Knowledge

Asymptotically flat spacetime

Source đź“ť

136:. Indeed, physicists rarely imagine a universe containing a single star and nothing else when they construct an asymptotically flat model of a star. Rather, they are interested in modeling the interior of the star together with an exterior region in which gravitational effects due to the presence of other objects can be neglected. Since typical distances between astrophysical bodies tend to be much larger than the diameter of each body, we often can get away with this idealization, which usually helps to greatly simplify the construction and analysis of solutions. 22: 990:
used this to circumvent the tricky problem of suitably defining and evaluating suitable limits in formulating a truly coordinate-free definition of asymptotic flatness. In the new approach, once everything is properly set up, one need only evaluate functions on a locus in order to verify asymptotic
1022:
In metric theories of gravitation such as general relativity, it is usually not possible to give general definitions of important physical concepts such as mass and angular momentum; however, assuming asymptotical flatness allows one to employ convenient definitions which do make sense for
440:(the family of all stationary axisymmetric and asymptotically flat vacuum solutions). These families are given by the solution space of a much simplified family of partial differential equations, and their metric tensors can be written down in terms of an explicit 1205:. Version dated May 16, 2002. Roberts attempts to argue that the exterior solution in a model of a rotating star should be a perfect fluid or dust rather than a vacuum, and then argues that there exist no asymptotically flat rotating 490:, which far from the origin behaves much like a Cartesian chart on Minkowski spacetime, in the following sense. Write the metric tensor as the sum of a (physically unobservable) Minkowski background plus a perturbation tensor, 857: 771: 688: 121:
The condition of asymptotic flatness is analogous to similar conditions in mathematics and in other physical theories. Such conditions say that some physical field or mathematical function is
128:
In general relativity, an asymptotically flat vacuum solution models the exterior gravitational field of an isolated massive object. Therefore, such a spacetime can be considered as an
974:, and others began to study the general phenomenon of radiation from a compact source in general relativity, which requires more flexible definitions of asymptotic flatness. In 1963, 550: 616: 355:
A manifold is asymptotically flat if it is weakly asymptotically simple and asymptotically empty in the sense that its Ricci tensor vanishes in a neighbourhood of the boundary of
109:, as well as any matter or other fields which may be present, become negligible in magnitude at large distances from some region. In particular, in an asymptotically flat 382: 350: 321: 243: 194: 956: 908: 292: 86:
in which, roughly speaking, the curvature vanishes at large distances from some region, so that at large distances, the geometry becomes indistinguishable from that of
488: 113:, the gravitational field (curvature) becomes negligible at large distances from the source of the field (typically some isolated massive object such as a star). 266: 214: 162: 1143:
Mars, M. & Senovilla, J. M. M. (1998). "On the construction of global models describing rotating bodies; uniqueness of the exterior gravitational field".
452:
The simplest (and historically the first) way of defining an asymptotically flat spacetime assumes that we have a coordinate chart, with coordinates
1026:
While this is less obvious, it turns out that invoking asymptotic flatness allows physicists to import sophisticated mathematical concepts from
437: 862:
One reason why we require the partial derivatives of the perturbation to decay so quickly is that these conditions turn out to imply that the
1007:
Models of physical phenomena in general relativity (and allied physical theories) generally arise as the solution of appropriate systems of
1119: 777: 1303: 694: 624: 1198:. This doesn't imply that no models of a rotating star exist, but it helps to explain why they seem to be hard to construct. 1103: 1075: 1000: 1285:
This is a short review by three leading experts of the current state-of-the-art on constructing exact solutions which model
110: 394:
Only spacetimes which model an isolated object are asymptotically flat. Many other familiar exact solutions, such as the
65: 43: 36: 432:
On the other hand, there are important large families of solutions which are asymptotically flat, such as the AF
418: 493: 1367: 866:(to the extent that this somewhat nebulous notion makes sense in a metric theory of gravitation) decays like 555: 98: 248:
Since the latter excludes black holes, one defines a weakly asymptotically simple manifold as a manifold
983: 911: 165: 1278:
which includes the well-known Wahlquist fluid and Kerr-Newman electrovacuum solutions as special case.
