Knowledge

Stellar structure

Source đź“ť

209: 1534:, relating the pressure, opacity and energy generation rate to other local variables appropriate for the material, such as temperature, density, chemical composition, etc. Relevant equations of state for pressure may have to include the perfect gas law, radiation pressure, pressure due to degenerate electrons, etc. Opacity cannot be expressed exactly by a single formula. It is calculated for various compositions at specific densities and temperatures and presented in tabular form. Stellar structure 237: 251: 223: 69: 3743: 20: 3754: 1798: 135:, which do not establish a steep temperature gradient. Thus, radiation dominates in the inner portion of solar mass stars. The outer portion of solar mass stars is cool enough that hydrogen is neutral and thus opaque to ultraviolet photons, so convection dominates. Therefore, solar mass stars have radiative cores with convective envelopes in the outer portion of the star. 1523:.) When the convection is not adiabatic, the true temperature gradient is not given by this equation. For example, in the Sun the convection at the base of the convection zone, near the core, is adiabatic but that near the surface is not. The mixing length theory contains two free parameters which must be set to make the model fit observations, so it is a 166:. In the CNO cycle, the energy generation rate scales as the temperature to the 15th power, whereas the rate scales as the temperature to the 4th power in the proton-proton chains. Due to the strong temperature sensitivity of the CNO cycle, the temperature gradient in the inner portion of the star is steep enough to make the core 1777:, important improvements have to be made in order to remove uncertainties which are linked to the limited knowledge of transport phenomena. The most difficult challenge remains the numerical treatment of turbulence. Some research teams are developing simplified modelling of turbulence in 3D calculations. 1785:
The above simplified model is not adequate without modification in situations when the composition changes are sufficiently rapid. The equation of hydrostatic equilibrium may need to be modified by adding a radial acceleration term if the radius of the star is changing very quickly, for example if
1424: 1225: 967: 1101: 103:
and continues to rise if it is warmer than the surrounding gas; if the rising parcel is cooler than the surrounding gas, it will fall back to its original height. In regions with a low temperature gradient and a low enough
1293:. This treats the gas in the star as containing discrete elements which roughly retain the temperature, density, and pressure of their surroundings but move through the star as far as a characteristic length, called the 671: 811: 1004:(which usually escape the star without interacting with ordinary matter) per unit mass. Outside the core of the star, where nuclear reactions occur, no energy is generated, so the luminosity is constant. 505:. Although LTE does not strictly hold because the temperature a given shell "sees" below itself is always hotter than the temperature above, this approximation is normally excellent because the photon 95:
Convection is the dominant mode of energy transport when the temperature gradient is steep enough so that a given parcel of gas within the star will continue to rise if it rises slightly via an
1314: 574: 1557:, a solution of these equations completely describes the behavior of the star. Typical boundary conditions set the values of the observable parameters appropriately at the surface ( 1542:
based on the tabulated values. A similar situation occurs for accurate calculations of the pressure equation of state. Finally, the nuclear energy generation rate is computed from
3594: 1475: 998: 1786:
the star is radially pulsating. Also, if the nuclear burning is not stable, or the star's core is rapidly collapsing, an entropy term must be added to the energy equation.
1764: 448: 1521: 475: 2052:
Mueller, E. (July 1986), "Nuclear-reaction networks and stellar evolution codes – The coupling of composition changes and energy release in explosive nuclear burning",
527: 332: 1272: 1248: 1127: 1716: 1677: 1642: 704: 419: 390: 361: 1607: 1581: 869: 843: 883: 724: 495: 1954:
Rauscher, T.; Heger, A.; Hoffman, R. D.; Woosley, S. E. (September 2002), "Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics",
1017: 1538:(meaning computer programs calculating the model's variables) either interpolate in a density-temperature grid to obtain the opacity needed, or use a 3784: 1007:
The energy transport equation takes differing forms depending upon the mode of energy transport. For conductive energy transport (appropriate for a
170:. In the outer portion of the star, the temperature gradient is shallower but the temperature is high enough that the hydrogen is nearly fully 600: 185:
The lowest mass main sequence stars have no radiation zone; the dominant energy transport mechanism throughout the star is convection.
746: 3789: 2209: 3626: 2203: 1419:{\displaystyle {{\mbox{d}}T \over {\mbox{d}}r}=\left(1-{1 \over \gamma }\right){T \over P}{{\mbox{d}}P \over {\mbox{d}}r},} 3601: 2920: 2181: 2101: 276: 1550:
to compute reaction rates for each individual reaction step and equilibrium abundances for each isotope in the gas.
2233:
Stellar atmospheres: A contribution to the observational study of high temperature in the reversing layers of stars
1524: 1308:, meaning that the convective gas bubbles don't exchange heat with their surroundings, mixing length theory yields 3313: 498: 3606: 3243: 3227: 2262: 2212:
a FORTRAN 90 software derived from Eggleton's Stellar Evolution Code, a web-based interface can be found here
1285:
The case of convective energy transport does not have a known rigorous mathematical formulation, and involves
532: 3653: 3520: 1275: 3636: 3587: 3562: 2855: 194: 3577: 3557: 1774: 1432: 2940: 267:
of stellar structure is the spherically symmetric quasi-static model, which assumes that a star is in a
3779: 3641: 3572: 3542: 49:
of the star. Different classes and ages of stars have different internal structures, reflecting their
976: 3648: 3525: 3502: 3084: 2533: 2528: 2523: 2518: 2513: 2508: 2791: 2665: 2300: 2196: 1721: 424: 3567: 3318: 3117: 3027: 2987: 2969: 2895: 2466: 2392: 1492: 581: 453: 132: 1220:{\displaystyle {{\mbox{d}}T \over {\mbox{d}}r}=-{3\kappa \rho l \over 64\pi r^{2}\sigma T^{3}},} 3728: 3708: 3480: 3475: 3373: 3268: 3217: 3022: 3012: 2685: 2483: 2451: 2342: 2325: 2110:
Kennedy, Dallas C.; Bludman, Sidney A. (1997), "Variational Principles for Stellar Structure",
731: 42: 512: 308: 3582: 3552: 3547: 3537: 3465: 3253: 2419: 1767: 1257: 1233: 1117:
In the case of radiative energy transport, appropriate for the inner portion of a solar mass
108:
to allow energy transport via radiation, radiation is the dominant mode of energy transport.
