: 3094: 2998: 2981: 2818: 2311: 2176: 2114: 2104: 1997: 2993: 2931: 2358: 2044: 1808:
Modeling coastal circulation in Norway using a high-resolution 4D-Var ocean assimilation system
78: 1031: 912: 218: 2826: 2808: 2316: 2211: 1846: 769: 326:
In an infinitely long channel, which can be viewed upon as a simplified approximation of the
469:
The degree of displacement on the northern hemisphere for the first amphidrome is given by:
3013: 2846: 2549: 2406: 2271: 1982: 1754: 1705: 1656: 1607: 1549: 1502: 1453: 1352: 975: 236: 8: 3008: 2893: 2888: 2614: 2286: 2246: 1962: 1807: 574:
Furthermore, a study has shown than there is a pattern of amphidrome movement related to
339: 335: 307: 1758: 1709: 1660: 1611: 1553: 1506: 1457: 1356: 979: 128:— which rotates around the amphidromic point. At the amphidromic points of the dominant 2951: 2664: 2654: 2619: 2519: 2504: 2401: 1785: 1742: 1573: 1466: 1441: 1415: 1009: 595: 552: 3033: 3023: 2966: 2946: 2629: 2594: 2529: 2509: 2499: 2069: 1927: 1790: 1772: 1723: 1674: 1625: 1565: 1518: 1471: 1403: 1393: 1368: 1321: 1275: 1240: 1179: 1175: 1135: 1046: 1001: 993: 942: 716: 303: 299: 232: 129: 66: 1577: 1163: 1013: 848: 2988: 2956: 2926: 2735: 2720: 2589: 2524: 2416: 2331: 2261: 2186: 1967: 1937: 1867: 1862: 1780: 1762: 1713: 1664: 1615: 1557: 1510: 1461: 1360: 1313: 1301: 1267: 1259: 1230: 1220: 1171: 1127: 983: 889: 228: 1537: 1317: 1271: 390:
Firstly, the distance between amphidromic points is dependent on the water depth:
2793: 2689: 2639: 2604: 2564: 2456: 2426: 2276: 2226: 2136: 2094: 2027: 1952: 1912: 1561: 828: 763: 722: 310:. As a result of this geostrophic balance, Kelvin waves (originally described by 121: 94: 913:"Tides in two easy pieces - Earth 540: Essentials of Oceanography for Educators" 3099: 2903: 2898: 2803: 2798: 2634: 2574: 2569: 2301: 2191: 2012: 1947: 1922: 775: 615: 327: 295: 248: 82: 30:"Amphidrome" redirects here. For the former stadium in Houghton, Michigan, see 2148: 1669: 1644: 1121: 535:
Where Îł is the displacement of the amphidrome from the centre of the channel (
3088: 3073: 2921: 2841: 2730: 2649: 2624: 2559: 2489: 2396: 2291: 2168: 2089: 2049: 2022: 1932: 1882: 1776: 1727: 1678: 1629: 1591: 1569: 1522: 1490: 1475: 1407: 1372: 1340: 1325: 1244: 1131: 997: 710: 331: 315: 231:. The waves reflect due to changes in water depth (for example when entering 188: 184: 113: 1514: 1364: 1225: 1208: 582:. The maximum displacement of the amphidrome from the centre coincides with 3028: 2976: 2916: 2867: 2745: 2740: 2715: 2699: 2674: 2391: 2281: 2221: 2007: 1917: 1892: 1794: 1743:"Sea-level rise induced amplification of coastal protection design heights" 1718: 1694:"Spatial Variability of Sea Level Rise in Twenty-First Century Projections" 1693: 1005: 692: 583: 147: 98: 3018: 2750: 2679: 2544: 2484: 2451: 2441: 2436: 2321: 2256: 2216: 2206: 2181: 2064: 2037: 2017: 1977: 1942: 1620: 1595: 866:, Scientific Visualization Studio, and Television Production NASA-TV/GSFC 818: 805: 450: 247:
and the points at which the two waves cancel each other out are known as
180: 172: 74: 31: 1815: 2836: 2684: 2659: 2554: 2534: 2461: 2446: 2431: 2421: 2386: 2306: 2126: 2121: 2084: 2079: 2074: 1972: 801: 741: 704: 686: 208: 37: 3068: 1767: 1692:
Yin, Jianjun; Griffies, Stephen M.; Stouffer, Ronald J. (2010-09-01).
