Knowledge

Flame

Source 📝

218: 80: 261: 1816: 1838: 335: 439: 138:), which results in the emission of visible light as these substances release their excess energy (see spectrum below for an explanation of which specific radical species produce which specific colors). As the combustion temperature of a flame increases (if the flame contains small particles of unburnt carbon or other material), so does the average energy of the electromagnetic radiation given off by the flame (see 29: 1827: 785: 411:
In fires (particularly house fires), the cooler flames are often red and produce the most smoke. Here the red color compared to typical yellow color of the flames suggests that the temperature is lower. This is because there is a lack of oxygen in the room and therefore there is incomplete combustion
298:
The colder part of a diffusion (incomplete combustion) flame will be red, transitioning to orange, yellow, and white as the temperature increases as evidenced by changes in the black-body radiation spectrum. For a given flame's region, the closer to white on this scale, the hotter that section of the
362:
When looking at a flame's temperature there are many factors which can change or apply. An important one is that a flame's color does not necessarily determine a temperature comparison because black-body radiation is not the only thing that produces or determines the color seen; therefore it is only
808:
environment, such as in orbit, natural convection no longer occurs and the flame becomes spherical, with a tendency to become bluer and more efficient. There are several possible explanations for this difference, of which the most likely is the hypothesis that the temperature is sufficiently evenly
286:
is produced, and the flame tends to take oxygen from the surfaces it touches. When the air inlet is opened, less soot and carbon monoxide are produced. When enough air is supplied, no soot or carbon monoxide is produced and the flame becomes blue. (Most of this blue had previously been obscured by
813:
reveal that diffusion flames in microgravity allow more soot to be completely oxidized after they are produced than do diffusion flames on Earth, because of a series of mechanisms that behave differently in microgravity when compared to normal gravity conditions. These discoveries have potential
764:
in 1817. The process depends on a fine balance of temperature and concentration of the reacting mixture, and if conditions are right it can initiate without any external ignition source. Cyclical variations in the balance of chemicals, particularly of intermediate products in the reaction, give
125:
One may investigate all the different parts of the flame from a candle with a cold metal spoon: Higher parts are water vapor, the result of combustion; yellow parts in the middle are soot; down just next to the candle wick is unburned wax. Goldsmiths use higher parts of a flame with a metallic
299:
flame is. The transitions are often apparent in fires, in which the color emitted closest to the fuel is white, with an orange section above it, and reddish flames the highest of all. A blue-colored flame only emerges when the amount of soot decreases and the
268:
depend on oxygen supply. On the left a rich fuel with no premixed oxygen produces a yellow sooty diffusion flame; on the right a lean fully oxygen premixed flame produces no soot and the flame color is produced by molecular radicals, especially CH and C2
830:
Flames do not need to be driven only by chemical energy release. In stars, subsonic burning fronts driven by burning light nuclei (like carbon or helium) to heavy nuclei (up to iron group) propagate as flames. This is important in some models of
277:
In a laboratory under normal gravity conditions and with a closed air inlet, a Bunsen burner burns with yellow flame (also called a safety flame) with a peak temperature of about 2,000 K (3,100 °F). The yellow arises from
1059:
Gregory P. Smith; David M. Golden; Michael Frenklach; Nigel W. Moriarty; Boris Eiteneer; Mikhail Goldenberg; C. Thomas Bowman; Ronald K. Hanson; Soonho Song; William C. Gardiner Jr.; Vitali V. Lissianski; Zhiwei Qin.
109:
in the air, which gives off enough heat in the subsequent exothermic reaction to vaporize yet more fuel, thus sustaining a consistent flame. The high temperature of the flame causes the vaporized fuel molecules to
796:
In the year 2000, experiments by NASA confirmed that gravity plays an indirect role in flame formation and composition. The common distribution of a flame under normal gravity conditions depends on
765:
oscillations in the flame, with a typical temperature variation of about 100 °C (212 °F), or between "cool" and full ignition. Sometimes the variation can lead to an explosion.