2700: 2213: 2065: 2022: 1686: 1647: 1612: 3723: 3621: 3611: 3460: 3428: 3222: 3017: 3002: 2315: 2161: 2129: 2061: 2018: 1973: 1928: 1816: 1290: 1111: 962:{\displaystyle {{\mbox{d}}l \over {\mbox{d}}r}=4\pi r^{2}\rho (\epsilon -\epsilon _{\nu })} 2218: 1679:, there is no mass inside the center of the star, as required if the mass density remains 680: 395: 366: 337: 76:
Different layers of the stars transport heat up and outwards in different ways, primarily
8: 3183: 3166: 2837: 2739: 2562: 1586: 1560: 1554: 848: 822: 736: 50: 3323: 2165: 2133: 1977: 1932: 3718: 3679: 3631: 3616: 3530: 3470: 3393: 3303: 3273: 3263: 3207: 3129: 2820: 2456: 2255: 2145: 2119: 2034: 2008: 1963: 1279: 709: 529:, is much smaller than the length over which the temperature varies considerably, i.e. 480: 81: 62: 3669: 3067: 3047: 2847: 2631: 2619: 2446: 2426: 2380: 2362: 2330: 2177: 2097: 1531: 587: 96: 72:
The different transport mechanisms of high-mass, intermediate-mass and low-mass stars
46: 3154: 2149: 2038: 3497: 3450: 3400: 3388: 3366: 3361: 3288: 3248: 3195: 2977: 2900: 2875: 2769: 2690: 2414: 2375: 2137: 2026: 1981: 1936: 1251: 105: 3684: 3487: 3356: 3200: 3171: 3112: 3107: 2982: 2710: 2675: 2609: 2555: 2550: 2495: 2305: 1953: 1543: 1478: 1096:{\displaystyle {{\mbox{d}}T \over {\mbox{d}}r}=-{1 \over k}{l \over 4\pi r^{2}},} 167: 85: 2156:
Weiss, Achim; Hillebrandt, Wolfgang; Thomas, Hans-Christoph; Ritter, H. (2004),
3746: 3512: 3351: 3178: 3149: 3124: 3057: 2746: 2614: 2500: 2402: 2292: 2282: 506: 179: 159: 2030: 3773: 3698: 3492: 3455: 3423: 3298: 3007: 2830: 2801: 2779: 2397: 2370: 2347: 2248: 1539: 1482: 1118: 264: 208: 112: 3758: 3433: 3383: 3378: 3278: 3161: 3144: 3102: 3072: 3062: 2997: 2880: 2825: 2806: 2786: 2764: 2756: 2599: 2592: 2431: 2352: 2335: 1811: 1803: 268: 3674: 3346: 3338: 3328: 3308: 3283: 3212: 3134: 2890: 2865: 2860: 2774: 2734: 2695: 2660: 2643: 2638: 2310: 2232: 2124: 1999:
Moya, A.; Garrido, R. (August 2008), "Granada oscillation code (GraCo)",
1968: 1773:
Although nowadays stellar evolution models describe the main features of
1008: 288: 236: 175: 89: 68: 1680: 250: 222: 3258: 2955: 2928: 2905: 2885: 2870: 2722: 2626: 2604: 2582: 2577: 2441: 1904: 1286: 292: 171: 139: 123: 119: 77: 38: 1919:
Iglesias, C. A.; Rogers, F. J. (June 1996), "Updated Opal Opacities",
666:{\displaystyle {{\mbox{d}}P \over {\mbox{d}}r}=-{Gm\rho \over r^{2}}} 302:(exploiting the assumed spherical symmetry), one considers the matter 3445: 3293: 3077: 3042: 3037: 3032: 2992: 2945: 2935: 2729: 2705: 2680: 2587: 2538: 2471: 2461: 2436: 2409: 2385: 2320: 2225: 1486: 1305: 1301: 1298: 1001: 198: 163: 131:), including the Sun, hydrogen-to-helium fusion occurs primarily via 3438: 3139: 2813: 2572: 2545: 2141: 1985: 1940: 816: 284: 272: 152: 2013: 3713: 3188: 2950: 2717: 2670: 2653: 2648: 2567: 1289:
in the gas. Convective energy transport is usually modeled using
591: 303: 100: 806:{\displaystyle {{\mbox{d}}m \over {\mbox{d}}r}=4\pi r^{2}\rho .} 3703: 3691: 2910: 2796: 2237:(1925) by Cecilia Payne-Gaposchkin, Cambridge: The Observatory. 2092:
Hansen, Carl J.; Kawaler, Steven D.; Trimble, Virginia (2004),
590:
within the star is exactly balanced by the inward force due to
502: 280: 156: 148: 874:
Considering the energy leaving the spherical shell yields the
1121:
star and the outer envelope of a massive main sequence star,
734:. The cumulative mass increases with radius according to the 19: 2155: 1918: 3052: 2271: 1644:, meaning the pressure at the surface of the star is zero; 34: 3753: 1797: 497:
from the center of the star. The star is assumed to be in
3418: 594:. This is sometimes referred to as stellar equilibrium. 24: 2240: 1527:
theory rather than a rigorous mathematical formulation.