2908: 2770: 2755: 2669: 2514: 2353: 2348: 2131: 2059: 1987: 1907: 1897: 1854: 1387: 1235: 791: 735: 672: 654: 579: 244: 240: 102: 62: 526:{\displaystyle \gamma =-{\frac {{\sqrt {gD}}\cdot \ln \alpha }{2f}}} 195:(~3000 km in the open ocean), and shallow, as the water depth ( 3003: 2725: 2584: 2476: 2466: 2411: 1887: 1442:"Tidal amphidrome movement and energy dissipation in the Irish Sea" 363:
Figure 2 shows that the first node of the total wave is located at
199:, on average ~4 kilometre deep) in the ocean is much smaller (i.e. 988: 963: 2872: 2862: 2032: 2002: 1258:
Toffoli, Alessandro; Bitner-Gregersen, Elzbieta M. (2017-03-06),
785: 352: 894: 877: 571:
is to the left of the incident wave on the northern hemisphere.
2579: 1992: 795: 779: 757: 753: 747: 660: 384: 2941: 2760: 2539: 2494: 1645:"Sea-Level Rise from the Late 19th to the Early 21st Century" 823: 587: 191:). These tidal waves can be considered wide, relative to the 176: 1266:, Chichester, UK: John Wiley & Sons, Ltd, pp. 1–8, 2373: 859: 855: 851: 575: 271:λ of the total wave, followed by the next node reoccurring 168: 70: 1740: 863: 164: 117: 605: 227:
In real oceans, the tides cannot endlessly propagate as
1257: 858:. Redistribute with credit to R. Ray, as well as NASA- 728: 876:
Desplanque, Con; Mossman, David J. (1 January 2004).
567:
will be negative. Hence the amphidromic displacement
477: 398: 215:) which is in the order of thousands of kilometres. 1691: 1260:"Types of Ocean Surface Waves, Wave Classification" 1535: 614:, the oceans in the world are becoming subject to 525: 423: 154: 105:and found that the lines must meet at some point. 2789:North West Shelf Operational Oceanographic System 1536:Sindhu, B.; Unnikrishnan, A. S. (December 2013). 1264:Encyclopedia of Maritime and Offshore Engineering 875: 358: 3086: 1590: 2779:Deep-ocean Assessment and Reporting of Tsunamis 1538:"Characteristics of Tides in the Bay of Bengal" 1207:Charette, Matthew; Smith, Walter (2010-06-01). 679: 1643:Church, John A.; White, Neil J. (2011-03-30). 641: 1831: 1206: 1119: 849:TOPEX/Poseidon: Revealing Hidden Tidal Energy 235:) and at coastal boundaries. The result is a 171:. This gravitational attraction results in a 1420:: CS1 maint: multiple names: authors list ( 424:{\displaystyle \lambda ={\sqrt {gD}}\cdot T} 27:Location at which there is little or no tide 1642: 653:Based on Figure 1, there are the following 302:. The resulting slope develops until it is 1838: 1824: 1488: 932: 321: 261:λ resonator. The first node is located at 1845: 1784: 1766: 1717: 1668: 1619: 1465: 1234: 1224: 1126:. Cambridge: Cambridge University Press. 987: 907: 905: 893: 373:λ with reoccurring nodes at intervals of 1596:"Sea level rise and its coastal impacts" 1338: 659: 217: 36: 1594:; Cozannet, GonĂ©ri Le (February 2014). 1120:Pugh, David; Woodworth, Philip (2014). 834: 14: 3087: 2110:one-dimensional Saint-Venant equations 1299: 1051:: CS1 maint: archived copy as title ( 902: 345: 306:with the Coriolis force; resulting in 1819: 1435: 1433: 1431: 1202: 1200: 1115: 1113: 1111: 1109: 1107: 1105: 1103: 961: 657:and anticlockwise amphidromic points: 606:Amphidromic points and sea level rise 124:, creates a wave pattern — called an 3057: 1439: 1168:Encyclopedia of Atmospheric Sciences 1161: 1157: 1155: 1153: 1151: 1101: 1099: 1097: 1095: 1093: 1091: 1089: 1087: 1085: 1083: 664:Figure 3. Amphidromic system of the 146:, is the largest tidal constituent. 1489:Murty, T. S.; Henry, R. F. (1983). 