Knowledge

Space rendezvous

Source 📝

549: 534: 277: 33: 1286: 795: 3285: 66: 3255: 238:, putting the tracker not only above, but also behind the target. The proper technique requires changing the tracking vehicle's orbit to allow the rendezvous target to either catch up or be caught up with, and then at the correct moment changing to the same orbit as the target with no relative motion between the vehicles (for example, putting the tracker into a lower orbit, which has a shorter orbital period allowing it to catch up, then executing a 1247:
orbital velocity). Now in a slightly higher position, but with an orbital velocity that does not correspond to the local circular velocity, the chaser slightly falls behind the target. Small rocket pulses in the orbital velocity direction are necessary to keep the chaser along the radial vector of the target. If these rocket pulses are not executed (for example due to a thruster failure), the chaser will move away from the target. This is a
925: 325: 3190: 1330: 190:' guidance systems inserted the two craft into nearly identical orbits; however, this was not nearly precise enough to achieve rendezvous, as the Vostok lacked maneuvering thrusters to adjust its orbit to match that of its twin. The initial separation distances were in the range of 5 to 6.5 kilometers (3.1 to 4.0 mi), and slowly diverged to thousands of kilometers (over a thousand miles) over the course of the missions. 829: 1251:. For the R-bar approach, this effect is stronger than for the V-bar approach, making the R-bar approach the safer one of the two. Generally, the R-bar approach from below is preferable, as the chaser is in a lower (faster) orbit than the target, and thus "catches up" with it. For the R-bar approach from above, the chaser is in a higher (slower) orbit than the target, and thus has to wait for the target to approach it. 428: 870: 1055:(the position of the spacecraft in the orbit) must be matched. For docking, the speed of the two vehicles must also be matched. The "chaser" is placed in a slightly lower orbit than the target. The lower the orbit, the higher the orbital velocity. The difference in orbital velocities of chaser and target is therefore such that the chaser is faster than the target, and catches up with it. 436: 815: 1797:
Most observers felt that the U.S. moon landing ended the space race with a decisive American victory. The formal end of the space race occurred with the 1975 joint Apollo–Soyuz mission, in which U.S. and Soviet spacecraft docked, or joined, in orbit while their crews visited one another's craft and
1058:
Once the two spacecraft are sufficiently close, the chaser's orbit is synchronized with the target's orbit. That is, the chaser will be accelerated. This increase in velocity carries the chaser to a higher orbit. The increase in velocity is chosen such that the chaser approximately assumes the orbit
300:
Somebody said ... when you come to within three miles (5 km), you've rendezvoused. If anybody thinks they've pulled a rendezvous off at three miles (5 km), have fun! This is when we started doing our work. I don't think rendezvous is over until you are stopped – completely stopped – with no relative
1208:
direction. If this is omitted (for example due to a thruster failure), the chaser will be carried to a higher orbit, which is associated with an orbital velocity lower than the target's. Consequently, the target moves faster than the chaser and the distance between them increases. This is called a
1043:
To properly understand spacecraft rendezvous it is essential to understand the relation between spacecraft velocity and orbit. A spacecraft in a certain orbit cannot arbitrarily alter its velocity. Each orbit correlates to a certain orbital velocity. If the spacecraft fires thrusters and increases
663:
to grapple and move the spacecraft to a berthing port on the US segment. However the updated version of Cargo Dragon will no longer need to berth but instead will autonomously dock directly to the space station. The Russian segment only uses docking ports so it is not possible for HTV, Dragon and
233:
involved in the process. Simply pointing the active vehicle's nose at the target and thrusting was unsuccessful. If the target is ahead in the orbit and the tracking vehicle increases speed, its altitude also increases, actually moving it away from the target. The higher altitude then increases
1246:
to the orbital velocity of the passive spacecraft. When below the target the chaser fires radial thrusters to close in on the target. By this it increases its altitude. However, the orbital velocity of the chaser remains unchanged (thruster firings in the radial direction have no effect on the
1193:
to the flight path along the line of the radius of the orbit (called R-bar, as it is along the radial vector, with respect to Earth, of the target). The chosen method of approach depends on safety, spacecraft / thruster design, mission timeline, and, especially for docking with the ISS, on the
1207:
to the target's orbital velocity. In the V-bar approach from behind, the chaser fires small thrusters to increase its velocity in the direction of the target. This, of course, also drives the chaser to a higher orbit. To keep the chaser on the V-vector, other thrusters are fired in the radial
818:
Orbital rendezvous. 1/ Both spacecraft must be in the same orbital plane. ISS flies in a higher orbit (lower speed), ATV flies in a lower orbit and catches up with ISS. 2/At the moment when the ATV and the ISS make an alpha angle (about 2°), the ATV crosses the elliptical orbit to the
612:
are used at approximately six month intervals to transport crew members to and from ISS. With the introduction of NASA's Commercial Crew Program, the US is able to use their own launch vehicle along with the Soyuz, an updated version of SpaceX's Cargo Dragon; Crew Dragon.
301:
motion between the two vehicles, at a range of approximately 120 feet (37 m). That's rendezvous! From there on, it's stationkeeping. That's when you can go back and play the game of driving a car or driving an airplane or pushing a skateboard – it's about that simple.
1071:
Space rendezvous of an active, or "chaser", spacecraft with an (assumed) passive spacecraft may be divided into several phases, and typically starts with the two spacecraft in separate orbits, typically separated by more than 10,000 kilometers (6,200 mi):
225:'s upper stage. McDivitt was unable to get close enough to achieve station-keeping, due to depth-perception problems, and stage propellant venting which kept moving it around. However, the Gemini 4 attempts at rendezvous were unsuccessful largely because 1834: 1039:
The standard technique for rendezvous and docking is to dock an active vehicle, the "chaser", with a passive "target". This technique has been used successfully for the Gemini, Apollo, Apollo/Soyuz, Salyut, Skylab, Mir, ISS, and Tiangong programs.
309:
was a passing glance—the equivalent of a male walking down a busy main street with plenty of traffic whizzing by and he spots a cute girl walking on the other side. He's going 'Hey wait' but she's gone. That's a passing glance, not a
1202:
The V-bar approach is an approach of the "chaser" horizontally along the passive spacecraft's velocity vector. That is, from behind or from ahead, and in the same direction as the orbital motion of the passive target. The motion is
1044:(or decreases) its velocity it will obtain a different orbit, one that correlates to the higher (or lower) velocity. For circular orbits, higher orbits have a lower orbital velocity. Lower orbits have a higher orbital velocity. 1945: 1830: 1939:"A Summary of the Rendezvous, Proximity Operations, Docking, and Undocking (RPODU) Lessons Learned from the Defense Advanced Research Project Agency (DARPA) Orbital Express (OE) Demonstration System Mission" 570:. The Progress spacecraft were used for re-supplying the station. In this space rendezvous gone wrong, the Progress collided with Mir, beginning a depressurization that was halted by closing the hatch to 1059:
of the target. Stepwise, the chaser closes in on the target, until proximity operations (see below) can be started. In the very final phase, the closure rate is reduced by use of the active vehicle's
786:" (RPODU) for the set of all spaceflight procedures that are typically needed around spacecraft operations where two spacecraft work in proximity to one another with intent to connect to one another. 760:
rocket / LM inside LM adapter / CSM (in order from bottom to top at launch, also the order from back to front with respect to the current motion), with CSM crewed, LM at this stage uncrewed:
1257:
proposed meeting ISS cargo needs with a vehicle which would approach the station, "using a traditional nadir R-bar approach." The nadir R-bar approach is also used for flights to the ISS of
1871:, page 65, "Since 1985 all Russian spacecraft had used the Kurs computers to dock automatically with the Mir station" ... "All the Russian commanders had to do was sit by and watch." 2302: 1692: 1938: 3226: 1978: 1388:– the process of moving an orbiting object from its current position to a desired position, in such a way that no orbiting obstacles are contacted along the way 2007: 1506: 506:
The first rendezvous of two spacecraft from different countries took place in 1975, when an Apollo spacecraft docked with a Soyuz spacecraft as part of the
1359: 3319: 722:
and/or finally bring the satellite to a graveyard orbit, after which the CX-OLEV can possibly be reused for another satellite. Gradual transfer from the
2204: 1886: 1533: 1664: 3219: 1610: 1483: 888: 578:
A rendezvous takes place each time a spacecraft brings crew members or supplies to an orbiting space station. The first spacecraft to do this was
481:
in October 1968. Automated systems brought the craft to within 200 meters (660 ft), while Beregovoy brought this closer with manual control.