1401: 1389: 1334: 1322: 1147: 1135: 1037: 1025: 903: 891: 766: 754: 620: 608: 458: 2206:, stellar evolution and structure Fortran source code 1724: 1718:, the total mass of the star is the star's mass; and 1689: 1650: 1615: 1589: 1563: 1495: 1435: 1317: 1260: 1236: 1130: 1020: 979: 886: 851: 825: 749: 712: 683: 603: 535: 515: 501:(LTE) so the temperature is identical for matter and 483: 456: 427: 398: 369: 340: 311: 2091: 1888: 1876: 1859: 1847: 1835: 1793: 1998: 819:
the mass continuity equation from the star center (
2221:(some of them including rotational induced mixing) 1758: 1710: 1671: 1636: 1601: 1575: 1515: 1469: 1418: 1266: 1242: 1219: 1095: 992: 961: 863: 837: 805: 718: 698: 665: 568: 521: 489: 469: 442: 413: 384: 355: 326: 2082: 188: 3771: 2172:Zeilik, Michael A.; Gregory, Stephan A. (1998), 2158:Cox and Giuli's Principles of Stellar Structure 2109: 1906:An introduction to Modern Stellar Astrophysics 1871:This discussion follows those of, e. g., 147:), the core temperature is above about 1.8Ă—10 2256: 2176:(4th ed.), Saunders College Publishing, 2171: 1872: 33:models describe the internal structure of a 2051: 706:is the cumulative mass inside the shell at 421:, and energy generation rate per unit mass 2263: 2249: 1000:is the luminosity produced in the form of 2174:Introductory Astronomy & Astrophysics 2123: 2012: 1967: 1912: 363:, total pressure (matter plus radiation) 138:In massive stars (greater than about 1.5 37:in detail and make predictions about the 3785:Stellar astronomy classification systems 2219:Geneva Grids of Stellar Evolution Models 1947: 1903:Ostlie, Dale A. and Carrol, Bradley W., 1899: 1897: 1766:, the temperature at the surface is the 569:{\displaystyle \lambda \ll T/|\nabla T|} 115:star depends upon the mass of the star. 67: 53:makeup and energy transport mechanisms. 18: 3772: 178:radiation. Thus, massive stars have a 2244: 1894: 871:) yields the total mass of the star. 228:Mass inside a given radius in the Sun 174:, so the star remains transparent to 99:. In this case, the rising parcel is 2228:database of stellar evolution tracks 2083:Kippenhahn, R.; Weigert, A. (1990), 450:in a spherical shell of a thickness 287:vary with radius; two represent how 2160:, Cambridge Scientific Publishers, 1889:Hansen, Kawaler & Trimble (2004 1877:Hansen, Kawaler & Trimble (2004 1860:Hansen, Kawaler & Trimble (2004 1848:Hansen, Kawaler & Trimble (2004 1836:Hansen, Kawaler & Trimble (2004 1470:{\displaystyle \gamma =c_{p}/c_{v}} 13: 1780: 555: 277:first-order differential equations 14: 3801: 2190: 1485:in the gas. (For a fully ionized 56: 3752: 3742: 3741: 1796: 993:{\displaystyle \epsilon _{\nu }} 249: 235: 221: 207: 118:In stars with masses of 0.3–1.5 2085:Stellar Structure and Evolution 2045: 499:local thermodynamic equilibrium 2001:Astrophysics and Space Science 1992: 1882: 1865: 1853: 1841: 1829: 1734: 1728: 1699: 1693: 1660: 1654: 1625: 1619: 956: 937: 693: 687: 562: 551: 437: 431: 408: 402: 379: 373: 350: 344: 321: 315: 214:Temperature profile in the Sun 189:Equations of stellar structure 61:For energy transport refer to 1: 3790:Stellar astrophysics concepts 3654:Timeline of stellar astronomy 1822: 845:) to the radius of the star ( 586:the outward force due to the 1759:{\displaystyle T(R)=T_{eff}} 443:{\displaystyle \epsilon (r)} 111:The internal structure of a 7: 3314:Hertzsprung–Russell diagram 1789: 1516:{\displaystyle \gamma =5/3} 470:{\displaystyle {\mbox{d}}r} 300:stellar structure equations 263:The simplest commonly used 256:Pressure profile in the Sun 10: 3806: 3228:Kelvin–Helmholtz mechanism 2096:(2nd ed.), Springer, 2076: 2054:Astronomy and Astrophysics 1873:Zeilik & Gregory (1998 1011:), the energy equation is 242:Density profile in the Sun 192: 3737: 3662: 3511: 3409: 3337: 3236: 3093: 2968: 2846: 2755: 2491: 2482: 2361: 2291: 2278: 2270: 2031:10.1007/s10509-007-9694-2 1956:The Astrophysical Journal 