1190:
The authors argue that boundary value problems in general relativity, such as the problem matching a
409:
is also asymptotically flat. But another well known generalization of the Schwarzschild vacuum, the
1249: 1053: 30: 358: 326: 297: 219: 170: 917: 869: 271: 1244: 1016: 1008: 999:
The notion of asymptotic flatness is extremely useful as a technical condition in the study of
47: 1031: 455: 1127: 1236: 1162: 402: 8: 1323: 1283:
Second order perturbations of rotating bodies in equilibrium: the exterior vacuum problem
1012: 441: 106: 93:
While this notion makes sense for any Lorentzian manifold, it is most often applied to a
87: 83: 1240: 1166: 1341: 1262: 1226: 1178: 1152: 1092: 1027: 979: 422: 410: 251: 199: 147: 102: 105:. In this case, we can say that an asymptotically flat spacetime is one in which the 1099: 1071: 1266: 1254: 1182: 1170: 971: 129: 1258: 1213:
Mark Roberts is an occasional contributor to Knowledge, including this article.
1048: 1174: 1361: 1035: 987: 975: 967: 421:
solution, which models a spherically symmetric massive object immersed in a
433: 352:
is the conformal compactification of some asymptotically simple manifold.
1282: 1271: 1202: 1187: 406: 914:, the energy of the electromagnetic field of a point charge decays like 1346: 1231: 1194:
perfect fluid interior to an asymptotically flat vacuum exterior, are
1157: 395: 94: 852:{\displaystyle \lim _{r\rightarrow \infty }h_{ab,pq}=O(1/r^{3})} 766:{\displaystyle \lim _{r\rightarrow \infty }h_{ab,p}=O(1/r^{2})} 1065: 1015:
which assist in setting up and even in solving the resulting
401:
A simple example of an asymptotically flat spacetime is the
1142: 1304:
Einstein's field equations and their physical implications
1003:
and allied theories. There are several reasons for this:
417:
asymptotically flat. An even simpler generalization, the
1203:
Spacetime Exterior to a Star: Against Asymptotic Flatness
683:{\displaystyle \lim _{r\rightarrow \infty }h_{ab}=O(1/r)} 1034:
in order to define and study important features such as
97:
standing as a solution to the field equations of some
1086:
for a discussion of asymptotically simple spacetimes.
920: 872: 780: 697: 627: 558: 496: 458: 361: 329: 300: 274: 254: 222: 202: 173: 150: 1274:
Mars introduces a rotating spacetime of Petrov type
1217:
Mars, Marc (1998). "The Wahlquist-Newman solution".
447: 1091: 950: 902: 851: 765: 682: 610: 544: 482: 376: 344: 315: 286: 260: 237: 208: 188: 156: 216:has future and past endpoints on the boundary of 1359: 782: 699: 629: 389: 294:isometric to a neighbourhood of the boundary of 1089: 961: 1117: 1066:Hawking, S. W. & Ellis, G. F. R. (1973). 1281:MacCallum, M. A. H.; Mars, M.; and Vera, R. 1011:, and assuming asymptotic flatness provides 429:spacetime which is not asymptotically flat. 910:, which would be physically sensible. (In 436:and their rotating generalizations, the AF 1216: 1345: 1248: 1230: 1156: 1070:. Cambridge: Cambridge University Press. 116: 66:Learn how and when to remove this message 1339: 1098:. Chicago: University of Chicago Press. 