199:, the oxygen and fuel are premixed beforehand, which results in a different type of flame. Candle flames (a diffusion flame) operate through evaporation of the fuel which rises in a 736:. This high flame temperature is partially due to the absence of hydrogen in the fuel (dicyanoacetylene is not a hydrocarbon) thus there is no water among the combustion products. 402:
the combustion process is (a 1:1 stoichiometricity) assuming no dissociation will have the highest flame temperature; excess air/oxygen will lower it as will lack of air/oxygen
424:
of spontaneous combustion are exposed to oxygen, carbon monoxide and superheated hydrocarbons combust, and temporary temperatures of up to 2,000 °C (3,630 °F) occur.
760:
At temperatures as low as 120 °C (248 °F), fuel-air mixtures can react chemically and produce very weak flames called cool flames. The phenomenon was discovered by
233:. Virtually all the light produced is in the blue to green region of the spectrum below about 565 nanometers, accounting for the bluish color of sootless hydrocarbon flames. 1041: 1348: 126:
blow-pipe for melting gold and silver. Sufficient energy in the flame will excite the electrons in some of the transient reaction intermediates such as the
303:
from excited molecular radicals become dominant, though the blue can often be seen near the base of candles where airborne soot is less concentrated.
145:
Other oxidizers besides oxygen can be used to produce a flame. Hydrogen burning in chlorine produces a flame and in the process emits gaseous
1423: 1325: 315: 180:
occurring in the flame are very complex and typically involve a large number of chemical reactions and intermediate species, most of them
1432: 184:. For instance, a well-known chemical kinetics scheme, GRI-Mech, uses 53 species and 325 elementary reactions to describe combustion of 89:
Color and temperature of a flame are dependent on the type of fuel involved in the combustion, for example, when a lighter is held to a
1441: 1363: 835:. In thermonuclear flames, thermal conduction dominates over species diffusion, so the flame speed and thickness is determined by the 1523: 1302: 1148: 746:, produces the second-hottest-known natural flame with a temperature of over 4,525 °C (8,177 °F) when it burns in oxygen. 495:
This is a rough guide to flame temperatures for various common substances (in 20 °C (68 °F) air at 1 atm. pressure):
295:
in the flame, which emit most of their light well below ≈565 nanometers in the blue and green regions of the visible spectrum.
253:
flames, the most important factor determining color is oxygen supply and the extent of fuel-oxygen pre-mixing, which determines the
1732: 861: 1045: 1284: 1128: 1101: 395:
Temperature of atmosphere links to adiabatic flame temperature (i.e., heat will transfer to a cooler atmosphere more quickly)
1009: 792:, convection does not carry the hot combustion products away from the fuel source, resulting in a spherical flame front. 952:"Measurement of the distribution of temperature and emissivity of a candle flame using hyperspectral imaging technique" 800:, as soot tends to rise to the top of a flame (such as in a candle in normal gravity conditions), making it yellow. In 909: 482: 464: 1345: 412:
and the flame temperature is low, often just 600 to 850 °C (1,112 to 1,562 °F). This means that a lot of
1061: 1513: 405:
The distance from the source of the flame (i.e., the further from the source of the flame the lower temperature)
1488: 449: 871: 1454: 844: 354:
particles (as the flame is clearly a blue premixed complete combustion flame) but instead comes from the
951: 385:
The kind of fuel used (i.e., depends on how quickly the process occurs; how violent the combustion is)
291:
flame on the right shows that the blue color arises specifically due to emission of excited molecular
1636: 1424:
A candle flame strongly influenced and moved about by an electric field due to the flame having ions.
1248:
J. B. Conway; R. H. Wilson Jr.; A. V. Grosse (1953). "The Temperature of the Cyanogen-Oxygen Flame".
1182:
N, and a Chemical Method for the Production of Continuous Temperatures in the Range of 5000–6000K".