1304:, when the convection is 1276:Stefan–Boltzmann constant 275:. It contains four basic 162:occurs primarily via the 3607:With multiple exoplanets 1775:color–magnitude diagrams 737:mass continuity equation 579:First is a statement of 522:{\displaystyle \lambda } 327:{\displaystyle \rho (r)} 195:Mass–luminosity relation 2393:Asymptotic giant branch 2210:EZ to Evolve ZAMS Stars 2199:retrieved November 2009 2066:1986A&A...162..103M 2023:2008Ap&SS.316..129M 1909:, Addison-Wesley (2007) 1553:Combined with a set of 1267:{\displaystyle \sigma } 1243:{\displaystyle \kappa } 582:hydrostatic equilibrium 3729:Tidal disruption event 3218:Circumstellar envelope 2452:Luminous blue variable 1760: 1712: 1711:{\displaystyle m(R)=M} 1673: 1672:{\displaystyle m(0)=0} 1638: 1637:{\displaystyle P(R)=0} 1603: 1577: 1530:Also required are the 1517: 1471: 1420: 1268: 1244: 1221: 1097: 994: 963: 865: 839: 807: 732:gravitational constant 720: 700: 667: 570: 523: 491: 471: 444: 415: 386: 357: 328: 73: 27: 3254:Effective temperature 2112:Astrophysical Journal 1921:Astrophysical Journal 1768:effective temperature 1761: 1713: 1674: 1639: 1604: 1578: 1518: 1472: 1421: 1269: 1245: 1222: 1098: 995: 964: 866: 840: 808: 721: 701: 668: 571: 524: 492: 472: 445: 416: 387: 358: 329: 273:spherically symmetric 71: 23:Cross-section of the 22: 3724:Planet-hosting stars 3602:With resolved images 3573:Historical brightest 3503:Photometric-standard 3429:Solar radio emission 3223:Eddington luminosity 3003:Triple-alpha process 2941:Thorne–Żytkow object 2316:Young stellar object 1817:Standard solar model 1722: 1687: 1648: 1613: 1587: 1561: 1493: 1433: 1315: 1291:mixing length theory 1258: 1234: 1128: 1112:thermal conductivity 1018: 977: 884: 849: 823: 747: 710: 699:{\displaystyle m(r)} 681: 601: 533: 513: 481: 454: 425: 414:{\displaystyle l(r)} 396: 385:{\displaystyle P(r)} 367: 356:{\displaystyle T(r)} 338: 309: 279:: two represent how 133:proton–proton chains 3548:Highest temperature 3319:Color–color diagram 3184:Protoplanetary disk 2988:Proton–proton chain 2666:Chemically peculiar 2166:2004cgps.book.....W 2134:1997ApJ...484..329K 1978:2002ApJ...576..323R 1933:1996ApJ...464..943I 1602:{\displaystyle r=0} 1576:{\displaystyle r=R} 1555:boundary conditions 1546:experiments, using 864:{\displaystyle r=R} 838:{\displaystyle r=0} 3553:Lowest temperature 3304:Photometric system 3274:Absolute magnitude 3208:Circumstellar dust 2821:Stellar black hole 2457:Stellar population 2343:Herbig–Haro object 1875:, §16-1–16-2) and 1756: 1708: 1669: 1634: 1599: 1573: 1532:equations of state 1513: 1467: 1416: 1405: 1393: 1338: 1326: 1280:Boltzmann constant 1264: 1240: 1217: 1151: 1139: 1093: 1041: 1029: 990: 959: 907: 895: 861: 835: 803: 770: 758: 716: 696: 663: 624: 612: 566: 519: 487: 467: 462: 440: 411: 382: 353: 324: 295:vary with radius. 86:thermal conduction 82:radiative transfer 74: 63:Radiative transfer 28: 16:Structure of stars 3780:Stellar astronomy 3767: 3766: 3670:Substellar object 3649:Planetary nebulae 3068:Luminous red nova 2978:Deuterium burning 2964: 2963: 2447:Instability strip 2427:Wolf-Rayet nebula 2381:Horizontal branch 2326:Pre-main-sequence 2204:Yellow CESAM code 2094:Stellar Interiors 2087:, Springer-Verlag 1548:reaction networks 1411: 1404: 1392: 1383: 1368: 1344: 1337: 1325: 1212: 1157: 1150: 1138: 1088: 1063: 1047: 1040: 1028: 913: 906: 894: 776: 769: 757: 719:{\displaystyle r} 661: 630: 623: 611: 588:pressure gradient 490:{\displaystyle r} 461: 97:adiabatic process 31:Stellar structure 3797: 3759:Stars portal 3757: 3756: 3745: 3744: 3401:Planetary system 3324:Strömgren sphere 3196:Asteroseismology 2917:Black hole star 2489: 2488: 2415:Planetary nebula 2376:Red-giant branch 2265: 2258: 2251: 2242: 2241: 2186: 2168: 2152: 2127: 2125:astro-ph/9610099 2106: 2088: 2070: 2069: 2060:(1–2): 103–108, 2049: 2043: 2042: 2016: 2007:(1–4): 129–133, 1996: 1990: 1989: 1971: 