545:{\displaystyle g_{ab}=\eta _{ab}+h_{ab}} 164:is asymptotically simple if it admits a 29:This article includes a list of general 1068:The Large Scale Structure of Space-Time 611:{\displaystyle r^{2}=x^{2}+y^{2}+z^{2}} 1360: 1340:Townsend, P. K (1997). "Black Holes". 1001:exact solutions in general relativity 982:the essential innovation, now called 139: 134:exterior influences can be neglected 15: 1209:solutions in general relativity. ( 13: 864:gravitational field energy density 792: 709: 639: 35:it lacks sufficient corresponding 14: 1379: 1297: 448:A coordinate-dependent definition 196:such that every null geodesic in 1038:which may or may not be present. 20: 994: 405:solution. More generally, the 1333: 1316: 1023:asymptotically flat solutions. 945: 924: 897: 876: 846: 825: 789: 760: 739: 706: 677: 663: 636: 419:de Sitter-Schwarzschild metric 368: 336: 307: 229: 180: 1: 1059: 390:Some examples and nonexamples 80:asymptotically flat spacetime 1124:Living Reviews in Relativity 962:A coordinate-free definition 377:{\displaystyle {\tilde {M}}} 345:{\displaystyle {\tilde {M}}} 316:{\displaystyle {\tilde {M}}} 238:{\displaystyle {\tilde {M}}} 189:{\displaystyle {\tilde {M}}} 99:metric theory of gravitation 7: 1042: 10: 1384: 1259:10.1103/PhysRevD.63.064022 984:conformal compactification 951:{\displaystyle O(1/r^{4})} 912:classical electromagnetism 903:{\displaystyle O(1/r^{4})} 287:{\displaystyle U\subset M} 166:conformal compactification 1289:rotating bodies (with an 1175:10.1142/S0217732398001583 1309: 1145:Modern Physics Letters A 1090:Wald, Robert M. (1984). 1054:Einstein field equations 123:asymptotically vanishing 483:{\displaystyle t,x,y,z} 50:more precise citations. 1017:boundary value problem 1009:differential equations 952: 904: 853: 767: 684: 612: 546: 484: 425:, is an example of an 378: 346: 317: 288: 262: 239: 210: 190: 158: 117:Intuitive significance 1032:differential topology 953: 905: 854: 768: 685: 613: 547: 485: 427:asymptotically simple 379: 347: 318: 289: 263: 240: 211: 191: 159: 125:in a suitable sense. 1368:Lorentzian manifolds 1130:on December 31, 2005 1120:"Conformal Infinity" 1118:Frauendiener, Jörg. 918: 870: 778: 695: 625: 618:. Then we require: 556: 494: 456: 403:Schwarzschild metric 359: 327: 298: 272: 252: 220: 200: 171: 148: 132:: a system in which 1291:asymptotically flat 1241:2001PhRvD..63f4022M 1167:1998MPLA...13.1509M 1013:boundary conditions 442:multipole expansion 107:gravitational field 88:Minkowski spacetime 84:Lorentzian manifold 1094:General Relativity 1028:algebraic geometry 980:algebraic geometry 948: 900: 849: 796: 763: 713: 680: 643: 608: 542: 480: 423:de Sitter universe 374: 342: 313: 284: 258: 235: 206: 186: 154: 140:Formal definitions 103:general relativity 1293:vacuum exterior). 1201:Mark D. Roberts, 1151:(19): 1509–1519. 