158:
The same rendezvous technique can be used for spacecraft "landing" on natural objects with a weak gravitational field, e.g. landing on one of the
2250: 1640: 455:. Gemini 6 was to have been the first docking mission, but had to be cancelled when that mission's Agena vehicle was destroyed during launch. 296:. The spacecraft were not equipped to dock with each other, but maintained station-keeping for more than 20 minutes. Schirra later commented: 3335: 2367: 1579: 3212: 1784: 537:
Most rendezvous are for docking, as in this photo of the crews and spaceship models of the historic first time Soviet and US spacecraft
250:
engineer André Meyer later remarked, "There is a good explanation for what went wrong with rendezvous." The crew, like everyone else at
1277:
of the passive spacecraft—that is, from the side and out-of-plane of the orbit of the passive spacecraft—is called a Z-bar approach.
711: 235: 2182: 2300: 2227: 644: 2249:
Johnson, Michael D.; Fitts, Richard; Howe, Brock; Hall, Baron; Kutter, Bernard; Zegler, Frank; Foster; Mark (September 18, 2007).
1681: 2282: 3067: 989: 749: 389: 1242:
The R-bar approach consists of the chaser moving below or above the target spacecraft, along its radial vector. The motion is
3450: 3330: 1778: 961: 361: 1811: 1456: 3299: 3127: 1343: 162:
would require the same matching of orbital velocities, followed by a "descent" that shares some similarities with docking.
1974: 3410: 2040: 17: 1916: 1553: 1189:
are in-line with the flight path of the spacecraft (called V-bar, as it is along the velocity vector of the target) and
968: 368: 3357: 3235: 783: 422: 152: 1868: 1860: 1450: 1419: 1026: 1008: 942: 906: 856: 842: 798: 408: 342: 2319: 1230:, extends along a line directly ahead of the station. Shuttles approach the ISS along the V-bar when docking at the 3388: 3383: 3122: 3002: 2421: 2000: 1442: 710:
Possible future rendezvous may be made by a yet to be developed automated Hubble Robotic Vehicle (HRV), and by the
1513: 975: 375: 3087: 2841: 3160: 2799: 2790: 2527: 946: 346: 143:
and approach to a very close distance (e.g. within visual contact). Rendezvous requires a precise match of the
3267: 957: 684: 357: 2208: 3107: 2577: 1530: 1348: 723: 1882: 1063:. Docking typically occurs at a rate of 0.1 ft/s (0.030 m/s) to 0.2 ft/s (0.061 m/s). 639:
also used this system to dock with the Russian segment of the ISS. Several uncrewed spacecraft use NASA's
3445: 3052: 1734: 1661: 1385: 1223: 667:
Space rendezvous has been used for a variety of other purposes, including recent service missions to the
605: 59: 2318:
Bessel, James A.; Ceney, James M.; Crean, David M.; Ingham, Edward A.; Pabst, David J. (December 1993).
1602: 1479: 3440: 3273: 3032: 2859: 1231: 636: 258:
involved. As a result, we all got a whole lot smarter and really perfected rendezvous maneuvers, which
2384: 2377: 3430: 3314: 3309: 3170: 1354: 1048: 640: 2179:
originally presented at COLLOQUE: MECANIQUE SPATIALE (SPACE DYNAMICS) TOULOUSE, FRANCE NOVEMBER 1989
1273:
An approach of the active, or "chaser", spacecraft horizontally from the side and orthogonal to the
737:
Alternatively the two spacecraft are already together, and just undock and dock in a different way:
3325: 3304: 3155: 2680: 2261: 715: 700: 251: 3165: 2473: 2278:
Rendezvous Strategy of the Japanese Logistics Support Vehicle to the International Space Station,
1060: 935: 493: 335: 148: 76: 53: 305:
Schirra used another metaphor to describe the difference between the two nations' achievements:
3435: 3027: 2629: 2549: 2537: 2364: 1571: 1369: 719: 688: 668: 239: 43: 1764: 1296:
and Apollo 2 lander in the background, in a first ever visit of an independent mission beyond
982: 382: 155:, procedures which bring the spacecraft into physical contact and create a link between them. 3150: 3092: 3062: 2850: 2727: 2695: 2665: 2624: 2609: 2488: 1632: 1374: 1258: 1254: 1227: 1167: 848: 753: 659:
spacecraft all maneuver to a close rendezvous and maintain station-keeping, allowing the ISS
648: 632: 3175: 2997: 2781: 2670: 2639: 2567: 2542: 2517: 2478: 2459: 2414: 2327: 2142: 2055: 1186: 779: 731: 727: 452: 2050:. Space Systems Technology and Operations Conference, Orlando Florida, April 21–25, 2003. 884: 8: 3352: 3340: 3037: 2832: 2572: 2359: 2174: 1364: 805: 680: 656: 624: 563: 39: 2393: 2331: 2223: 2146: 2059: 2710: 2599: 2497: 2071: 1760: 1335: 616: 533: 69: 548: 276: 3204: 3077: 2975: 2905: 2660: 2614: 2532: 2324:
Air Force Institute of Technology, Wright-Patterson AFB, Ohio – School of Engineering
2317: 2280: 1864: 1856: 1774: 1770: 1446: 1415: 745: 587: 255: 230: 202: 2075: 2039:
Wertz, James R.; Bell, Robert (2003). Tchoryk, Jr., Peter; Shoemaker, James (eds.).
503:
achieved the first internal transfer of crew members between two docked spacecraft.