925: 1737: 1459: 876: 191:
There are different methods of distributing the required components of combustion to a flame. In a
1505: 1449: 1381:"The conductive propagation of nuclear flames. I - Degenerate C + O and O + Ne + Mg white dwarfs" 1005: 460: 1322: 1641: 1631: 1579: 1209:
Thomas, N.; Gaydon, A. G.; Brewer, L. (1952). "Cyanogen Flames and the Dissociation Energy of N
249:
emission and spectral line absorption playing smaller roles. In the most common type of flame,
217: 170: 111: 20: 1118: 897: 306:
Specific colors can be imparted to the flame by introduction of excitable species with bright
1830: 1429: 1058: 732:(4,990 °C; 9,010 °F), and at up to 6,000 K (5,730 °C; 10,340 °F) in 559:≈1,100 °C (≈2,012 °F) ; hot spots may be 1,300–1,400 °C (2,372–2,552 °F) 254: 1091: 1392: 1360: 1222: 963: 840: 836: 598: 374: 323: 238: 85:
The interior of the luminous zone can be much hotter, beyond 1,500 °C (2,730 °F).
1837: 1299: 8: 1156: 801: 292: 226: 181: 127: 115: 1396: 1226: 1120:
Combustion Phenomena: Selected Mechanisms of Flame Formation, Propagation and Extinction
967: 1481: 987: 832: 154: 1758: 1280: 1178:
Kirshenbaum, A. D.; A. V. Grosse (May 1956). "The Combustion of Carbon Subnitride, NC
1124: 1097: 991: 979: 905: 307: 257:
and thus the temperature and reaction paths, thereby producing different color hues.
177: 146: 1683: 1662: 1400: 1257: 1230: 1191: 971: 809:
distributed that soot is not formed and complete combustion occurs. Experiments by
717: 149:(HCl) as the combustion product. Another of many possible chemical combinations is 68: 195:, oxygen and fuel diffuse into each other; the flame occurs where they meet. In a 1569: 1436: 1367: 1352: 1329: 1306: 819: 815: 413: 283: 192: 131: 119: 975: 363:
an estimation of temperature. Other factors that determine its temperature are:
1795: 1549: 1539: 856: 805: 789: 456: 399: 287:
the bright yellow emissions.) The spectrum of a premixed (complete combustion)
196: 44: 1014: 728:
burns in oxygen with a bright blue-white flame at a temperature of 5,260 
50: 1862: 1856: 1819: 1518: 1474: 983: 866: 778: 545: 416:
is formed (which is a flammable gas) which is when there is greatest risk of
355: 279: 270: 265: 246: 242: 162: 260: 79: 1770: 1711: 1554: 761: 632: 319: 237:
Flame color depends on several factors, the most important typically being
200: 94: 63:
chemical reaction made in a thin zone. When flames are hot enough to have
1800: 1716: 1690: 1564: 1559: 421: 250: 1261: 1247: 1195: 221:
Spectrum of the blue (premixed, i.e., complete combustion) flame from a
1780: 1544: 1065: 797: 755: 515: 380: 371:; i.e., no loss of heat to the atmosphere (may differ in certain parts) 358:
emission of sodium atoms, specifically the very intense sodium D lines.
347: 339: 311: 230: 212: 158: 139: 60: 1234: 1785: 1775: 1765: 1706: 1678: 1574: 622: 618: 588: 577: 567: 417: 389: 368: 300: 150: 102: 1841: 1275:
Jones, John Clifford (September 2003). "Low temperature oxidation".
1089: 467:. Statements consisting only of original research should be removed. 334: 1753: 1405: 1380: 1346:
Laminar Soot Processes Experiment Shedding Light on Flame Radiation
739: 700: 690: 672: 662: 608: 523: 166: 98: 67:
gaseous components of sufficient density, they are then considered
33: 282:
of very fine soot particles that are produced in the flame. Also,
203:
of hot gas which then mixes with surrounding oxygen and combusts.
1277:
Hydrocarbon process safety: a text for students and professionals
1208: 1116: 1019: 564: 534: 97:
to vaporize (if this process happens in inert atmosphere without
950:
Zheng, Shu; Ni, Li; Liu, Huawei; Zhou, Huaichun (1 April 2019).