1969:astro-ph/0112478 1951: 1945: 1944: 1916: 1910: 1901: 1892: 1886: 1880: 1869: 1863: 1857: 1851: 1845: 1839: 1833: 1806: 1801: 1800: 1765: 1763: 1762: 1757: 1755: 1754: 1717: 1715: 1714: 1709: 1678: 1676: 1675: 1670: 1643: 1641: 1640: 1635: 1608: 1606: 1605: 1600: 1582: 1580: 1579: 1574: 1540:fitting function 1525:phenomenological 1522: 1520: 1519: 1514: 1509: 1476: 1474: 1473: 1468: 1466: 1465: 1456: 1451: 1450: 1425: 1423: 1422: 1417: 1412: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1384: 1376: 1374: 1370: 1369: 1361: 1345: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1273: 1271: 1270: 1265: 1249: 1247: 1246: 1241: 1226: 1224: 1223: 1218: 1213: 1211: 1210: 1209: 1197: 1196: 1180: 1166: 1158: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1102: 1100: 1099: 1094: 1089: 1087: 1086: 1085: 1066: 1064: 1056: 1048: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 999: 997: 996: 991: 989: 988: 968: 966: 965: 960: 955: 954: 933: 932: 914: 912: 908: 904: 900: 896: 892: 888: 876:energy equation: 870: 868: 867: 862: 844: 842: 841: 836: 812: 810: 809: 804: 796: 795: 777: 775: 771: 767: 763: 759: 755: 751: 725: 723: 722: 717: 705: 703: 702: 697: 672: 670: 669: 664: 662: 660: 659: 650: 639: 631: 629: 625: 621: 617: 613: 609: 605: 575: 573: 572: 567: 565: 554: 549: 528: 526: 525: 520: 496: 494: 493: 488: 476: 474: 473: 468: 463: 459: 449: 447: 446: 441: 420: 418: 417: 412: 391: 389: 388: 383: 362: 360: 359: 354: 333: 331: 330: 325: 253: 239: 225: 211: 88:is important in 47:future evolution 3805: 3804: 3800: 3799: 3798: 3796: 3795: 3794: 3770: 3769: 3768: 3763: 3751: 3733: 3658: 3627:Milky Way novae 3563:Smallest volume 3507: 3488:Radial velocity 3411: 3405: 3357:Common envelope 3333: 3232: 3201:Helioseismology 3172:Bipolar outflow 3113:Microturbulence 3108:Convection zone 3089: 2983:Lithium burning 2970:Nucleosynthesis 2960: 2842: 2751: 2478: 2357: 2306:Molecular cloud 2287: 2274: 2269: 2193: 2184: 2104: 2079: 2074: 2073: 2050: 2046: 1997: 1993: 1952: 1948: 1917: 1913: 1902: 1895: 1887: 1883: 1870: 1866: 1858: 1854: 1846: 1842: 1834: 1830: 1825: 1802: 1795: 1792: 1783: 1781:Rapid evolution 1744: 1740: 1723: 1720: 1719: 1688: 1685: 1684: 1649: 1646: 1645: 1614: 1611: 1610: 1609:) of the star: 1588: 1585: 1584: 1562: 1559: 1558: 1544:nuclear physics 1505: 1494: 1491: 1490: 1481:, the ratio of 1479:adiabatic index 1461: 1457: 1452: 1446: 1442: 1434: 1431: 1430: 1400: 1399: 1388: 1387: 1385: 1375: 1360: 1353: 1349: 1333: 1332: 1321: 1320: 1318: 1316: 1313: 1312: 1282:is set to one. 1259: 1256: 1255: 1254:of the matter, 1235: 1232: 1231: 1205: 1201: 1192: 1188: 1181: 1167: 1165: 1146: 1145: 1134: 1133: 1131: 1129: 1126: 1125: 1081: 1077: 1070: 1065: 1055: 1036: 1035: 1024: 1023: 1021: 1019: 1016: 1015: 984: 980: 978: 975: 974: 950: 946: 928: 924: 902: 901: 890: 889: 887: 885: 882: 881: 850: 847: 846: 824: 821: 820: 791: 787: 765: 764: 753: 752: 750: 748: 745: 744: 711: 708: 707: 682: 679: 678: 655: 651: 640: 638: 619: 618: 607: 606: 604: 602: 599: 598: 561: 550: 545: 534: 531: 530: 514: 511: 510: 482: 479: 478: 457: 455: 452: 451: 426: 423: 422: 397: 394: 393: 368: 365: 364: 339: 336: 335: 310: 307: 306: 298:In forming the 271:and that it is 261: 260: 259: 258: 257: 254: 245: 244: 243: 240: 231: 230: 229: 226: 217: 216: 215: 212: 201: 191: 145: 142: 129: 126: 59: 17: 12: 11: 5: 3803: 3793: 3792: 3787: 3782: 3765: 3764: 3762: 3761: 3749: 3738: 3735: 3734: 3732: 3731: 3726: 3721: 3716: 3711: 3706: 3701: 3696: 3695: 3694: 3689: 3688: 3687: 3682: 3666: 3664: 3660: 3659: 3657: 3656: 3651: 3646: 3645: 3644: 3639: 3629: 3624: 3619: 3614: 3609: 3604: 3599: 3598: 3597: 3592: 3591: 3590: 3580: 3575: 3570: 3565: 3560: 3558:Largest volume 3555: 3550: 3545: 3535: 3534: 3533: 3528: 3517: 3515: 3509: 3508: 3506: 3505: 3500: 3495: 3490: 3485: 3484: 3483: 3478: 3473: 3463: 3458: 3453: 3448: 3443: 3442: 3441: 3436: 3431: 3426: 3415: 3413: 3407: 3406: 