32: 2989: 2753: 2715: 2589: 2559: 2512: 2150: 2108: 2063: 2001:"TRACK AND CAPTURE OF THE ORBITER WITH THE SPACE STATION REMOTE MANIPULATOR SYSTEM" 1379: 1274: 1174: 704: 620: 609: 507: 470: 171: 144: 128: 95: 27:
Series of orbital maneuvers to bring two spacecraft into the vicinity of each other
2251:"Astrotech Research & Conventional Technology Utilization Spacecraft (ARCTUS)" 3097: 2690: 2594: 2584: 2483: 2407: 2371: 2360:
Analysis of a New Nonlinear Solution of Relative Orbital Motion by T. Alan Lovell
2306: 2286: 2116: 1815: 1668: 1557: 1537: 1436: 1311: 1297: 763:
the CSM separated, while the four upper panels of the LM adapter were disposed of
2155: 2130: 3193: 3145: 3137: 3132: 3017: 3012: 2943: 2923: 2914: 2507: 2493: 2469: 2464: 2439: 1709: 672: 448: 259: 247: 213:
NASA's first attempt at rendezvous was made on June 3, 1965, when US astronaut
187: 2079: 178:
launched pairs of spacecraft from the same launch pad, one or two days apart (
147:
of the two spacecraft, allowing them to remain at a constant distance through
3424: 3347: 3047: 3042: 2961: 2604: 2522: 2388: 1908: 1391: 1307: 1285: 1262: 1219: 1052: 769:
the CSM connected to the LM while that was still connected to the third stage
652: 285: 159: 136: 48: 2119:, it is the maximum Earth central angle from the altitude of the spacecraft. 1204: 492:
docked, collecting the two crew members of Soyuz 5, which had to perform an
3112: 3022: 2896: 2879: 2737: 2634: 2502: 2248: 1831:"Space Station Launch Delays Will Have Little Impact on Overall Operations" 794: 538: 222: 214: 175: 3284: 1438:
The Rocket Men: Vostok & Voskhod, The First Soviet Manned Spaceflights
3254: 3117: 2952: 2722: 2702: 2619: 2335: 696: 567: 194: 65: 766:
the CSM turned 180 degrees (from engine backward, toward LM, to forward)
443:
The first docking of two spacecraft was achieved on March 16, 1966 when
3393: 2685: 2399: 2041:"Autonomous Rendezvous and Docking Technologies – Status and Prospects" 1315: 1293: 1243: 1190: 949: in this section. Unsourced material may be challenged and removed. 741:
Soyuz spacecraft from one docking point to another on the ISS or Salyut
542: 463: 459: 349: in this section. Unsourced material may be challenged and removed. 132: 2067: 484:
The first successful crewed docking occurred on January 16, 1969 when
458:
The Soviets carried out the first automated, uncrewed docking between
3378: 3102: 2454: 1303: 1289: 1047:
For orbital rendezvous to occur, both spacecraft must be in the same
660: 289: 36: 924: 324: 3373: 1171: 757: 583: 579: 522: 518: 514: 500: 444: 293: 218: 183: 179: 1855:
Bryan Burrough, Dragonfly: NASA and the crisis aboard Mir, (1998,
3007: 2112: 1215: 489: 485: 478: 474: 435: 1968: 1966: 199:
Line-Of-Sight Guidance Techniques For Manned Orbital Rendezvous.
1540:/ Interviewed by Doug Ward / Elk Lake, Michigan – June 29, 1999 692: 595: 591: 558: 427: 284:
Rendezvous was first successfully accomplished by US astronaut
619:
are also used to rendezvous with and resupply space stations.
2812: 2431: 1963: 1414:. New York: Macmillan Publishing Co., Inc. pp. 117–118. 140: 119: 1212:, and is a natural safeguard in case of a thruster failure. 3398: 814: 676: 469:
The first Soviet cosmonaut to attempt a manual docking was
226: 113: 772:
the CSM/LM combination then separated from the third stage
695:
crew rendezvoused with and attached a rocket motor to the
292:
spacecraft within 1 foot (30 cm) of its sister craft
104: 600: 201:
As a NASA astronaut, Aldrin worked to "translate complex
2135:
International Journal of Aeronautical and Space Sciences
205:
into relatively simple flight plans for my colleagues."
2385:
Handbook Automated Rendezvous and Docking of Spacecraft
3234: 2131:"Optimal Control for Proximity Operations and Docking" 718:
that has run out of fuel. The CX-OLEV would take over
513:
The first multiple space docking took place when both
2205:"STS-104 Crew Interviews with Charles Hobaugh, Pilot" 107: 1434: 1360:
Deliberate crash landings on extraterrestrial bodies
1325: 590:
missions have successfully made rendezvous with six
116: 110: 101: 2394:
Docking system agreement key to global space policy
2260:. Long Beach, California. p. 7. Archived from 1883:"Japanese Cargo Craft Captured, Berthed to Station" 879:
may be too technical for most readers to understand
98: 2298:Success! Space station snags SpaceX Dragon capsule 2128: 1166:A variety of techniques may be used to effect the 2224:"Shuttle Discovery nears rendezvous with station" 2038: 1310:, performed the first ever rendezvous outside of 714:, which is being developed for rendezvous with a 3422: 1689:History Collection - Johnson Space Center - NASA 1177:necessary for proximity operations and docking. 2378:"Lunar Orbit Rendezvous and the Apollo Program" 2221: 1828: 1766:Encyclopedia of United States National Security 1702: 2168: 2166: 562:module following a collision with an uncrewed 271: 3220: 2415: 2175:"Shuttle Rendezvous and Proximity Operations" 1975:"ATV: a very special delivery - Lesson notes" 1548: 1546: 288:on December 15, 1965. Schirra maneuvered the 82:in lunar orbit after returning from a landing 2034: 2032: 2030: 2028: 1880: 1185:The two most common methods of approach for 254:, "just didn't understand or reason out the 2258:AIAA SPACE 2007 Conference & Exposition 2163: 2115:as seen from the center of the planet; for 1814:. Encyclopedia Astronautica. Archived from 1803: 1556:. Encyclopedia Astronautica. Archived from 857:Learn how and when to remove these messages 451:, rendezvoused and docked with an uncrewed 280:Gemini 7 photographed from Gemini 6 in 1965 151:. Rendezvous may or may not be followed by 3227: 3213: 3189: 2422: 2408: 2311: 1543: 1498: 1222:mission to conduct a V-bar arrival at the 2154: 2025: 1594: 1523: 1027:Learn how and when to remove this message 1009:Learn how and when to remove this message 907:Learn how and when to remove this message 891:, without removing the technical details. 