28: 1600: 904:. Cambridge, England: Cambridge University Press. p. 300. 729: 509: 343: 288: 222: 185: 106: 90: 64: 784: 1657: 1615: 733: 346:. The yellow color in this gas flame does not arise from the 118:, and these products then react with each other and with the 1605: 1595: 1497: 1356: 1310: 1152: 810: 720:, a compound of carbon and nitrogen with chemical formula C 351: 56: 1146: 1790: 122:
involved in the reaction of the following flame (fire).
1466: 1177: 310:
lines. In analytical chemistry, this effect is used in
1147:
Pearlman, Howard; Chapek, Richard M. (24 April 2000).
420:. When this occurs, combustible gases at or above the 114:, forming various incomplete combustion products and 93:. The applied heat causes the fuel molecules in the 1379:Timmes, F. X.; Woosley, S. E. (1 September 1992). 105:). In this state they can then readily react with 649:Max. flame temperature (in air, diffusion flame) 1854: 326:are used to produce brightly colored fireworks. 1142: 1140: 1090:Christopher W. Schmidt; Steve A. Symes (2008). 318:) to determine presence of some metal ions. In 1149:"Cool Flames and Autoignition in Microgravity" 949: 169:as an oxidizer of metallic fuels, e.g. in the 1482: 1378: 1311:National Aeronautics and Space Administration 1137: 1117:Jozef Jarosinski; Bernard Veyssiere (2009). 818:and private industry, especially concerning 428: 1489: 1475: 593:1,900–2,300 °C (3,452–4,172 °F) 583:1,700–1,950 °C (3,092–3,542 °F) 572:1,200–1,700 °C (2,192–3,092 °F) 1524:Native American use of fire in ecosystems 1404: 930:Science Questions with Surprising Answers 551:900–1,600 °C (1,652–2,912 °F) 483:Learn how and when to remove this message 1250:Journal of the American Chemical Society 1184:Journal of the American Chemical Society 783: 773:"Fire in space" redirects here. For the 540:900–1,500 °C (1,652–2,732 °F) 529:750–1,200 °C (1,382–2,192 °F) 333: 259: 216: 78: 27: 1733:International Flame Research Foundation 1279:. Tulsa, OK: PennWell. pp. 32–33. 862:International Flame Research Foundation 825: 1855: 1085: 1083: 712: 657:800–900 °C (1,472–1,652 °F) 627:Up to ≈2,300 °C (≈4,172 °F) 603:Up to ≈2,000 °C (≈3,632 °F) 1470: 1274: 161:and commonly used in rocket engines. 1826: 1430:Ultra-Low Emissions Low-Swirl Burner 1093:The analysis of burned human remains 1042:"Reaction of Chlorine with Hydrogen" 637:Up to 3,300 °C (5,972 °F) 432: 55:) is the visible, gaseous part of a 1447: 1080: 895: 13: 768: 14: 1874: 1417: 379:Percentage oxygen content of the 1836: 1825: 1815: 1814: 1096:. Academic Press. pp. 2–4. 685:1,027 °C (1,880.6 °F) 677:1,026 °C (1,878.8 °F) 437: 1514:Control of fire by early humans 1372: 1335: 1316: 1293: 1268: 1241: 1215:The Journal of Chemical Physics 1202: 1171: 514:~300 °C (~600 °F) (a 16:Visible, gaseous part of a fire 1110: 1052: 1034: 998: 943: 918: 889: 749: 706:1,390 °C (2,534 °F) 695:1,200 °C (2,192 °F) 613:2,020 °C (3,668 °F) 329: 1: 1300:Spiral flames in microgravity 882: 872:Oxidizing and reducing flames 1455:The Periodic Table of Videos 1426:(archived 30 September 2011) 1323:Candle Flame in Microgravity 667:990 °C (1,814 °F) 74: 7: 976:10.1016/j.ijleo.2019.02.077 926:"Do flames contain plasma?" 