1105:978-0-226-87033-5 1077:978-0-521-09906-6 781: 698: 628: 371: 339: 310: 268:with an open set 261:{\displaystyle M} 232: 209:{\displaystyle M} 183: 157:{\displaystyle M} 76: 75: 68: 1375: 1352: 1351: 1349: 1337: 1331: 1330: 1328: 1320: 1270: 1252: 1234: 1186: 1160: 1139: 1137: 1135: 1126:. Archived from 1109: 1097: 1081: 957: 955: 954: 949: 944: 943: 934: 909: 907: 906: 901: 896: 895: 886: 858: 856: 855: 850: 845: 844: 835: 818: 817: 795: 772: 770: 769: 764: 759: 758: 749: 732: 731: 712: 689: 687: 686: 681: 673: 656: 655: 642: 617: 615: 614: 609: 607: 606: 594: 593: 581: 580: 568: 567: 551: 549: 548: 543: 541: 540: 525: 524: 509: 508: 489: 487: 486: 481: 383: 381: 380: 375: 373: 372: 364: 351: 349: 348: 343: 341: 340: 332: 322: 320: 319: 314: 312: 311: 303: 293: 291: 290: 285: 267: 265: 264: 259: 244: 242: 241: 236: 234: 233: 225: 215: 213: 212: 207: 195: 193: 192: 187: 185: 184: 176: 163: 161: 160: 155: 71: 64: 60: 57: 51: 46:this article by 37:inline citations 24: 23: 16: 1383: 1382: 1378: 1377: 1376: 1374: 1373: 1372: 1358: 1357: 1356: 1355: 1338: 1334: 1326: 1322: 1321: 1317: 1312: 1300: 1250:10.1.1.339.8609 1133: 1131: 1106: 1078: 1062: 1045: 997: 986:, and in 1972, 972:Rainer K. Sachs 964: 939: 935: 930: 919: 916: 915: 891: 887: 882: 871: 868: 867: 840: 836: 831: 801: 797: 785: 779: 776: 775: 754: 750: 745: 718: 714: 702: 696: 693: 692: 669: 648: 644: 632: 626: 623: 622: 602: 598: 589: 585: 576: 572: 563: 559: 557: 554: 553: 533: 529: 517: 513: 501: 497: 495: 492: 491: 457: 454: 453: 450: 392: 363: 362: 360: 357: 356: 331: 330: 328: 325: 324: 302: 301: 299: 296: 295: 273: 270: 269: 253: 250: 249: 224: 223: 221: 218: 217: 201: 198: 197: 175: 174: 172: 169: 168: 149: 146: 145: 142: 130:isolated system 119: 111:vacuum solution 101:, particularly 72: 61: 55: 52: 42:Please help to 41: 25: 21: 12: 11: 5: 1381: 1371: 1370: 1354: 1353: 1332: 1314: 1313: 1311: 1308: 1307: 1306: 1299: 1298:External links 1296: 1295: 1294: 1279: 1214: 1199: 1196:overdetermined 1140: 1115: 1104: 1087: 1076: 1061: 1058: 1057: 1056: 1051: 1049:Fluid solution 1044: 1041: 1040: 1039: 1036:event horizons 1024: 1020: 996: 993: 978:imported from 963: 960: 947: 942: 938: 933: 929: 926: 923: 899: 894: 890: 885: 881: 878: 875: 860: 859: 848: 843: 839: 834: 830: 827: 824: 821: 816: 813: 810: 807: 804: 800: 794: 791: 788: 784: 773: 762: 757: 753: 748: 744: 741: 738: 735: 730: 727: 724: 721: 717: 711: 708: 705: 701: 690: 679: 676: 672: 668: 665: 662: 659: 654: 651: 647: 641: 638: 635: 631: 605: 601: 597: 592: 588: 584: 579: 575: 571: 566: 562: 539: 536: 532: 528: 523: 520: 516: 512: 507: 504: 500: 479: 476: 473: 470: 467: 464: 461: 449: 446: 411:Taub–NUT space 391: 388: 370: 367: 338: 335: 309: 306: 283: 280: 277: 257: 231: 228: 205: 182: 179: 153: 141: 138: 118: 115: 74: 73: 28: 26: 19: 9: 6: 4: 3: 2: 1380: 1369: 1366: 1365: 1363: 1348: 1347:gr-qc/9707012 1343: 1336: 1325: 1319: 1315: 1305: 1302: 1301: 1292: 1288: 1284: 1280: 1277: 1273: 1268: 1264: 1260: 1256: 1251: 1246: 1242: 1238: 1233: 1232:gr-qc/0101021 1228: 1225:(6): 064022. 