409:Learn how and when to remove this message 2429: 1284: 813: 793: 547: 532: 434: 426: 275: 64: 31: 2215: 2172: 2122: 1798:performed joint scientific experiments. 1759: 1504: 1477: 1409: 1194:location of the assigned docking port. 208: 170:In its first human spaceflight program 145:orbital velocities and position vectors 14: 3423: 3068:Transposition, docking, and extraction 2320:"Prototype Space Fabrication Platform" 1919:from the original on February 10, 2010 1633:"NASA - NSSDCA - Spacecraft - Details" 1403: 1318:and taking parts of it back to Earth. 1180: 778:NASA sometimes refers to "Rendezvous, 750:transposition, docking, and extraction 242:back to the original orbital height). 197:submitted his doctoral thesis titled, 3208: 2403: 2230:from the original on December 2, 2008 1931: 1809: 1698:from the original on October 7, 2022. 1572:"On The Shoulders of Titans - Ch12-7" 1280: 1131:1,000–100 meters (3,280–330 ft) 889:make it understandable to non-experts 789: 582:, which successfully docked with the 473:who unsuccessfully tried to dock his 2129:Lee, Daero; Pernicka, Henry (2010). 1829:Marcia S. Smith (February 3, 2012). 1727: 1600: 1486:from the original on October 9, 2011 1435:Hall, Rex; David J. Shayler (2001). 1344:Androgynous Peripheral Attach System 1066: 947:adding citations to reliable sources 918: 863: 822: 730:will take a number of months, using 671:. Historically, for the missions of 627:have automatically docked with both 347:adding citations to reliable sources 318: 3411:Category:Spacecraft docking systems 2013:from the original on August 7, 2020 1981:from the original on April 29, 2021 1951:from the original on August 7, 2020 1471: 756:of the sequence third stage of the 683:would rendezvous and dock with the 525:space station during January 1978. 439:Gemini 8 docking with Agena vehicle 24: 3236:Docking and berthing of spacecraft 2185:from the original on July 27, 2013 1837:from the original on June 13, 2020 1787:from the original on July 26, 2020 1643:from the original on April 3, 2020 1613:from the original on April 3, 2020 1582:from the original on April 3, 2020 1459:from the original on April 2, 2020 1412:Manned Spacecraft, Second Revision 752:was performed an hour or so after 541:docking in 1975 of the concluding 423:Docking and berthing of spacecraft 46:to determine distance between the 25: 3462: 3128:Kepler's laws of planetary motion 2353: 2326:. Accession number ADA273904: 9. 2222:WILLIAM HARWOOD (March 9, 2001). 2173:Pearson, Don J. (November 1989). 1889:from the original on May 19, 2017 1710:"Model of a Soyuz-4-5 spacecraft" 1382:of orbits around the Earth's axis 1268: 1237: 1197: 838:This section has multiple issues. 75:ascent stage rendezvous with the 3283: 3253: 3188: 3123:Interplanetary Transport Network 3003:Collision avoidance (spacecraft) 1328: 923: 868: 827: 323: 314: 94: 3088:Astronomical coordinate systems 2842:Longitude of the ascending node 2291: 2271: 2242: 2197: 2097: 1993: 1972:Arrival of the ATV to the ISS, 1901: 1874: 1849: 1822: 1753: 1735:"NSSDCA - Spacecraft - Details" 1674: 1655: 1144:100–10 meters (328–33 ft) 1118:to 1 kilometer (3,300 ft) 1093:(out of sight, out of contact) 934:needs additional citations for 846:or discuss these issues on the 334:needs additional citations for 229:engineers had yet to learn the 3161:Retrograde and prograde motion 2078:. Paper 5088-3. Archived from 1881:Jerry Wright (July 30, 2015). 1625: 1564: 1428: 675:that landed astronauts on the 664:Cygnus to find a berth there. 13: 1: 3268:International Docking Adapter 1601:Agle, D.C. (September 1998). 1507:"From Earth to Moon to Earth" 1397: 685:Apollo Command/Service Module 566:in September 1997 as part of 431:Gemini 8 Agena target vehicle 3451:Projects established in 1965 3108:Equatorial coordinate system 1349:Clohessy-Wiltshire equations 724:geostationary transfer orbit 186:in 1963). In each case, the 7: 2156:10.5139/IJASS.2010.11.3.206 1763:, ed. (December 21, 2005). 1386:Path-constrained rendezvous 1321: 1224:International Space Station 1157:<10 meters (33 ft) 606:International Space Station 272:First successful rendezvous 60:International Space Station 10: 3467: 3274:Pressurized Mating Adapter 2860:Longitude of the periapsis 1671:NASA, NSSDC Master Catalog 1529:Oral History Transcript / 799:Command and service module 679:, the ascent stage of the 637:Automated Transfer Vehicle 420: 165: 135:, one of which is often a 3407: 3366: 3315:Common Berthing Mechanism 3310:Chinese Docking Mechanism 3292: 3281: 3260: 3251: 3242: 3184: 3171:Specific angular momentum 3076: 2988: 2932: 2868: 2821: 2761: 2752: 2648: 2558: 2447: 2438: 2365:The Visitors (rendezvous) 2111:of the spacecraft's true 1833:. spacepolicyonline.com. 1410:Gatland, Kenneth (1976). 1355:Common Berthing Mechanism 586:station on June 7, 1971. 