729:Counterclockwise amphidromic points 543:is the gravitational acceleration, 159:Tides are generated as a result of 24: 2937:National Oceanographic Data Center 2364:World Ocean Circulation Experiment 2252:Global Ocean Data Analysis Project 1467:10.1111/j.1365-246x.1981.tb02763.x 1428: 1385: 1197: 25: 3111: 2784:Global Sea Level Observing System 1446:Geophysical Journal International 1148: 1080: 108:Amphidromic points occur because 3067: 3056: 3047: 3046: 2242:Geochemical Ocean Sections Study 2158: 2147: 1170:, Elsevier, pp. 1062–1068, 933:Cartwright, David Edgar (2000). 586:, whereas the minimum occurs at 2972:Ocean thermal energy conversion 2695:Vine–Matthews–Morley hypothesis 1801: 1734: 1685: 1636: 1584: 1529: 1495:Journal of Geophysical Research 1482: 1379: 1332: 1293: 1251: 962:Berry, Michael (January 2000). 155:Formation of amphidromic points 1176:10.1016/b0-12-227090-8/00191-3 1059: 1020: 955: 926: 869: 841: 359:Position of amphidromic points 137:"principal lunar semi-diurnal" 13: 1: 1386:E., Gill, Aan (3 June 2016). 1318:10.1126/science.134.3488.1412 1272:10.1002/9781118476406.emoe077 1209:"The Volume of Earth's Ocean" 2232:El Niño–Southern Oscillation 2202:Craik–Leibovich vortex force 1958:Luke's variational principle 1562:10.1080/01490419.2013.781088 1491:"Tides in the Bay of Bengal" 1339:Phillips, Norman A. (1963). 1300:Hersey, J. B. (1961-11-03). 680:Clockwise amphidromic points 193:Rossby radius of deformation 120:and bays, combined with the 7: 935:Tides: A Scientific History 812: 563:will be smaller than 1 and 10: 3116: 2297:Ocean dynamical thermostat 2145: 1440:Pugh, D. T. (1981-11-01). 1389:Atmosphere--Ocean Dynamics 939:Cambridge University Press 439:gravitational acceleration 29: 3042: 2881: 2855: 2832:Ocean acoustic tomography 2817: 2769: 2708: 2645:MohoroviÄŤić discontinuity 2603: 2475: 2372: 2237:General circulation model 2167: 1873:Benjamin–Feir instability 1853: 1670:10.1007/s10712-011-9119-1 964:"Making waves in physics" 598:due to friction is high. 2962:Ocean surface topography 2337:Thermohaline circulation 2327:Subsurface ocean current 2267:Hydrothermal circulation 2100:Wave–current interaction 1878:Boussinesq approximation 1132:10.1017/cbo9781139235778 847:Picture credit: R. Ray, 612:greenhouse gas emissions 161:gravitational attraction 2999:Sea surface temperature 2982:Outline of oceanography 2177:Atmospheric circulation 2115:shallow water equations 2105:Waves and shallow water 1998:Significant wave height 1515:10.1029/jc088ic10p06069 1365:10.1029/rg001i002p00123 1226:10.5670/oceanog.2010.51 445:is the water depth and 322:Infinitely long channel 97:, who extrapolated the 2994:Sea surface microlayer 2359:Wind generated current 1719:10.1175/2010jcli3533.1 676: 527: 425: 224: 135:In most locations the 101:from the coast of the 79:peak-to-peak amplitude 50: 2827:Deep scattering layer 2809:World Geodetic System 2317:Princeton Ocean Model 2197:Coriolis–Stokes force 1847:Physical oceanography 1649:Surveys in Geophysics 1345:Reviews of Geophysics 663: 528: 426: 338:and clockwise in the 221: 40: 2847:Underwater acoustics 2407:Perigean spring tide 2272:Langmuir circulation 1983:Rossby-gravity waves 1621:10.1002/2013ef000188 1341:"Geostrophic motion" 835:References and notes 547:is the water depth, 475: 396: 67:harmonic constituent 3009:Science On a Sphere 2615:Convergent boundary 2287:Modular Ocean Model 2247:Geostrophic current 1963:Mild-slope equation 1759:2017NatSR...740171A 1710:2010JCli...23.4585Y 1661:2011SGeo...32..585C 1612:2014EaFut...2...15C 1554:2013MarGe..36..377S 1507:1983JGR....88.6069M 