850: 463:the claims made and adding 316:flame emission spectroscopy 264:Different flame types of a 59:. It is caused by a highly 10: 1879: 1123:. CRC Press. p. 172. 772: 753: 210: 18: 1809: 1746: 1725: 1699: 1671: 1650: 1624: 1588: 1532: 1504: 1444:(archived 31 August 2017) 1385:The Astrophysical Journal 898:"Laminar premixed flames" 429:Common flame temperatures 1738:The Combustion Institute 1496: 1460:University of Nottingham 877:The Combustion Institute 225:torch showing molecular 206: 1351:11 January 2014 at the 1328:26 October 2011 at the 742:, with the formula (CN) 83:Zones in a candle flame 1580:Spontaneous combustion 843:(often in the form of 793: 359: 274: 234: 171:magnesium/teflon/viton 165:can be used to supply 86: 49: 36: 21:Flame (disambiguation) 1305:19 March 2010 at the 787: 337: 324:pyrotechnic colorants 263: 220: 82: 31: 1435:13 June 2017 at the 1366:20 July 2012 at the 845:degenerate electrons 841:thermal conductivity 837:thermonuclear energy 826:Thermonuclear flames 775:Battlestar Galactica 375:Atmospheric pressure 245:emission, with both 239:black-body radiation 19:For other uses, see 1397:1992ApJ...396..649T 1262:10.1021/ja01098a517 1227:1952JChPh..20..369T 1196:10.1021/ja01590a075 968:2019Optik.183..222Z 896:Law, C. K. (2006). 713:Highest temperature 128:methylidyne radical 1068:on 29 October 2007 1048:on 20 August 2008. 902:Combustion physics 833:Type Ia supernovae 794: 504:Flame temperature 448:possibly contains 360: 275: 255:rate of combustion 235: 229:band emission and 155:nitrogen tetroxide 87: 37: 1850: 1849: 1759:List of wildfires 1450:"Coloured Flames" 1286:978-1-59370-004-1 1235:10.1063/1.1700426 1130:978-0-8493-8408-0 1103:978-0-12-372510-3 710: 709: 641: 640: 493: 492: 485: 450:original research 308:emission spectrum 178:chemical kinetics 147:hydrogen chloride 1870: 1840: 1829: 1828: 1818: 1817: 1663:Death by burning 1625:Individual fires 1491: 1484: 1477: 1468: 1467: 1463: 1448:Licence, Peter. 1442:7 Shades of Fire 1411: 1410: 1408: 1376: 1370: 1339: 1333: 1320: 1314: 1297: 1291: 1290: 1272: 1266: 1265: 1245: 1239: 1238: 1206: 1200: 1199: 1175: 1169: 1168: 1166: 1164: 1155:. Archived from 1144: 1135: 1134: 1114: 1108: 1107: 1087: 1078: 1077: 1075: 1073: 1064:. Archived from 1056: 1050: 1049: 1044:. Archived from 1038: 1032: 1031: 1029: 1027: 1002: 996: 995: 947: 941: 940: 938: 936: 922: 916: 915: 893: 814:applications in 718:Dicyanoacetylene 646:Material burned 643: 642: 518:in low gravity) 501:Material burned 498: 497: 488: 481: 477: 474: 468: 465:inline citations 441: 440: 433: 1878: 1877: 1873: 1872: 1871: 1869: 1868: 1867: 1853: 1852: 1851: 1846: 1805: 1742: 1721: 1695: 1667: 1646: 1620: 1584: 1570:Fire protection 1528: 1500: 1495: 1437:Wayback Machine 1420: 1415: 1414: 1377: 1373: 1368:Wayback Machine 