2048:SPIE AeroSense Symposium 716:geosynchronous satellite 701:communications satellite 657:Orbital Sciences' Cygnus 552:Damaged solar arrays on 477:craft with the uncrewed 221:craft to meet its spent 3166:Specific orbital energy 1913:www.orbitalrecovery.com 1667:April 13, 2020, at the 1111:(in sight, in contact) 1084:Typical phase duration 1061:reaction control system 703:to allow it to make an 528: 494:extravehicular activity 447:, under the command of 223:Titan II launch vehicle 149:orbital station-keeping 2578:Geostationary transfer 2370:April 3, 2020, at the 2207:. NASA. Archived from 1603:"Flying the Gusmobile" 1536:March 4, 2016, at the 1370:Lunar orbit rendezvous 1300: 1292:astronaut Conrad with 1259:H-II Transfer Vehicles 1249:natural braking effect 1210:natural braking effect 1140:Proximity Operations B 1127:Proximity Operations A 820: 811: 784:Docking, and Undocking 748:, a maneuver known as 720:orbital stationkeeping 689:lunar orbit rendezvous 669:Hubble Space Telescope 631:and the ISS using the 575: 545: 440: 432: 312: 303: 281: 269: 234:orbital period due to 217:tried to maneuver his 83: 62: 3151:Orbital state vectors 3093:Characteristic energy 3063:Trans-lunar injection 2851:Argument of periapsis 2528:Prograde / Retrograde 2489:Hyperbolic trajectory 2305:May 25, 2012, at the 2267:on February 27, 2008. 1909:"orbitalrecovery.com" 1560:on November 29, 2010. 1443:Springer–Praxis Books 1375:Mars orbit rendezvous 1351:for co-orbit analysis 1288: 817: 797: 754:Trans Lunar Injection 732:Hall effect thrusters 691:maneuvers. Also, the 649:H-II Transfer Vehicle 551: 536: 466:on October 30, 1967. 438: 430: 307: 298: 279: 244: 139:, arrive at the same 68: 35: 2998:Bi-elliptic transfer 2518:Parabolic trajectory 2285:May 5, 2021, at the 2211:on February 3, 2002. 1818:on October 30, 2007. 1480:"Orbital Rendezvous" 1445:. pp. 185–191. 1314:by landing close to 1306:, the second crewed 1187:proximity operations 1081:Separation distance 943:improve this article 780:Proximity-Operations 728:geosynchronous orbit 453:Agena Target Vehicle 343:improve this article 209:First attempt failed 3038:Low-energy transfer 2332:1993MsT..........9B 2226:. SPACEFLIGHT NOW. 2147:2010IJASS..11..206L 2060:2003SPIE.5088...20W 1761:Samuels, Richard J. 1662:NSSDC ID: 1967-105A 1637:nssdc.gsfc.nasa.gov 1365:Flyby (spaceflight) 1181:Methods of approach 681:Apollo Lunar Module 633:Kurs docking system 625:Progress spacecraft 564:Progress spacecraft 521:were docked to the 153:docking or berthing 40:Christopher Cassidy 18:In-orbit rendezvous 3446:1965 introductions 3367:Navigation systems 3033:Inclination change 2681:Distant retrograde 2396:– October 20, 2010 1336:Spaceflight portal 1301: 1281:Surface rendezvous 1053:phase of the orbit 958:"Space rendezvous" 821: 812: 790:Phases and methods 641:berthing mechanism 617:Robotic spacecraft 576: 546: 496:to reach Soyuz 4. 441: 433: 358:"Space rendezvous" 282: 236:Kepler's third law 84: 63: 3441:Orbital maneuvers 3418: 3417: 3322:docking mechanism 3202: 3201: 3176:Two-line elements 2984: 2983: 2906:Eccentric anomaly 2748: 2747: 2615:Orbit of the Moon 2474:Highly elliptical 2085:on April 25, 2012 2068:10.1117/12.498121 1780:978-0-7619-2927-7 1771:SAGE Publications 1531:James A. McDivitt 1226:. The V-bar, or 1164: 1163: 1067:Rendezvous phases 1037: 1036: 1029: 1019: 1018: 1011: 993: 917: 916: 909: 861: 746:Apollo spacecraft 608:(ISS). Currently 588:Human spaceflight 419: 418: 411: 393: 256:orbital mechanics 231:orbital mechanics 203:orbital mechanics 131:during which two 129:orbital maneuvers 16:(Redirected from 3458: 3431:Space rendezvous 3287: 3257: 3245:Space rendezvous 3229: 3222: 3215: 3206: 3205: 3192: 3191: 3133:Lagrangian point 3028:Hohmann transfer 2973: 2959: 2950: 2941: 2921: 2912: 2903: 2894: 2890: 2886: 2877: 2857: 2848: 2839: 2830: 2810: 2806: 2797: 2788: 2779: 2759: 2758: 2728:Heliosynchronous 2677:Lagrange points 2630:Transatmospheric 2445: 2444: 2424: 2417: 2410: 2401: 2400: 2381: 2348: 2347: 2345: 2343: 2334:. Archived from 2315: 2309: 2295: 2289: 2275: 2269: 2268: 2266: 2255: 2246: 2240: 2239: 2237: 2235: 2219: 2213: 2212: 2201: 2195: 2194: 2192: 2190: 2170: 2161: 2160: 2158: 2126: 2120: 2101: 2095: 2094: 2092: 2090: 2084: 2045: 2036: 2023: 2022: 2020: 2018: 2012: 2005: 1997: 1991: 1990: 1988: 1986: 1970: 1961: 1960: 1958: 1956: 1950: 1943: 1935: 1929: 1928: 1926: 1924: 1905: 1899: 1898: 1896: 1894: 1878: 1872: 1853: 1847: 1846: 1844: 1842: 1826: 1820: 1819: 1807: 1801: 1800: 1794: 1792: 1769:(1st ed.). 1757: 1751: 1750: 1748: 1746: 1731: 1725: 1724: 1722: 1720: 1706: 1700: 1699: 1697: 1686: 1682:"Part 1 - Soyuz" 1678: 1672: 1659: 1653: 1652: 1650: 1648: 1629: 1623: 1622: 1620: 1618: 1598: 1592: 1591: 1589: 1587: 1568: 1562: 1561: 1550: 1541: 1527: 1521: 1520: 1519:on May 27, 2014. 1518: 1512:. Archived from 1511: 1502: 1496: 1495: 1493: 1491: 1475: 1469: 1468: 1466: 1464: 1432: 1426: 1425: 1407: 1380:Nodal precession 1338: 1333: 1332: 1331: 1147:45 – 90 minutes 1075: 1074: 1032: 1025: 1014: 1007: 1003: 1000: 994: 992: 951: 927: 919: 912: 905: 901: 898: 892: 872: 871: 864: 853: 831: 830: 823: 705:orbital maneuver 610:Soyuz spacecraft 471:Georgy Beregovoy 414: 407: 403: 400: 394: 392: 351: 327: 319: 267: 240:Hohmann transfer 126: 125: 122: 121: 118: 115: 112: 109: 106: 103: 100: 89:space rendezvous 51: 21: 3466: 3465: 3461: 3460: 3459: 3457: 3456: 3455: 3421: 3420: 3419: 3414: 3403: 3362: 3288: 3279: 3258: 3247: 3238: 3233: 3203: 3198: 3180: 3098:Escape velocity 3079: 3072: 3053:Rocket equation 2980: 2972: 2966: 2957: 2948: 2939: 2928: 2919: 2910: 2901: 2892: 2888: 2884: 2875: 2864: 2855: 2846: 2837: 2828: 2817: 2808: 2804: 2800:Semi-minor axis 2795: 2791:Semi-major axis 2786: 2777: 2771: 2744: 2666:Areosynchronous 2650: 2644: 2625:Sun-synchronous 2610:Near-equatorial 2554: 2434: 2428: 2376: 2372:Wayback Machine 2356: 2351: 2341: 2339: 2338:on May 31, 2012 2316: 2312: 2307:Wayback Machine 2296: 2292: 2287:Wayback Machine 2276: 2272: 2264: 2253: 2247: 2243: 2233: 2231: 2220: 2216: 2203: 2202: 2198: 2188: 2186: 2171: 2164: 2127: 2123: 2106: 2102: 2098: 2088: 2086: 2082: 2043: 2037: 2026: 2016: 2014: 2010: 2003: 1999: 1998: 1994: 1984: 1982: 1973: 1971: 1964: 1954: 1952: 1948: 1941: 1937: 1936: 1932: 1922: 1920: 1907: 1906: 1902: 1892: 1890: 1879: 1875: 1854: 1850: 1840: 1838: 1827: 1823: 1808: 1804: 1790: 1788: 1781: 1773:. p. 669. 