1458:1981GeoJ...67..515P 1357:1963RvGSP...1..123P 1067:"Untitled Document" 980:2000Natur.403...21B 671:constituent in the 346:Semi-enclosed basin 340:southern hemisphere 336:northern hemisphere 308:geostrophic balance 251:. Figure 2 shows a 207:<1/20) than the 2665:Seafloor spreading 2655:Outer trench swell 2620:Divergent boundary 2520:Continental margin 2505:Carbonate platform 2402:Lunitidal interval 1747:Scientific Reports 1698:Journal of Climate 677: 596:energy dissipation 553:Coriolis frequency 523: 421: 225: 126:amphidromic system 51: 3082: 3081: 3074:Oceans portal 3034:World Ocean Atlas 3024:Underwater glider 2967:Ocean temperature 2630:Hydrothermal vent 2595:Submarine volcano 2530:Continental shelf 2510:Coastal geography 2500:Bathymetric chart 2382:Amphidromic point 2070:Wave nonlinearity 1928:Infragravity wave 1768:10.1038/srep40171 1704:(17): 4585–4607. 1399:978-1-4832-8158-2 1281:978-1-118-47635-2 1185:978-0-12-227090-1 1162:Wang, B. (2003), 1141:978-1-139-23577-8 1123:Sea-Level Science 948:978-0-521-79746-7 717:Galapagos Islands 649:tidal constituent 521: 498: 413: 300:pressure gradient 229:progressive waves 175:that acts on the 130:tidal constituent 55:amphidromic point 16:(Redirected from 3107: 3072: 3071: 3060: 3059: 3050: 3049: 2989:Pelagic sediment 2927:Marine pollution 2721:Deep ocean water 2590:Submarine canyon 2525:Continental rise 2417:Rule of twelfths 2332:Sverdrup balance 2262:Humboldt Current 2187:Boundary current 2162: 2151: 1968:Radiation stress 1938:Iribarren number 1913:Equatorial waves 1868:Ballantine scale 1863:Airy wave theory 1840: 1833: 1826: 1817: 1816: 1810: 1805: 1799: 1798: 1788: 1770: 1738: 1732: 1731: 1721: 1689: 1683: 1682: 1672: 1655:(4–5): 585–602. 1640: 1634: 1633: 1623: 1588: 1582: 1581: 1533: 1527: 1526: 1486: 1480: 1479: 1469: 1437: 1426: 1425: 1419: 1411: 1383: 1377: 1376: 1336: 1330: 1329: 1297: 1291: 1290: 1289: 1288: 1255: 1249: 1248: 1238: 1228: 1204: 1195: 1194: 1193: 1192: 1159: 1146: 1145: 1117: 1078: 1077: 1075: 1073: 1063: 1057: 1056: 1050: 1042: 1040: 1039: 1030:. Archived from 1024: 1018: 1017: 991: 959: 953: 952: 930: 924: 923: 921: 919: 909: 900: 899: 897: 882:Atlantic Geology 873: 867: 845: 794:in southwestern 637: 636: 632: 627: 626: 622: 532: 530: 529: 524: 522: 520: 512: 499: 491: 488: 465: 464: 460: 430: 428: 427: 422: 414: 406: 382: 381: 377: 372: 371: 367: 290: 289: 285: 280: 279: 275: 270: 269: 265: 260: 259: 255: 57:, also called a 21: 3115: 3114: 3110: 3109: 3108: 3106: 3105: 3104: 3085: 3084: 3083: 3078: 3066: 3038: 2877: 2851: 2813: 2794:Sea-level curve 2765: 2704: 2690:Transform fault 2640:Mid-ocean ridge 2606: 2599: 2565:Oceanic plateau 2471: 2457:Tidal resonance 2427:Theory of tides 2368: 2277:Longshore drift 2227:Ekman transport 2163: 2157: 2156: 2155: 2154: 2153: 2152: 2143: 2095:Wave turbulence 2028:Trochoidal wave 1953:Longshore drift 1849: 1844: 1814: 1813: 1806: 1802: 1739: 1735: 1690: 1686: 1641: 1637: 1589: 1585: 1534: 1530: 1487: 1483: 1438: 1429: 1413: 1412: 1400: 1384: 1380: 1337: 1333: 1298: 1294: 1286: 1284: 1282: 1256: 1252: 1205: 1198: 1190: 1188: 1186: 1160: 1149: 1142: 1118: 1081: 1071: 1069: 1065: 1064: 1060: 1044: 1043: 1037: 1035: 1028:"Archived copy" 1026: 1025: 1021: 960: 956: 949: 941:. p. 243. 