1353:Wayback Machine 1340: 1336: 1330:Wayback Machine 1321: 1317: 1307:Wayback Machine 1298: 1294: 1287: 1273: 1269: 1246: 1242: 1212: 1207: 1203: 1181: 1176: 1172: 1162: 1160: 1145: 1138: 1131: 1115: 1111: 1104: 1088: 1081: 1071: 1069: 1057: 1053: 1040: 1039: 1035: 1025: 1023: 1015:"What Is Fire?" 1013: 1010:Wayback Machine 1003: 999: 948: 944: 934: 932: 924: 923: 919: 912: 894: 890: 885: 853: 828: 820:fuel efficiency 816:applied science 782: 771: 769:In microgravity 758: 752: 745: 727: 723: 715: 703:(forced draft) 489: 478: 472: 469: 454: 442: 438: 431: 414:carbon monoxide 408: 369:Adiabatic flame 332: 284:carbon monoxide 215: 209: 193:diffusion flame 137: 132:diatomic carbon 101:, it is called 84: 77: 24: 17: 12: 11: 5: 1876: 1866: 1865: 1848: 1847: 1845: 1844: 1833: 1822: 1810: 1807: 1806: 1804: 1803: 1798: 1796:Slash-and-burn 1793: 1788: 1783: 1778: 1773: 1768: 1763: 1762: 1761: 1750: 1748: 1744: 1743: 1741: 1740: 1735: 1729: 1727: 1723: 1722: 1720: 1719: 1714: 1709: 1703: 1701: 1697: 1696: 1694: 1693: 1688: 1687: 1686: 1675: 1673: 1669: 1668: 1666: 1665: 1660: 1654: 1652: 1648: 1647: 1645: 1644: 1639: 1634: 1628: 1626: 1622: 1621: 1619: 1618: 1613: 1608: 1603: 1598: 1592: 1590: 1586: 1585: 1583: 1582: 1577: 1572: 1567: 1562: 1557: 1552: 1550:Dust explosion 1547: 1542: 1540:Chain reaction 1536: 1534: 1530: 1529: 1527: 1526: 1521: 1519:Historic fires 1516: 1510: 1508: 1502: 1501: 1494: 1493: 1486: 1479: 1471: 1465: 1464: 1445: 1439: 1427: 1419: 1418:External links 1416: 1413: 1412: 1406:10.1086/171746 1371: 1334: 1315: 1292: 1285: 1267: 1240: 1221:(3): 369–374. 1210: 1201: 1179: 1170: 1136: 1129: 1109: 1102: 1079: 1062:"GRI-Mech 3.0" 1051: 1033: 997: 942: 917: 910: 887: 886: 884: 881: 880: 879: 874: 869: 864: 859: 857:Flame detector 852: 849: 827: 824: 770: 767: 754:Main article: 751: 748: 743: 725: 721: 714: 711: 708: 707: 704: 697: 696: 693: 687: 686: 683: 679: 678: 675: 669: 668: 665: 659: 658: 655: 651: 650: 647: 639: 638: 635: 629: 628: 625: 615: 614: 611: 605: 604: 601: 599:Hydrogen torch 595: 594: 591: 585: 584: 581: 574: 573: 570: 561: 560: 557: 553: 552: 549: 542: 541: 538: 537:(natural gas) 531: 530: 527: 520: 519: 512: 506: 505: 502: 491: 490: 445: 443: 436: 430: 427: 426: 425: 407: 406: 403: 400:stoichiometric 396: 393: 386: 383: 377: 372: 365: 331: 328: 301:blue emissions 208: 205: 197:premixed flame 163:Fluoropolymers 135: 76: 73: 15: 9: 6: 4: 3: 2: 1875: 1864: 1861: 1860: 1858: 1843: 1839: 1834: 1832: 1823: 1821: 1812: 1811: 1808: 1802: 1799: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1760: 1757: 1756: 1755: 1752: 1751: 1749: 1745: 1739: 1736: 1734: 1731: 1730: 1728: 1726:Organizations 1724: 1718: 1715: 1713: 1710: 1708: 1705: 1704: 1702: 1698: 1692: 1689: 1685: 1682: 1681: 1680: 1677: 1676: 1674: 1670: 1664: 1661: 1659: 1656: 1655: 1653: 1649: 1643: 1640: 1638: 1635: 1633: 1630: 1629: 1627: 1623: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1593: 1591: 1587: 1581: 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1537: 