3404: 3403: 3398: 3397: 3396: 3391: 3386: 3376: 3371: 3370: 3369: 3364: 3359: 3354: 3343: 3341: 3335: 3334: 3332: 3331: 3326: 3321: 3316: 3311: 3306: 3301: 3296: 3291: 3286: 3281: 3276: 3271: 3269:Magnetic field 3266: 3261: 3256: 3251: 3246: 3240: 3238: 3234: 3233: 3231: 3230: 3225: 3220: 3215: 3210: 3205: 3204: 3203: 3193: 3192: 3191: 3186: 3179:Accretion disk 3176: 3175: 3174: 3169: 3159: 3158: 3157: 3155:AlfvĂ©n surface 3152: 3150:Stellar corona 3147: 3142: 3137: 3127: 3125:Radiation zone 3122: 3121: 3120: 3115: 3105: 3099: 3097: 3091: 3090: 3088: 3087: 3082: 3081: 3080: 3075: 3070: 3065: 3060: 3050: 3045: 3040: 3035: 3030: 3025: 3020: 3015: 3010: 3005: 3000: 2995: 2990: 2985: 2980: 2974: 2972: 2966: 2965: 2962: 2961: 2959: 2958: 2953: 2948: 2943: 2938: 2933: 2932: 2931: 2926: 2923: 2915: 2914: 2913: 2908: 2903: 2898: 2893: 2888: 2883: 2878: 2873: 2863: 2858: 2852: 2850: 2844: 2843: 2841: 2840: 2835: 2834: 2833: 2823: 2818: 2817: 2816: 2811: 2810: 2809: 2804: 2794: 2784: 2783: 2782: 2772: 2767: 2761: 2759: 2753: 2752: 2750: 2749: 2747:Blue straggler 2744: 2743: 2742: 2732: 2727: 2726: 2725: 2715: 2714: 2713: 2708: 2703: 2698: 2693: 2688: 2683: 2678: 2673: 2663: 2658: 2657: 2656: 2651: 2646: 2636: 2635: 2634: 2624: 2623: 2622: 2617: 2612: 2602: 2597: 2596: 2595: 2590: 2585: 2575: 2570: 2565: 2560: 2559: 2558: 2553: 2543: 2542: 2541: 2536: 2531: 2526: 2521: 2516: 2511: 2505:Main sequence 2503: 2498: 2492: 2486: 2484:Classification 2480: 2479: 2477: 2476: 2475: 2474: 2469: 2459: 2454: 2449: 2444: 2439: 2434: 2429: 2424: 2423: 2422: 2420:Protoplanetary 2412: 2407: 2406: 2405: 2400: 2390: 2389: 2388: 2378: 2373: 2367: 2365: 2359: 2358: 2356: 2355: 2350: 2345: 2340: 2339: 2338: 2333: 2328: 2323: 2313: 2308: 2303: 2297: 2295: 2289: 2288: 2286: 2285: 2279: 2276: 2275: 2268: 2267: 2260: 2253: 2245: 2239: 2238: 2229: 2222: 2216: 2207: 2200: 2192: 2191:External links 2189: 2188: 2187: 2182: 2169: 2153: 2142:10.1086/304333 2118:(1): 329–340, 2107: 2102: 2089: 2078: 2075: 2072: 2071: 2044: 1991: 1986:10.1086/341728 1962:(1): 323–348, 1946: 1941:10.1086/177381 1911: 1893: 1881: 1864: 1852: 1840: 1827: 1826: 1824: 1821: 1820: 1819: 1814: 1808: 1807: 1791: 1788: 1782: 1779: 1753: 1750: 1747: 1743: 1739: 1736: 1733: 1730: 1727: 1707: 1704: 1701: 1698: 1695: 1692: 1668: 1665: 1662: 1659: 1656: 1653: 1633: 1630: 1627: 1624: 1621: 1618: 1598: 1595: 1592: 1583:) and center ( 1572: 1569: 1566: 1512: 1508: 1504: 1501: 1498: 1483:specific heats 1464: 1460: 1455: 1449: 1445: 1441: 1438: 1427: 1426: 1415: 1409: 1397: 1382: 1379: 1373: 1367: 1364: 1359: 1356: 1352: 1348: 1342: 1330: 1263: 1239: 1228: 1227: 1216: 1208: 1204: 1200: 1195: 1191: 1187: 1184: 1179: 1176: 1173: 1170: 1164: 1161: 1155: 1143: 1104: 1103: 1092: 1084: 1080: 1076: 1073: 1069: 1062: 1059: 1054: 1051: 1045: 1033: 987: 983: 971: 970: 958: 953: 949: 945: 942: 939: 936: 931: 927: 923: 920: 917: 911: 899: 860: 857: 854: 834: 831: 828: 814: 813: 802: 799: 794: 790: 786: 783: 780: 774: 762: 715: 695: 692: 689: 686: 675: 674: 658: 654: 649: 646: 643: 637: 634: 628: 616: 564: 560: 557: 553: 548: 544: 541: 538: 518: 507:mean free path 486: 477:at a distance 466: 439: 436: 433: 430: 410: 407: 404: 401: 381: 378: 375: 372: 352: 349: 346: 343: 334:, temperature 323: 320: 317: 314: 255: 248: 247: 246: 241: 234: 233: 232: 227: 220: 219: 218: 213: 206: 205: 204: 203: 202: 190: 187: 143: 140: 127: 124: 58: 57:Heat transport 55: 15: 9: 6: 4: 3: 2: 3802: 3791: 3788: 3786: 3783: 3781: 3778: 3777: 3775: 3760: 3755: 3750: 3748: 3740: 3739: 3736: 3730: 3727: 3725: 3722: 3720: 3719:Intergalactic 3717: 3715: 3712: 3710: 3707: 3705: 3702: 3700: 3699:Galactic year 3697: 3693: 3690: 3686: 3683: 3681: 3678: 3677: 3676: 3673: 3672: 3671: 3668: 3667: 3665: 3661: 3655: 3652: 3650: 3647: 3643: 3640: 3638: 3635: 3634: 3633: 3630: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3608: 3605: 3603: 3600: 3596: 3593: 