931: 927: 917: 915: 911: 910: 903: 874: 870: 846: 842: 837: 829:Theory of tides 815: 800:The islands of 774:midway between 764:Leeward Islands 731: 723:Queen Maud Land 682: 670: 651: 648: 634: 630: 629: 624: 620: 619: 608: 513: 490: 489: 487: 476: 473: 472: 462: 458: 457: 405: 397: 394: 393: 379: 375: 374: 369: 365: 364: 361: 348: 324: 287: 283: 282: 277: 273: 272: 267: 263: 262: 257: 253: 252: 187:(also known as 157: 145: 122:Coriolis effect 95:William Whewell 89:("around") and 47: 35: 28: 23: 22: 15: 12: 11: 5: 3113: 3103: 3102: 3097: 3095:Wave mechanics 3080: 3079: 3077: 3076: 3064: 3054: 3043: 3040: 3039: 3037: 3036: 3031: 3026: 3021: 3016: 3014:Stratification 3011: 3006: 3001: 2996: 2991: 2986: 2985: 2984: 2974: 2969: 2964: 2959: 2954: 2949: 2944: 2939: 2934: 2929: 2924: 2919: 2914: 2906: 2904:Color of water 2901: 2899:Benthic lander 2896: 2891: 2885: 2883: 2879: 2878: 2876: 2875: 2870: 2865: 2859: 2857: 2853: 2852: 2850: 2849: 2844: 2839: 2834: 2829: 2823: 2821: 2815: 2814: 2812: 2811: 2806: 2804:Sea level rise 2801: 2799:Sea level drop 2796: 2791: 2786: 2781: 2775: 2773: 2767: 2766: 2764: 2763: 2758: 2753: 2748: 2743: 2738: 2733: 2728: 2723: 2718: 2712: 2710: 2706: 2705: 2703: 2702: 2697: 2692: 2687: 2682: 2677: 2672: 2667: 2662: 2657: 2652: 2647: 2642: 2637: 2635:Marine geology 2632: 2627: 2622: 2617: 2611: 2609: 2601: 2600: 2598: 2597: 2592: 2587: 2582: 2577: 2575:Passive margin 2572: 2570:Oceanic trench 2567: 2562: 2557: 2552: 2547: 2542: 2537: 2532: 2527: 2522: 2517: 2512: 2507: 2502: 2497: 2492: 2487: 2481: 2479: 2473: 2472: 2470: 2469: 2464: 2459: 2454: 2449: 2444: 2439: 2434: 2429: 2424: 2419: 2414: 2409: 2404: 2399: 2394: 2389: 2384: 2378: 2376: 2370: 2369: 2367: 2366: 2361: 2356: 2351: 2346: 2345: 2344: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2302:Ocean dynamics 2299: 2294: 2289: 2284: 2279: 2274: 2269: 2264: 2259: 2254: 2249: 2244: 2239: 2234: 2229: 2224: 2219: 2214: 2209: 2204: 2199: 2194: 2192:Coriolis force 2189: 2184: 2179: 2173: 2171: 2165: 2164: 2146: 2144: 2142: 2141: 2140: 2139: 2129: 2124: 2119: 2118: 2117: 2112: 2102: 2097: 2092: 2087: 2082: 2077: 2072: 2067: 2062: 2057: 2052: 2047: 2042: 2041: 2040: 2030: 2025: 2020: 2015: 2013:Stokes problem 2010: 2005: 2000: 1995: 1990: 1985: 1980: 1975: 1970: 1965: 1960: 1955: 1950: 1948:Kinematic wave 1945: 1940: 1935: 1930: 1925: 1920: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1880: 1875: 1870: 1865: 1859: 1857: 1851: 1850: 1843: 1842: 1835: 1828: 1820: 1812: 1811: 1800: 1733: 1684: 1635: 1600:Earth's Future 1592:Cazenave, Anny 1583: 1548:(4): 377–407. 1542:Marine Geodesy 1528: 1481: 1452:(2): 515–527. 1427: 1398: 1378: 1351:(2): 123–176. 1331: 1312:(3488): 1412. 1292: 1280: 1250: 1219:(2): 112–114. 1196: 1184: 1164:"Kelvin Waves" 1147: 1140: 1079: 1058: 1019: 954: 947: 925: 901: 868: 839: 838: 836: 833: 832: 831: 826: 821: 814: 811: 810: 809: 798: 788: 782: 776:Rio de Janeiro 772: 766: 760: 750: 744: 738: 730: 727: 726: 725: 719: 713: 707: 701: 695: 689: 681: 678: 668: 650: 646: 640: 616:sea-level rise 607: 604: 578:cycles in the 519: 516: 511: 508: 505: 502: 497: 494: 486: 483: 480: 420: 417: 412: 409: 404: 401: 360: 357: 347: 344: 328:Atlantic Ocean 323: 320: 296:Coriolis force 189:Sverdrup waves 185:PoincarĂ© waves 156: 153: 143: 114:oceanic basins 45: 41:Figure 1. The 26: 9: 6: 4: 3: 2: 3112: 3101: 3098: 3096: 3093: 3092: 3090: 3075: 3070: 3065: 3063: 3055: 3053: 3045: 3044: 3041: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3015: 3012: 3010: 3007: 3005: 3002: 3000: 2997: 2995: 2992: 2990: 2987: 2983: 2980: 2979: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2943: 2940: 2938: 2935: 2933: 2930: 2928: 2925: 2923: 2922:Marine energy 2920: 2918: 2915: 2913: 2912: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2889:Acidification 2887: 2886: 2884: 