1535: 1531: 1525: 1522: 1520: 1517: 1515: 1512: 1511: 1509: 1507: 1503: 1499: 1492: 1487: 1485: 1480: 1478: 1473: 1472: 1469: 1461: 1457: 1456: 1451: 1446: 1443: 1440: 1438: 1434: 1431: 1428: 1425: 1422: 1421: 1407: 1402: 1398: 1394: 1390: 1386: 1382: 1375: 1369: 1365: 1362: 1358: 1354: 1350: 1347: 1344: 1338: 1331: 1327: 1324: 1319: 1312: 1308: 1304: 1301: 1296: 1288: 1282: 1278: 1271: 1263: 1259: 1255: 1251: 1244: 1236: 1232: 1228: 1224: 1220: 1216: 1205: 1197: 1193: 1189: 1185: 1174: 1159:on 1 May 2010 1158: 1154: 1150: 1143: 1141: 1132: 1126: 1122: 1121: 1113: 1105: 1099: 1095: 1094: 1086: 1084: 1067: 1063: 1055: 1047: 1043: 1037: 1022: 1021: 1016: 1011: 1007: 1001: 993: 989: 985: 981: 977: 973: 969: 965: 961: 957: 953: 946: 931: 927: 921: 913: 911:0-521-87052-6 907: 903: 899: 892: 888: 878: 875: 873: 870: 868: 867:Olympic flame 865: 863: 860: 858: 855: 854: 848: 846: 842: 838: 834: 823: 821: 817: 812: 807: 803: 799: 791: 786: 780: 779:Fire in Space 777:episode, see 776: 766: 763: 757: 747: 741: 737: 735: 731: 719: 705: 702: 699: 698: 694: 692: 689: 688: 684: 681: 680: 676: 674: 671: 670: 666: 664: 661: 660: 656: 653: 652: 648: 645: 644: 636: 634: 631: 630: 626: 624: 620: 617: 616: 612: 610: 607: 606: 602: 600: 597: 596: 592: 590: 587: 586: 582: 579: 576: 575: 571: 569: 566: 563: 562: 558: 556:Candle flame 555: 554: 550: 547: 546:Bunsen burner 544: 543: 539: 536: 533: 532: 528: 525: 522: 521: 517: 513: 511: 508: 507: 503: 500: 499: 496: 487: 484: 476: 473:December 2019 466: 462: 458: 452: 451: 446:This section 444: 435: 434: 423: 419: 415: 410: 409: 404: 401: 397: 394: 391: 387: 384: 382: 378: 376: 373: 370: 367: 366: 364: 357: 356:spectral line 353: 349: 345: 341: 336: 327: 325: 321: 317: 313: 309: 304: 302: 296: 294: 290: 285: 281: 280:incandescence 272: 271:band emission 267: 266:Bunsen burner 262: 258: 256: 252: 248: 247:spectral line 244: 243:spectral band 240: 232: 228: 224: 219: 214: 204: 202: 198: 194: 189: 187: 183: 179: 174: 173:composition. 172: 168: 164: 160: 156: 152: 148: 143: 141: 133: 129: 123: 121: 117: 116:free radicals 113: 108: 104: 100: 96: 92: 81: 72: 70: 66: 62: 58: 54: 53: 52: 46: 42: 35: 30: 26: 22: 1771:Firefighting 1712:Fire worship 1610: 1555:Fire ecology 1453: 1388: 1384: 1374: 1342: 1337: 1318: 1295: 1276: 1270: 1253: 1249: 1243: 1218: 1214: 1204: 1187: 1183: 1173: 1161:. Retrieved 1157:the original 1119: 1112: 1092: 1070:. Retrieved 1066:the original 1054: 1046:the original 1036: 1024:. Retrieved 1018: 1006:Ghostarchive 1004:Archived at 1000: 959: 955: 945: 933:. Retrieved 929: 920: 901: 891: 839:release and 829: 806:zero gravity 802:microgravity 795: 774: 762:Humphry Davy 759: 738: 716: 633:Oxyacetylene 494: 479: 470: 447: 361: 350:emission of 320:pyrotechnics 305: 297: 276: 236: 201:laminar flow 190: 175: 144: 124: 88: 48: 40: 38: 25: 1801:Fire making 1717:Terra preta 1691:Firefighter 1565:Flash point 1560:Fire piston 1391:: 649–667. 1190:(9): 2020. 1026:27 November 962:: 222–231. 