3589: 3586: 3585: 3584: 3581: 3579: 3578:Most luminous 3576: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3556: 3554: 3551: 3549: 3546: 3544: 3541: 3540: 3539: 3536: 3532: 3529: 3527: 3524: 3523: 3522: 3519: 3518: 3516: 3514: 3510: 3504: 3501: 3499: 3496: 3494: 3493:Proper motion 3491: 3489: 3486: 3482: 3479: 3477: 3474: 3472: 3469: 3468: 3467: 3464: 3462: 3459: 3457: 3456:Constellation 3454: 3452: 3449: 3447: 3444: 3440: 3437: 3435: 3432: 3430: 3427: 3425: 3424:Solar eclipse 3422: 3421: 3420: 3417: 3416: 3414: 3410:Earth-centric 3408: 3402: 3399: 3395: 3392: 3390: 3387: 3385: 3382: 3381: 3380: 3377: 3375: 3372: 3368: 3365: 3363: 3360: 3358: 3355: 3353: 3350: 3349: 3348: 3345: 3344: 3342: 3340: 3336: 3330: 3327: 3325: 3322: 3320: 3317: 3315: 3312: 3310: 3307: 3305: 3302: 3300: 3297: 3295: 3292: 3290: 3287: 3285: 3282: 3280: 3277: 3275: 3272: 3270: 3267: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3245: 3242: 3241: 3239: 3235: 3229: 3226: 3224: 3221: 3219: 3216: 3214: 3211: 3209: 3206: 3202: 3199: 3198: 3197: 3194: 3190: 3187: 3185: 3182: 3181: 3180: 3177: 3173: 3170: 3168: 3165: 3164: 3163: 3160: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3132: 3131: 3128: 3126: 3123: 3119: 3116: 3114: 3111: 3110: 3109: 3106: 3104: 3101: 3100: 3098: 3096: 3092: 3086: 3083: 3079: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3059: 3056: 3055: 3054: 3051: 3049: 3046: 3044: 3041: 3039: 3036: 3034: 3031: 3029: 3026: 3024: 3021: 3019: 3016: 3014: 3011: 3009: 3008:Alpha process 3006: 3004: 3001: 2999: 2996: 2994: 2991: 2989: 2986: 2984: 2981: 2979: 2976: 2975: 2973: 2971: 2967: 2957: 2954: 2952: 2949: 2947: 2944: 2942: 2939: 2937: 2934: 2930: 2927: 2924: 2922: 2919: 2918: 2916: 2912: 2909: 2907: 2904: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2868: 2867: 2864: 2862: 2859: 2857: 2854: 2853: 2851: 2849: 2845: 2839: 2836: 2832: 2829: 2828: 2827: 2824: 2822: 2819: 2815: 2812: 2808: 2805: 2803: 2800: 2799: 2798: 2795: 2793: 2790: 2789: 2788: 2785: 2781: 2780:Helium planet 2778: 2777: 2776: 2773: 2771: 2770:Parker's star 2768: 2766: 2763: 2762: 2760: 2758: 2754: 2748: 2745: 2741: 2738: 2737: 2736: 2733: 2731: 2728: 2724: 2721: 2720: 2719: 2716: 2712: 2709: 2707: 2704: 2702: 2701:Lambda Boötis 2699: 2697: 2694: 2692: 2689: 2687: 2684: 2682: 2679: 2677: 2674: 2672: 2669: 2668: 2667: 2664: 2662: 2659: 2655: 2652: 2650: 2647: 2645: 2642: 2641: 2640: 2637: 2633: 2630: 2629: 2628: 2625: 2621: 2618: 2616: 2613: 2611: 2608: 2607: 2606: 2603: 2601: 2598: 2594: 2591: 2589: 2586: 2584: 2581: 2580: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2557: 2554: 2552: 2549: 2548: 2547: 2544: 2540: 2537: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2512: 2510: 2507: 2506: 2504: 2502: 2499: 2497: 2494: 2493: 2490: 2487: 2485: 2481: 2473: 2470: 2468: 2467:Superluminous 2465: 2464: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2421: 2418: 2417: 2416: 2413: 2411: 2408: 2404: 2401: 2399: 2396: 2395: 2394: 2391: 2387: 2384: 2383: 2382: 2379: 2377: 2374: 2372: 2371:Main sequence 2369: 2368: 2366: 2364: 2360: 2354: 2351: 2349: 2348:Hayashi track 2346: 2344: 2341: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2319: 2318: 2317: 2314: 2312: 2309: 2307: 2304: 2302: 2299: 2298: 2296: 2294: 2290: 2284: 2281: 2280: 2277: 2273: 2266: 2261: 2259: 2254: 2252: 2247: 2246: 2243: 2236: 2234: 2230: 2227: 2223: 2220: 2217: 2214: 2211: 2208: 2205: 2201: 2198: 2195: 2194: 2185: 2183:0-03-006228-4 2179: 2175: 2170: 2167: 2163: 2159: 2154: 2151: 2147: 2143: 2139: 2135: 2131: 2126: 2121: 2117: 2113: 2108: 2105: 2103:0-387-20089-4 2099: 2095: 2090: 2086: 2081: 2080: 2067: 2063: 2059: 2055: 2048: 2040: 2036: 2032: 2028: 2024: 2020: 2015: 2010: 2006: 2002: 1995: 1987: 1983: 1979: 1975: 1970: 1965: 1961: 1957: 1950: 1942: 1938: 1934: 1930: 1926: 1922: 1915: 1908: 1907: 1900: 1898: 1890: 1885: 1878: 1874: 1868: 1861: 1856: 1849: 1844: 1837: 1832: 