2880: 2874: 2871: 2869: 2866: 2864: 2861: 2860: 2858: 2854: 2848: 2845: 2843: 2842:SOFAR channel 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2824: 2822: 2820: 2816: 2810: 2807: 2805: 2802: 2800: 2797: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2777: 2776: 2774: 2772: 2768: 2762: 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2734: 2732: 2729: 2727: 2724: 2722: 2719: 2717: 2714: 2713: 2711: 2707: 2701: 2698: 2696: 2693: 2691: 2688: 2686: 2683: 2681: 2678: 2676: 2673: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2651: 2650:Oceanic crust 2648: 2646: 2643: 2641: 2638: 2636: 2633: 2631: 2628: 2626: 2625:Fracture zone 2623: 2621: 2618: 2616: 2613: 2612: 2610: 2608: 2602: 2596: 2593: 2591: 2588: 2586: 2583: 2581: 2578: 2576: 2573: 2571: 2568: 2566: 2563: 2561: 2560:Oceanic basin 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2493: 2491: 2490:Abyssal plain 2488: 2486: 2483: 2482: 2480: 2478: 2474: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2397:Internal tide 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2379: 2377: 2375: 2371: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2343: 2340: 2339: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2292:Ocean current 2290: 2288: 2285: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2258: 2255: 2253: 2250: 2248: 2245: 2243: 2240: 2238: 2235: 2233: 2230: 2228: 2225: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2174: 2172: 2170: 2166: 2161: 2150: 2138: 2135: 2134: 2133: 2130: 2128: 2125: 2123: 2120: 2116: 2113: 2111: 2108: 2107: 2106: 2103: 2101: 2098: 2096: 2093: 2091: 2090:Wave shoaling 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2058: 2056: 2053: 2051: 2050:Ursell number 2048: 2046: 2043: 2039: 2036: 2035: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1933:Internal wave 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1883:Breaking wave 1881: 1879: 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1860: 1858: 1856: 1852: 1848: 1841: 1836: 1834: 1829: 1827: 1822: 1821: 1818: 1809: 1804: 1796: 1792: 1787: 1782: 1778: 1774: 1769: 1764: 1760: 1756: 1752: 1748: 1744: 1737: 1729: 1725: 1720: 1715: 1711: 1707: 1703: 1699: 1695: 1688: 1680: 1676: 1671: 1666: 1662: 1658: 1654: 1650: 1646: 1639: 1631: 1627: 1622: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1587: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1532: 1524: 1520: 1516: 1512: 1508: 1504: 1501:(C10): 6069. 1500: 1496: 1492: 1485: 1477: 1473: 1468: 1463: 1459: 1455: 1451: 1447: 1443: 1436: 1434: 1432: 1423: 1417: 1409: 1405: 1401: 1395: 1391: 1390: 1382: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1335: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1296: 1283: 1277: 1273: 1269: 1265: 1261: 1254: 1246: 1242: 1237: 1232: 1227: 1222: 1218: 1214: 1210: 1203: 1201: 1187: 1181: 1177: 1173: 1169: 1165: 1158: 1156: 1154: 1152: 1143: 1137: 1133: 1129: 1125: 1124: 1116: 1114: 1112: 1110: 1108: 1106: 1104: 1102: 1100: 1098: 1096: 1094: 1092: 1090: 1088: 1086: 1084: 1068: 1062: 1054: 1048: 1034:on 2010-06-02 1033: 1029: 1023: 1015: 1011: 1007: 1003: 999: 995: 990: 989:10.1038/47364 985: 981: 977: 973: 969: 965: 958: 950: 944: 940: 936: 929: 914: 908: 906: 896: 891: 887: 883: 879: 872: 865: 861: 857: 853: 850: 844: 840: 830: 827: 825: 822: 820: 817: 816: 807: 803: 799: 797: 793: 789: 787: 783: 781: 777: 773: 771: 767: 765: 761: 759: 755: 751: 749: 745: 743: 739: 737: 733: 732: 724: 720: 718: 714: 712: 711:Easter Island 708: 706: 702: 700: 696: 694: 690: 688: 685:north of the 684: 