1758: 1754: 1744: 1742: 1733: 1732: 1728: 1718: 1716: 1714:MAAS Collection 1708: 1707: 1703: 1695: 1684: 1680: 1679: 1675: 1669:Wayback Machine 1660: 1656: 1646: 1644: 1631: 1630: 1626: 1616: 1614: 1607:Air & Space 1599: 1595: 1585: 1583: 1576:www.hq.nasa.gov 1570: 1569: 1565: 1552: 1551: 1544: 1538:Wayback Machine 1528: 1524: 1516: 1509: 1503: 1499: 1489: 1487: 1476: 1472: 1462: 1460: 1453: 1433: 1429: 1422: 1408: 1404: 1400: 1334: 1329: 1327: 1324: 1312:Low Earth Orbit 1298:Low Earth Orbit 1283: 1271: 1240: 1228:velocity vector 1200: 1183: 1117: 1110: 1099: 1092: 1069: 1033: 1022: 1021: 1020: 1015: 1004: 998: 995: 952: 950: 940: 928: 913: 902: 896: 893: 885:help improve it 882: 873: 869: 832: 828: 792: 647:. The Japanese 594:stations, with 531: 425: 415: 404: 398: 395: 352: 350: 340: 328: 317: 274: 268: 266: 211: 188:launch vehicles 168: 97: 93: 77:command module 47: 28: 23: 22: 15: 12: 11: 5: 3464: 3454: 3453: 3448: 3443: 3438: 3433: 3416: 3415: 3408: 3405: 3404: 3402: 3401: 3396: 3391: 3386: 3381: 3376: 3370: 3368: 3364: 3363: 3361: 3360: 3355: 3350: 3345: 3344: 3343: 3338: 3328: 3323: 3317: 3312: 3307: 3302: 3296: 3294: 3290: 3289: 3282: 3280: 3278: 3277: 3271: 3264: 3262: 3259: 3252: 3249: 3248: 3243: 3240: 3239: 3232: 3231: 3224: 3217: 3209: 3200: 3199: 3197: 3196: 3194:List of orbits 3185: 3182: 3181: 3179: 3178: 3173: 3168: 3163: 3158: 3153: 3148: 3146:Orbit equation 3143: 3135: 3130: 3125: 3120: 3115: 3110: 3105: 3100: 3095: 3090: 3084: 3082: 3074: 3073: 3071: 3070: 3065: 3060: 3055: 3050: 3045: 3040: 3035: 3030: 3025: 3020: 3018:Gravity assist 3015: 3013:Delta-v budget 3010: 3005: 3000: 2994: 2992: 2986: 2985: 2982: 2981: 2979: 2978: 2970: 2964: 2955: 2946: 2944:Orbital period 2936: 2934: 2930: 2929: 2927: 2926: 2924:True longitude 2917: 2915:Mean longitude 2908: 2899: 2882: 2872: 2870: 2866: 2865: 2863: 2862: 2853: 2844: 2835: 2825: 2823: 2819: 2818: 2816: 2815: 2802: 2793: 2784: 2774: 2772: 2770: 2769: 2766: 2762: 2756: 2750: 2749: 2746: 2745: 2743: 2742: 2741: 2740: 2732: 2731: 2730: 2725: 2720: 2719: 2718: 2705: 2700: 2699: 2698: 2693: 2688: 2683: 2675: 2674: 2673: 2671:Areostationary 2668: 2663: 2654: 2652: 2646: 2645: 2643: 2642: 2640:Very low Earth 2637: 2632: 2627: 2622: 2617: 2612: 2607: 2602: 2597: 2592: 2587: 2582: 2581: 2580: 2575: 2568:Geosynchronous 2564: 2562: 2556: 2555: 2553: 2552: 2550:Transfer orbit 2547: 2546: 2545: 2540: 2530: 2525: 2520: 2515: 2510: 2508:Lagrange point 2505: 2500: 2491: 2486: 2481: 2476: 2467: 2462: 2457: 2451: 2449: 2442: 2436: 2435: 2430:Gravitational 2427: 2426: 2419: 2412: 2404: 2398: 2397: 2391: 2382: 2374: 2362: 2355: 2354:External links 2352: 2350: 2349: 2310: 2290: 2270: 2241: 2214: 2196: 2162: 2141:(3): 206–220. 2121: 2109:angular radius 2104: 2096: 2024: 1992: 1962: 1930: 1900: 1873: 1848: 1821: 1802: 1779: 1752: 1741:(in Norwegian) 1726: 1701: 1691:. p. 11. 1673: 1654: 1624: 1593: 1563: 1542: 1522: 1497: 1470: 1451: 1427: 1420: 1401: 1399: 1396: 1395: 1394: 1389: 1383: 1377: 1372: 1367: 1362: 1357: 1352: 1346: 1340: 1339: 1323: 1320: 1282: 1279: 1270: 1269:Z-bar approach 1267: 1239: 1238:R-bar approach 1236: 1234:docking port. 1218:was the third 1199: 1198:V-bar approach 1196: 1182: 1179: 1162: 1161: 1160:<5 minutes 1158: 1155: 1149: 1148: 1145: 1142: 1136: 1135: 1134:1 to 5 orbits 1132: 1129: 1123: 1122: 1119: 1115: 1112: 1104: 1103: 1100: 1097: 1094: 1086: 1085: 1082: 1079: 1068: 1065: 1035: 1034: 1017: 1016: 931: 929: 922: 915: 914: 876: 874: 867: 862: 836: 835: 833: 826: 791: 788: 776: 775: 774: 773: 770: 767: 764: 742: 673:Project Apollo 643:rather than a 530: 527: 499:In March 1969 449:Neil Armstrong 421:Main article: 417: 416: 331: 329: 322: 316: 313: 273: 270: 264: 210: 207: 184:Vostok 5 and 6 180:Vostok 3 and 4 167: 164: 127:) is a set of 26: 9: 6: 4: 3: 2: 3463: 3452: 3449: 3447: 3444: 3442: 3439: 3437: 3436:Astrodynamics 3434: 3432: 3429: 3428: 3426: 3413: 3412: 3406: 3400: 3397: 3395: 3392: 3390: 3387: 3385: 3382: 3380: 3377: 3375: 3372: 3371: 3369: 3365: 3359: 3356: 3354: 3351: 3349: 3348:Soyuz Kontakt 3346: 3342: 3339: 3337: 3334: 3333: 3332: 3329: 3327: 3324: 3321: 3318: 3316: 3313: 3311: 3308: 3306: 3303: 3301: 3298: 3297: 3295: 3291: 3286: 3275: 3272: 3269: 3266: 3265: 3263: 3256: 3250: 3246: 3241: 3237: 3230: 3225: 3223: 3218: 3216: 3211: 3210: 3207: 3195: 3187: 3186: 3183: 3177: 3174: 3172: 3169: 3167: 3164: 3162: 3159: 3157: 3154: 3152: 3149: 3147: 3144: 3142: 3141:-body problem 3140: 3136: 3134: 3131: 3129: 3126: 3124: 3121: 3119: 3116: 3114: 3111: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3085: 3083: 3081: 3075: 3069: 3066: 3064: 3061: 3059: 3056: 3054: 3051: 3049: 3046: 3044: 3043:Oberth effect 3041: 3039: 3036: 3034: 3031: 3029: 3026: 3024: 3021: 3019: 3016: 3014: 3011: 3009: 3006: 3004: 3001: 2999: 2996: 2995: 2993: 2991: 2987: 2977: 2969: 2965: 2963: 2962:Orbital speed 2956: 2954: 2947: 2945: 2938: 2937: 