750:Cool flames 654:Animal fat 580:flame peak 422:flash point 392:of the fuel 330:Temperature 312:flame tests 251:hydrocarbon 1842:Wiktionary 1781:Fire whirl 1679:Pyromanias 1637:By country 1589:Components 1545:Combustion 1341:C. H. Kim 1256:(2): 499. 1072:8 November 883:References 798:convection 756:Cool flame 516:cool flame 457:improve it 381:atmosphere 348:black-body 340:flame test 231:Swan bands 213:Flame test 211:See also: 159:hypergolic 140:Black body 95:candle wax 61:exothermic 43:(from 32:Flames of 1786:Blue lava 1776:Firestorm 1766:Backdraft 1754:Wildfires 1707:Cremation 1575:Pyrolysis 992:126553613 984:0030-4026 623:blowtorch 621:blowlamp/ 619:Acetylene 589:Magnesium 578:Backdraft 568:blowtorch 461:verifying 418:backdraft 390:oxidation 157:which is 151:hydrazine 130:(CH) and 112:decompose 103:pyrolysis 75:Mechanism 1857:Category 1820:Category 1433:Archived 1364:Archived 1349:Archived 1326:Archived 1303:Archived 1008:and the 851:See also 740:Cyanogen 701:Charcoal 691:Methanol 673:Gasoline 663:Kerosene 609:MAPP gas 524:Charcoal 293:radicals 182:radicals 167:fluorine 120:oxidizer 99:oxidizer 34:charcoal 1831:Commons 1700:Culture 1642:By year 1632:By type 1533:Science 1506:History 1393:Bibcode 1313:, 2000. 1223:Bibcode 1020:YouTube 964:Bibcode 935:26 June 565:Propane 535:Methane 455:Please 227:radical 65:ionized 1835:  1824:  1813:  1672:People 1601:Oxygen 1343:et al. 1332:. NASA 1283:  1163:13 May 1127:  1100:  990:  982:  908:  790:zero-G 548:flame 510:Butane 344:sodium 322:, the 289:butane 223:butane 186:biogas 107:oxygen 91:candle 69:plasma 51:flamma 1747:Other 1684:Child 1658:Arson 1651:Crime 1616:Smoke 1611:Flame 988:S2CID 956:Optik 734:ozone 682:Wood 526:fire 207:Color 47: 45:Latin 41:flame 1863:Fire 1606:Heat 1596:Fuel 1498:Fire 1361:HTML 1357:NASA 1281:ISBN 1165:2010 1153:NASA 1125:ISBN 1098:ISBN 1074:2007 1028:2019 980:ISSN 937:2022 906:ISBN 811:NASA 398:How 388:Any 352:soot 342:for 314:(or 241:and 176:The 153:and 57:fire 1791:Ash 1401:doi 1389:396 1258:doi 1231:doi 1213:". 1192:doi 972:doi 960:183 847:). 804:or 788:In 459:by 142:). 1859:: 1458:. 1452:. 1399:. 1387:. 1383:. 1359:, 1355:. 1309:, 1254:75 1252:. 1229:. 1219:20 1217:. 1188:78 1186:. 1151:. 1139:^ 1082:^ 1017:. 1012:: 986:. 978:. 970:. 958:. 954:. 928:. 900:. 822:. 338:A 188:. 134:(C 71:. 39:A 1490:e 1483:t 1476:v 1462:. 1409:. 1403:: 1395:: 1289:. 1264:. 1260:: 1237:. 1233:: 1225:: 1211:2 1198:. 1194:: 1180:4 1167:. 1133:. 1106:. 1076:. 1030:. 994:. 974:: 966:: 939:. 914:. 781:. 744:2 730:K 726:2 724:N 722:4 486:) 480:( 475:) 471:( 453:. 273:. 136:2 23:.

Index

Flame (disambiguation)

charcoal
Latin
flamma
fire
exothermic
ionized
plasma

candle
candle wax
oxidizer
pyrolysis
oxygen
decompose
free radicals
oxidizer
methylidyne radical
diatomic carbon
Black body
hydrogen chloride
hydrazine
nitrogen tetroxide
hypergolic
Fluoropolymers
fluorine
magnesium/teflon/viton
chemical kinetics
radicals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.