683: 674: 667: 662: 658: 656: 645: 639: 617: 613: 603: 599: 597: 593: 589: 585: 581: 577: 572: 570: 566: 562: 558: 554: 550: 546: 542: 538: 533: 517: 514: 509: 506: 503: 500: 495: 492: 484: 481: 478: 470: 467: 454: 453:of the wave. 452: 448: 444: 440: 436: 431: 418: 415: 410: 407: 402: 399: 391: 388: 386: 356: 354: 343: 341: 337: 333: 332:Pacific Ocean 329: 319: 317: 316:standing wave 313: 309: 305: 301: 297: 292: 281:λ farther at 250: 246: 242: 238: 234: 230: 220: 216: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 162: 152: 149: 148:Cotidal lines 142: 138: 133: 131: 127: 123: 119: 115: 111: 106: 104: 100: 99:cotidal lines 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 44: 39: 33: 19: 3029:Water column 2977:Oceanography 2952:Observations 2947:Explorations 2917:Marginal sea 2910: 2868:OSTM/Jason-2 2700:Volcanic arc 2675:Slab suction 2392:Head of tide 2381: 2282:Loop Current 2222:Ekman spiral 2008:Stokes drift 1918:Gravity wave 1893:Cnoidal wave 1803: 1753:(1): 40171. 1750: 1746: 1736: 1701: 1697: 1687: 1652: 1648: 1638: 1606:(2): 15–34. 1603: 1599: 1586: 1545: 1541: 1531: 1498: 1494: 1484: 1449: 1445: 1392:. Elsevier. 1388: 1381: 1348: 1344: 1334: 1309: 1305: 1295: 1285:, retrieved 1263: 1253: 1216: 1213:Oceanography 1212: 1189:, retrieved 1167: 1122: 1070:. Retrieved 1061: 1036:. Retrieved 1032:the original 1022: 974:(6765): 21. 971: 967: 957: 934: 928: 916:. Retrieved 885: 881: 871: 843: 770:Newfoundland 715:west of the 693:Enderby Land 665: 652: 643: 609: 600: 591: 584:spring tides 573: 568: 564: 560: 556: 548: 544: 540: 536: 534: 471: 468: 455: 446: 442: 434: 432: 392: 389: 362: 349: 325: 293: 226: 212: 204: 200: 196: 181:Kelvin waves 158: 140: 134: 125: 110:interference 107: 90: 86: 58: 54: 52: 42: 3019:Thermocline 2736:Mesopelagic 2709:Ocean zones 2680:Slab window 2545:Hydrography 2485:Abyssal fan 2452:Tidal range 2442:Tidal power 2437:Tidal force 2322:Rip current 2257:Gulf Stream 2217:Ekman layer 2207:Downwelling 2182:Baroclinity 2169:Circulation 2065:Wave height 2055:Wave action 2038:megatsunami 2018:Stokes wave 1978:Rossby wave 1943:Kelvin wave 1923:Green's law 895:10.4138/729 819:Kelvin wave 806:New Zealand 576:spring-neap 312:Lord Kelvin 304:equilibrium 173:tidal force 139:, known as 75:tidal range 32:Dee Stadium 18:Amphidromic 3089:Categories 2957:Reanalysis 2856:Satellites 2837:Sofar bomb 2685:Subduction 2660:Ridge push 2555:Ocean bank 2535:Contourite 2462:Tide gauge 2447:Tidal race 2432:Tidal bore 2422:Slack tide 2387:Earth tide 2307:Ocean gyre 2127:Wind setup 2122:Wind fetch 2085:Wave setup 2080:Wave radar 2075:Wave power 1973:Rogue wave 1903:Dispersion 1287:2021-05-15 1191:2021-05-15 1038:2010-08-23 802:Madagascar 742:New Guinea 705:New Guinea 687:Seychelles 233:shelf seas 209:wavelength 59:tidal node 2819:Acoustics 2771:Sea level 2670:Slab pull 2607:tectonics 2515:Cold seep 2477:Landforms 2354:Whirlpool 2349:Upwelling 2132:Wind wave 2060:Wave base 1988:Sea state 1908:Edge wave 1898:Cross sea 1777:2045-2322 1728:1520-0442 1679:0169-3298 1630:2328-4277 1570:0149-0419 1523:0148-0227 1476:0956-540X 1416:cite book 1408:952336940 1373:8755-1209 1326:0036-8075 1245:1042-8275 1236:1912/3862 998:1476-4687 792:Eigersund 762:near the 740:north of 736:Sri Lanka 721:north of 709:south of 673:North Sea 655:clockwise 580:Irish Sea 510:α 507:⁡ 501:⋅ 485:− 479:γ 416:⋅ 400:λ 318:pattern. 245:antinodes 241:resonance 237:reflected 103:North Sea 63:amplitude 49:together. 