2935: 2931: 2925: 2918: 2916: 2909: 2907: 2900: 2898: 2883: 2881: 2874: 2873: 2871: 2867: 2861: 2854: 2852: 2845: 2843: 2836: 2834: 2827: 2826: 2824: 2820: 2814: 2803: 2801: 2794: 2792: 2785: 2783: 2776: 2775: 2773: 2767: 2764: 2763: 2760: 2757: 2755: 2751: 2739: 2736: 2735: 2733: 2729: 2726: 2724: 2721: 2717: 2716:Earth's orbit 2714: 2713: 2712: 2709: 2708: 2706: 2704: 2701: 2697: 2694: 2692: 2689: 2687: 2684: 2682: 2679: 2678: 2676: 2672: 2669: 2667: 2664: 2662: 2659: 2658: 2656: 2655: 2653: 2647: 2641: 2638: 2636: 2633: 2631: 2628: 2626: 2623: 2621: 2618: 2616: 2613: 2611: 2608: 2606: 2603: 2601: 2598: 2596: 2593: 2591: 2588: 2586: 2583: 2579: 2576: 2574: 2573:Geostationary 2571: 2570: 2569: 2566: 2565: 2563: 2561: 2557: 2551: 2548: 2544: 2541: 2539: 2536: 2535: 2534: 2531: 2529: 2526: 2524: 2521: 2519: 2516: 2514: 2511: 2509: 2506: 2504: 2501: 2499: 2495: 2492: 2490: 2487: 2485: 2482: 2480: 2477: 2475: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2452: 2450: 2446: 2443: 2441: 2437: 2433: 2425: 2420: 2418: 2413: 2411: 2406: 2405: 2402: 2395: 2392: 2390: 2389:Wigbert Fehse 2386: 2383: 2379: 2375: 2373: 2369: 2366: 2363: 2361: 2358: 2357: 2337: 2333: 2329: 2325: 2321: 2314: 2308: 2304: 2301: 2299: 2294: 2288: 2284: 2281: 2279: 2274: 2263: 2259: 2252: 2245: 2229: 2225: 2218: 2210: 2206: 2200: 2184: 2180: 2176: 2169: 2167: 2157: 2152: 2148: 2144: 2140: 2136: 2132: 2125: 2118: 2114: 2110: 2100: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2049: 2042: 2035: 2033: 2031: 2029: 2009: 2002: 1996: 1980: 1976: 1969: 1967: 1947: 1940: 1934: 1918: 1914: 1910: 1904: 1888: 1884: 1877: 1870: 1869:0-06-093269-4 1866: 1862: 1861:0-88730-783-3 1858: 1852: 1836: 1832: 1825: 1817: 1813: 1806: 1799: 1791:September 20, 1786: 1782: 1776: 1772: 1768: 1767: 1762: 1756: 1740: 1736: 1730: 1715: 1711: 1705: 1694: 1690: 1683: 1677: 1670: 1666: 1663: 1658: 1642: 1638: 1634: 1628: 1612: 1608: 1604: 1597: 1581: 1577: 1573: 1567: 1559: 1555: 1549: 1547: 1539: 1535: 1532: 1526: 1515: 1508: 1505:Buzz Aldrin. 1501: 1485: 1481: 1478:Buzz Aldrin. 1474: 1463:September 25, 1458: 1454: 1452:1-85233-391-X 1448: 1444: 1440: 1439: 1431: 1423: 1421:0-02-542820-9 1417: 1413: 1406: 1402: 1393: 1392:Soyuz Kontakt 1390: 1387: 1384: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1350: 1347: 1345: 1342: 1341: 1337: 1326: 1319: 1317: 1313: 1309: 1308:lunar landing 1305: 1299: 1295: 1291: 1287: 1278: 1276: 1275:orbital plane 1266: 1264: 1263:SpaceX Dragon 1260: 1256: 1252: 1250: 1245: 1235: 1233: 1229: 1225: 1221: 1220:Space Shuttle 1217: 1213: 1211: 1206: 1195: 1192: 1191:perpendicular 1188: 1178: 1176: 1173: 1169: 1168:translational 1159: 1156: 1154: 1151: 1150: 1146: 1143: 1141: 1138: 1137: 1133: 1130: 1128: 1125: 1124: 1120: 1113: 1109: 1108:Drift Orbit B 1106: 1105: 1102:1 to 20 days 1101: 1095: 1091: 1090:Drift Orbit A 1088: 1087: 1083: 1080: 1077: 1076: 1073: 1064: 1062: 1056: 1054: 1050: 1049:orbital plane 1045: 1041: 1031: 1028: 1013: 1010: 1002: 991: 988: 984: 981: 977: 974: 970: 967: 963: 960: –  959: 955: 954:Find sources: 948: 944: 938: 937: 932:This section 930: 926: 921: 920: 911: 908: 900: 890: 886: 880: 877:This section 875: 866: 865: 860: 858: 851: 850: 845: 844: 839: 834: 825: 824: 816: 810: 807: 804:as seen from 803: 802:Charlie Brown 800: 796: 787: 785: 781: 771: 768: 765: 762: 761: 759: 755: 751: 747: 743: 740: 739: 738: 735: 733: 729: 725: 721: 717: 713: 708: 706: 702: 698: 694: 690: 686: 682: 678: 674: 670: 665: 662: 658: 654: 653:SpaceX Dragon 650: 646: 642: 638: 634: 630: 626: 622: 618: 614: 611: 607: 604:and with the 603: 602: 597: 593: 589: 585: 581: 573: 569: 565: 561: 560: 555: 550: 544: 540: 535: 526: 524: 520: 516: 511: 509: 504: 502: 497: 495: 491: 487: 482: 480: 476: 472: 467: 465: 461: 456: 454: 450: 446: 437: 429: 424: 413: 410: 402: 391: 388: 384: 381: 377: 374: 370: 367: 363: 360: –  359: 355: 354:Find sources: 348: 344: 338: 337: 332:This section 330: 326: 321: 320: 315:First docking 311: 306: 302: 297: 295: 291: 287: 286:Wally Schirra 278: 263: 261: 257: 253: 249: 243: 241: 237: 232: 228: 224: 220: 216: 206: 204: 200: 196: 191: 189: 185: 182:in 1962, and 181: 177: 173: 163: 161: 160:Martian moons 156: 154: 150: 146: 142: 138: 137:space station 134: 130: 124: 91: 90: 81: 80: 74: 73: 70:Lunar Module 67: 61: 57: 56: 50: 49:Space Shuttle 45: 41: 38: 34: 30: 19: 3409: 3244: 3156:Perturbation 3138: 3113:Ground track 3057: 3023:Gravity turn 2974:   2967: 2960:   2951:   2942:   2922:   2913:   2904:   2897:True anomaly 2895:   2880:Mean anomaly 2878:   2858:   2849:   2840:   2831:   2811:   2798:   2789:   2782:Eccentricity 2780:   2738:Lunar cycler 2711:Heliocentric 2651:other points 2600:Medium Earth 2498:Non-inclined 2340:. Retrieved 2336:the original 2323: 2313: 2297: 2293: 2277: 2273: 2262:the original 2257: 2244: 2232:. Retrieved 2217: 2209:the original 2199: 2189:November 26, 2187:. Retrieved 2178: 2138: 2134: 2124: 2099: 2087:. Retrieved 2080:the original 2051: 2047: 2015:. Retrieved 1995: 1983:. Retrieved 1953:. Retrieved 1933: 1921:. Retrieved 1912: 1903: 1891:. Retrieved 1885:. nasa.gov. 1876: 1851: 1839:. Retrieved 1824: 1816:the original 1805: 1796: 1789:. Retrieved 1765: 1755: 1743:. Retrieved 1738: 1729: 1717:. Retrieved 1713: 1704: 1688: 1676: 1657: 1645:. Retrieved 1636: 1627: 1617:December 15, 1615:. Retrieved 1606: 1596: 1584:. Retrieved 1575: 1566: 1558:the original 1525: 1514:the original 1500: 1488:. Retrieved 1473: 1461:. Retrieved 1441:. New York: 1437: 1430: 1411: 1405: 1302: 1272: 