1224: 1220: 1215: 1212: 1208: 1207:perfect fluid 1204: 1200: 1197: 1193: 1189: 1184: 1180: 1176: 1172: 1168: 1164: 1159: 1158:gr-qc/9806094 1154: 1150: 1146: 1141: 1129: 1125: 1121: 1116: 1113: 1107: 1101: 1096: 1095: 1088: 1085: 1079: 1073: 1069: 1064: 1063: 1055: 1052: 1050: 1047: 1046: 1037: 1033: 1029: 1025: 1021: 1018: 1014: 1010: 1006: 1005: 1004: 1002: 992: 989: 988:Robert Geroch 985: 981: 977: 976:Roger Penrose 973: 969: 968:Hermann Bondi 966:Around 1962, 959: 940: 936: 931: 927: 921: 913: 892: 888: 883: 879: 873: 865: 841: 837: 832: 828: 822: 819: 814: 811: 808: 805: 802: 798: 786: 774: 755: 751: 746: 742: 736: 733: 728: 725: 722: 719: 715: 703: 691: 674: 670: 666: 660: 657: 652: 649: 645: 633: 621: 620: 619: 603: 599: 595: 590: 586: 582: 577: 573: 569: 564: 560: 537: 534: 530: 526: 521: 518: 514: 510: 505: 502: 498: 477: 474: 471: 468: 465: 462: 459: 445: 443: 439: 438:Ernst vacuums 435: 430: 428: 424: 420: 416: 412: 408: 404: 399: 397: 387: 385: 365: 353: 333: 304: 281: 278: 275: 255: 246: 226: 203: 177: 167: 151: 137: 135: 131: 126: 124: 114: 112: 108: 104: 100: 96: 91: 89: 85: 81: 70: 67: 59: 56:November 2008 49: 45: 39: 38: 32: 27: 18: 17: 1335: 1318: 1290: 1286: 1275: 1222: 1219:Phys. Rev. D 1218: 1210: 1206: 1195: 1191: 1148: 1144: 1132:. Retrieved 1128:the original 1123: 1111: 1093: 1083: 1067: 998: 995:Applications 965: 863: 861: 451: 434:Weyl metrics 431: 426: 414: 400: 393: 386: 354: 247: 143: 133: 127: 122: 120: 92: 79: 77: 62: 53: 34: 1134:January 23, 1084:Section 6.9 407:Kerr metric 398:, are not. 144:A manifold 48:introducing 1112:Chapter 11 1060:References 991:flatness. 552:, and set 396:FRW models 31:references 1324:"Physics" 1245:CiteSeerX 793:∞ 790:→ 710:∞ 707:→ 640:∞ 637:→ 515:η 369:~ 337:~ 308:~ 279:⊂ 230:~ 181:~ 95:spacetime 1362:Category 1287:isolated 1043:See also 323:, where 1267:1644106 1237:Bibcode 1183:5289048 1163:Bibcode 44:improve 1272:eprint 1265:  1247:  1188:eprint 1181:  1102:  1074:  33:, but 1342:arXiv 1327:(PDF) 1310:Notes 1263:S2CID 1227:arXiv 1211:Note: 1192:given 1179:S2CID 1153:arXiv 413:, is 82:is a 1136:2004 1110:See 1100:ISBN 1082:See 1072:ISBN 1030:and 1255:doi 1171:doi 958:.) 783:lim 700:lim 630:lim 415:not 78:An 1364:: 1261:. 1253:. 1243:. 1235:. 1223:63 1221:. 1177:. 1169:. 1161:. 1149:13 1147:. 1122:. 970:, 444:. 384:. 245:. 90:. 1350:. 1344:: 1329:. 1276:D 1269:. 1257:: 1239:: 1229:: 1185:. 1173:: 1165:: 1155:: 1138:. 1114:. 1108:. 1080:. 1019:. 946:) 941:4 937:r 932:/ 928:1 925:( 922:O 898:) 893:4 889:r 884:/ 880:1 877:( 874:O 847:) 842:3 838:r 833:/ 829:1 826:( 823:O 820:= 815:q 812:p 809:, 806:b 803:a 799:h 787:r 761:) 756:2 752:r 747:/ 743:1 740:( 737:O 734:= 729:p 726:, 723:b 720:a 716:h 704:r 678:) 675:r 671:/ 667:1 664:( 661:O 658:= 653:b 650:a 646:h 634:r 604:2 600:z 596:+ 591:2 587:y 583:+ 578:2 574:x 570:= 565:2 561:r 538:b 535:a 531:h 527:+ 522:b 519:a 511:= 506:b 503:a 499:g 478:z 475:, 472:y 469:, 466:x 463:, 460:t 366:M 334:M 305:M 282:M 276:U 256:M 227:M 204:M 178:M 152:M 69:) 63:( 58:) 54:( 40:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message
Lorentzian manifold
Minkowski spacetime
spacetime
metric theory of gravitation
general relativity
gravitational field
vacuum solution
isolated system
conformal compactification
FRW models
Schwarzschild metric
Kerr metric
Taub–NUT space
de Sitter-Schwarzschild metric
de Sitter universe
Weyl metrics
Ernst vacuums
multipole expansion
classical electromagnetism
Hermann Bondi
Rainer K. Sachs
Roger Penrose
algebraic geometry
conformal compactification
Robert Geroch

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