3052:Category 3004:Seawater 2731:Littoral 2726:Deep sea 2585:Seamount 2467:Tideline 2412:Rip tide 2342:shutdown 2312:Overflow 2045:Undertow 1888:Clapotis 1795:28057920 1578:53365068 1047:cite web 1014:38351145 1006:10638732 813:See also 790:Outside 784:east of 768:east of 752:between 703:east of 65:for one 3062:Commons 2932:Mooring 2882:Related 2873:Jason-3 2863:Jason-1 2746:Pelagic 2741:Oceanic 2716:Benthic 2033:Tsunami 2003:Soliton 1786:5216410 1755:Bibcode 1706:Bibcode 1657:Bibcode 1608:Bibcode 1550:Bibcode 1503:Bibcode 1454:Bibcode 1353:Bibcode 1306:Science 1072:21 July 976:Bibcode 918:21 July 862:, NASA- 786:Iceland 642:In the 633:⁄ 623:⁄ 551:is the 461:⁄ 449:is the 437:is the 378:⁄ 368:⁄ 353:equator 286:⁄ 276:⁄ 266:⁄ 256:⁄ 163:by the 112:within 69:of the 2751:Photic 2580:Seabed 1993:Seiche 1793:  1783:  1775:  1726:  1677:  1628:  1576:  1568:  1521:  1474:  1406:  1396:  1371:  1324:  1278:  1243:  1182:  1138:  1012:  1004:  996:  968:Nature 945:  796:Norway 780:Angola 758:Hawaii 754:Mexico 748:Tahiti 451:period 433:Where 385:seabed 91:dromos 85:words 73:. The 3100:Tides 2942:Ocean 2911:Alvin 2761:Swash 2605:Plate 2550:Knoll 2540:Guyot 2495:Atoll 2374:Tides 2137:model 2023:Swell 1855:Waves 1574:S2CID 1010:S2CID 888:(1). 824:Tides 734:near 699:Perth 691:near 588:neaps 539:=0), 249:nodes 177:ocean 87:amphi 83:Greek 77:(the 2909:DSV 2894:Argo 2756:Surf 2212:Eddy 1791:PMID 1773:ISSN 1724:ISSN 1675:ISSN 1626:ISSN 1566:ISSN 1519:ISSN 1472:ISSN 1422:link 1404:OCLC 1394:ISBN 1369:ISSN 1322:ISSN 1276:ISBN 1241:ISSN 1180:ISBN 1136:ISBN 1074:2016 1053:link 1002:PMID 994:ISSN 943:ISBN 920:2016 860:GSFC 856:NASA 852:GSFC 804:and 778:and 756:and 697:off 555:and 330:and 183:and 169:Moon 167:and 118:seas 71:tide 1781:PMC 1763:doi 1714:doi 1665:doi 1616:doi 1558:doi 1511:doi 1462:doi 1361:doi 1314:doi 1310:134 1268:doi 1231:hdl 1221:doi 1172:doi 1128:doi 984:doi 972:403 890:doi 864:JPL 746:at 565:lnα 291:λ. 165:Sun 53:An 3091:: 1789:. 1779:. 1771:. 1761:. 1749:. 1745:. 1722:. 1712:. 1702:23 1700:. 1696:. 1673:. 1663:. 1653:32 1651:. 1647:. 1624:. 1614:. 1602:. 1598:. 1572:. 1564:. 1556:. 1546:36 1544:. 1540:. 1517:. 1509:. 1499:88 1497:. 1493:. 1470:. 1460:. 1450:67 1448:. 1444:. 1430:^ 1418:}} 1414:{{ 1402:. 1367:. 1359:. 1347:. 1343:. 1320:. 1308:. 1304:. 1274:, 1262:, 1239:. 1229:. 1217:23 1215:. 1211:. 1199:^ 1178:, 1166:, 1150:^ 1134:. 1082:^ 1049:}} 1045:{{ 1008:. 1000:. 992:. 982:. 970:. 966:. 937:. 904:^ 886:40 884:. 880:. 854:, 504:ln 441:, 342:. 116:, 1839:e 1832:t 1825:v 1797:. 1765:: 1757:: 1751:7 1730:. 1716:: 1708:: 1681:. 1667:: 1659:: 1632:. 1618:: 1610:: 1604:2 1580:. 1560:: 1552:: 1525:. 1513:: 1505:: 1478:. 1464:: 1456:: 1424:) 1410:. 1375:. 1363:: 1355:: 1349:1 1328:. 1316:: 1270:: 1247:. 1233:: 1223:: 1174:: 1144:. 1130:: 1076:. 1055:) 1041:. 1016:. 986:: 978:: 951:. 922:. 898:. 892:: 669:2 666:M 647:2 644:M 635:2 631:1 625:4 621:1 592:α 569:Îł 561:α 557:α 549:f 545:D 541:g 537:Îł 518:f 515:2 496:D 493:g 482:= 463:2 459:1 447:T 443:D 435:g 419:T 411:D 408:g 403:= 380:2 376:1 370:4 366:1 288:4 284:3 278:2 274:1 268:4 264:1 258:4 254:1 213:λ 211:( 205:λ 203:/ 201:D 197:D 144:2 141:M 46:2 43:M 34:. 20:)

Index

Amphidromic
Dee Stadium

amplitude
harmonic constituent
tide
tidal range
peak-to-peak amplitude
Greek
William Whewell
cotidal lines
North Sea
interference
oceanic basins
seas
Coriolis effect
tidal constituent
"principal lunar semi-diurnal"
Cotidal lines
gravitational attraction
Sun
Moon
tidal force
ocean
Kelvin waves
Poincaré waves
Sverdrup waves
Rossby radius of deformation
wavelength

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