1253: 1248: 1241: 1214: 1209: 1201: 1184: 1165: 1152: 1139: 1126: 1121:1 to 5 days 1107: 1089: 1070: 1057: 1046: 1042: 1038: 1023: 1005: 996: 986: 979: 972: 965: 953: 941:Please help 936:verification 933: 903: 894: 878: 854: 847: 841: 840:Please help 837: 808: 806:Lunar Module 801: 777: 736: 709: 666: 645:docking port 628: 615: 599: 577: 571: 557: 553: 539:Apollo-Soyuz 512: 508:Apollo–Soyuz 505: 498: 483: 468: 457: 442: 405: 396: 386: 379: 372: 365: 353: 341:Please help 336:verification 333: 308: 304: 299: 283: 245: 215:Jim McDivitt 212: 198: 192: 176:Soviet Union 169: 157: 88: 87: 85: 78: 71: 54: 29: 3118:Hill sphere 2953:Mean motion 2833:Inclination 2822:Orientation 2723:Mars cycler 2661:Areocentric 2533:Synchronous 2342:November 3, 1810:Mark Wade. 1745:October 22, 1719:October 22, 999:August 2020 697:Intelsat VI 635:, Europe's 568:Shuttle-Mir 399:August 2020 310:rendezvous. 195:Buzz Aldrin 44:rangefinder 3425:Categories 3293:Mechanisms 3058:Rendezvous 2754:Parameters 2590:High Earth 2560:Geocentric 2513:Osculating 2470:Elliptical 1812:"Soyuz 11" 1554:"Gemini 4" 1398:References 1316:Surveyor 3 1294:Surveyor 3 1265:vehicles. 1244:orthogonal 1172:rotational 1051:, and the 969:newspapers 897:April 2010 843:improve it 543:Space Race 464:Cosmos 188 460:Cosmos 186 369:newspapers 262:now uses." 133:spacecraft 3379:Canadarm2 3103:Ephemeris 3080:mechanics 2990:Maneuvers 2933:Variation 2696:Libration 2691:Lissajous 2595:Low Earth 2585:Graveyard 2484:Horseshoe 2234:March 17, 2089:August 3, 1985:April 29, 1304:Apollo 12 1290:Apollo 12 1261:, and of 1255:Astrotech 1175:maneuvers 849:talk page 661:Canadarm2 510:mission. 55:Endeavour 37:Astronaut 3374:Canadarm 3261:Adapters 2869:Position 2494:Inclined 2465:Circular 2368:Archived 2303:Archived 2283:Archived 2228:Archived 2183:Archived 2181:. NASA. 2076:64002452 2008:Archived 2006:. NASA. 1979:Archived 1946:Archived 1923:April 9, 1917:Archived 1887:Archived 1863:) 2000, 1841:June 13, 1835:Archived 1785:Archived 1693:Archived 1665:Archived 1647:April 9, 1641:Archived 1611:Archived 1586:April 9, 1580:Archived 1534:Archived 1484:Archived 1457:Archived 1322:See also 1205:parallel 758:Saturn V 584:Salyut 1 580:Soyuz 11 523:Salyut 6 519:Soyuz 27 515:Soyuz 26 501:Apollo 9 445:Gemini 8 294:Gemini 7 290:Gemini 6 265:—  219:Gemini 4 193:In 1963 79:Columbia 58:and the 3078:Orbital 3048:Phasing 3008:Delta-v 2813:Apsides 2807:,  2605:Molniya 2523:Parking 2460:Capture 2448:General 2380:. NASA. 2328:Bibcode 2143:Bibcode 2113:horizon 2107:is the 2056:Bibcode 2017:July 7, 1977:. ESA. 1955:May 16, 1893:May 15, 1216:STS-104 1153:Docking 1096:>2 λ 983:scholar 883:Please 744:In the 726:to the 712:CX-OLEV 651:(HTV), 598:, with 490:Soyuz 5 486:Soyuz 4 479:Soyuz 2 475:Soyuz 3 383:scholar 166:History 42:uses a 3394:Lyappa 3326:Gemini 3305:Apollo 2734:Other 2635:Tundra 2503:Kepler 2479:Escape 2432:orbits 2074:  2054:: 20. 1867:  1859:  1777:  1490:May 4, 1449:  1418:  1078:Phase 985:  978:  971:  964:  956:  809:Snoopy 693:STS-49 655:, and 596:Skylab 592:Salyut 572:Spektr 559:Spektr 385:  378:  371:  364:  356:  260:Apollo 174:, the 172:Vostok 3320:FREND 3276:(PMA) 3270:(IDA) 2976:Epoch 2765:Shape 2703:Lunar 2657:Mars 2649:About 2620:Polar 2440:Types 2265:(PDF) 2254:(PDF) 2083:(PDF) 2072:S2CID 2044:(PDF) 2011:(PDF) 2004:(PDF) 1949:(PDF) 1942:(PDF) 1696:(PDF) 1685:(PDF) 1517:(PDF) 1510:(PDF) 1232:PMA-2 990:JSTOR 976:books 621:Soyuz 390:JSTOR 376:books 141:orbit 72:Eagle 52: 3399:TORU 3389:Kurs 3384:Igla 3358:USIS 3353:SSVP 3336:IBDM 3331:IDSS 3300:APAS 2768:Size 2707:Sun 2686:Halo 2538:semi 2344:2011 2236:2009 2191:2011 2091:2019 2052:5088 2019:2017 1987:2021 1957:2020 1925:2018 1895:2017 1865:ISBN 1857:ISBN 1843:2020 1793:2020 1775:ISBN 1747:2021 1739:NASA 1721:2021 1649:2018 1619:2018 1588:2018 1492:2012 1465:2016 1447:ISBN 1416:ISBN 1170:and 962:news 819:ISS. 699:F-3 677:Moon 623:and 554:Mir' 529:Uses 517:and 488:and 462:and 362:news 227:NASA 3341:NDS 2543:sub 2455:Box 2387:by 2151:doi 2117:LEO 2105:max 2064:doi 1116:max 1114:2 λ 1098:max 945:by 887:to 687:in 629:Mir 601:Mir 345:by 252:MSC 248:GPO 246:As 3427:: 2891:, 2887:, 2496:/ 2472:/ 2322:. 2256:. 2177:. 2165:^ 2149:. 2139:11 2137:. 2133:. 2070:. 2062:. 2046:. 2027:^ 1965:^ 1944:. 1915:. 1911:. 1795:. 1783:. 1737:. 1712:. 1687:. 1639:. 1635:. 1609:. 1605:. 1578:. 1574:. 1545:^ 1482:. 1455:. 852:. 782:, 734:. 707:. 556:s 120:uː 114:eɪ 86:A 3228:e 3221:t 3214:v 3139:n 2971:0 2968:t 2958:v 2949:n 2940:T 2920:l 2911:L 2902:E 2893:f 2889:θ 2885:ν 2876:M 2856:ϖ 2847:ω 2838:Ω 2829:i 2809:q 2805:Q 2796:b 2787:a 2778:e 2423:e 2416:t 2409:v 2346:. 2330:: 2238:. 2193:. 2159:. 2153:: 2145:: 2103:λ 2093:. 2066:: 2058:: 2021:. 1989:. 1959:. 1927:. 1897:. 1845:. 1749:. 1723:. 1651:. 1621:. 1590:. 1494:. 1467:. 1424:. 1030:) 1024:( 1012:) 1006:( 1001:) 997:( 987:· 980:· 973:· 966:· 939:. 910:) 904:( 899:) 895:( 881:. 859:) 855:( 574:. 412:) 406:( 401:) 397:( 387:· 380:· 373:· 366:· 339:. 123:/ 117:v 111:d 108:n 105:ɒ 102:r 99:ˈ 96:/ 92:( 20:)

Index

In-orbit rendezvous

Astronaut
Christopher Cassidy
rangefinder
Space Shuttle
Endeavour
International Space Station

Lunar Module Eagle
command module Columbia
/ˈrɒndv/
orbital maneuvers
spacecraft
space station
orbit
orbital velocities and position vectors
orbital station-keeping
docking or berthing
Martian moons
Vostok
Soviet Union
Vostok 3 and 4
Vostok 5 and 6
launch vehicles
Buzz Aldrin
orbital mechanics
Jim McDivitt
Gemini 4
Titan II launch vehicle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.