1828: 1818: 1815: 1813: 1810: 1809: 1805: 1799: 1794: 1787: 1778: 1776: 1771: 1770:of the star. 1769: 1751: 1748: 1745: 1741: 1737: 1731: 1725: 1705: 1702: 1696: 1690: 1682: 1666: 1663: 1657: 1651: 1631: 1628: 1622: 1616: 1596: 1593: 1590: 1570: 1567: 1564: 1556: 1551: 1549: 1545: 1541: 1537: 1533: 1528: 1526: 1510: 1506: 1502: 1499: 1496: 1488: 1484: 1480: 1462: 1458: 1453: 1447: 1443: 1439: 1436: 1413: 1407: 1395: 1380: 1377: 1371: 1365: 1362: 1357: 1354: 1350: 1346: 1340: 1328: 1311: 1310: 1309: 1307: 1303: 1300: 1296: 1295:mixing length 1292: 1288: 1283: 1281: 1277: 1261: 1253: 1237: 1214: 1206: 1202: 1198: 1193: 1189: 1185: 1182: 1177: 1174: 1171: 1168: 1162: 1159: 1153: 1141: 1124: 1123: 1122: 1120: 1119:main sequence 1115: 1113: 1109: 1090: 1082: 1078: 1074: 1071: 1067: 1060: 1057: 1052: 1049: 1043: 1031: 1014: 1013: 1012: 1010: 1005: 1003: 985: 981: 951: 947: 943: 940: 934: 929: 925: 921: 918: 915: 909: 897: 880: 879: 878: 877: 872: 858: 855: 852: 832: 829: 826: 818: 800: 797: 792: 788: 784: 781: 778: 772: 760: 743: 742: 741: 740: 738: 733: 729: 713: 690: 684: 656: 652: 647: 644: 641: 635: 632: 626: 614: 597: 596: 595: 593: 589: 585: 583: 577: 558: 546: 542: 539: 536: 516: 508: 504: 500: 484: 464: 434: 428: 405: 399: 392:, luminosity 376: 370: 347: 341: 318: 312: 305: 301: 296: 294: 290: 286: 282: 278: 274: 270: 266: 252: 238: 224: 210: 200: 196: 186: 183: 181: 177: 173: 169: 165: 161: 158: 154: 150: 146: 136: 134: 130: 121: 116: 114: 113:main sequence 109: 107: 102: 98: 93: 91: 87: 83: 79: 70: 66: 64: 54: 52: 48: 44: 40: 36: 32: 26: 21: 3622:White dwarfs 3612:Brown dwarfs 3595:Most distant 3543:Most massive 3521:Proper names 3481:Photographic 3434:Solar System 3412:observations 3339:Star systems 3162:Stellar wind 3145:Chromosphere 3118:Oscillations 3094: 2998:Helium flash 2848:Hypothetical 2826:X-ray binary 2765:Compact star 2600:Bright giant 2353:Henyey track 2331:Herbig Ae/Be 2231: 2197:opacity code 2173: 2157: 2115: 2111: 2093: 2084: 2057: 2053: 2047: 2004: 2000: 1994: 1959: 1955: 1949: 1924: 1920: 1914: 1905: 1884: 1867: 1855: 1843: 1831: 1812:Scale height 1804:Stars portal 1784: 1772: 1552: 1547: 1535: 1529: 1428: 1294: 1284: 1229: 1116: 1107: 1105: 1006: 972: 875: 873: 815: 735: 727: 676: 580: 578: 299: 297: 269:steady state 262: 184: 137: 120:solar masses 117: 110: 94: 90:white dwarfs 75: 60: 30: 29: 3675:Brown dwarf 3451:Circumpolar 3329:Kraft break 3309:Color index 3284:Metallicity 3244:Designation 3213:Cosmic dust 3135:Photosphere 2901:Dark-energy 2876:Electroweak 2861:Black dwarf 2792:Radio-quiet 2775:White dwarf 2661:White dwarf 2311:Bok globule 1850:, Tbl. 1.1) 1009:white dwarf 817:Integrating 289:temperature 176:ultraviolet 3774:Categories 3637:Candidates 3632:Supernovae 3617:Red dwarfs 3476:Extinction 3264:Kinematics 3259:Luminosity 3237:Properties 3130:Atmosphere 3028:Si burning 3018:Ne burning 2956:White hole 2929:Quasi-star 2856:Blue dwarf 2711:Technetium 2627:Hypergiant 2605:Supergiant 1823:References 1287:turbulence 1278:, and the 293:luminosity 193:See also: 182:envelope. 168:convective 78:convection 39:luminosity 3568:Brightest 3466:Magnitude 3446:Pole star 3367:Symbiotic 3362:Eclipsing 3294:Starlight 3095:Structure 3085:Supernova 3078:Micronova 3073:Recurrent 3058:Symbiotic 3043:p-process 3038:r-process 3033:s-process 3023:O burning 3013:C burning 2993:CNO cycle 2936:Gravastar 2472:Hypernova 2462:Supernova 2437:Dredge-up 2410:Blue loop 2403:super-AGB 2386:Red clump 2363:Evolution 2321:Protostar 2301:Accretion 2293:Formation 2014:0711.2590 1927:: 943–+, 1862:, §2.2.1) 1838:, §5.1.1) 1497:γ 1487:ideal gas 1437:γ 1366:γ 1358:− 1306:adiabatic 1302:ideal gas 1299:monatomic 1262:σ 1238:κ 1199:σ 1186:π 1175:ρ 1172:κ 1163:− 1075:π 1053:− 1002:neutrinos 986:ν 982:ϵ 952:ν 948:ϵ 944:− 941:ϵ 935:ρ 922:π 798:ρ 785:π 648:ρ 636:− 556:∇ 540:≪ 537:λ 517:λ 429:ϵ 313:ρ 199:Polytrope 180:radiative 164:CNO cycle 51:elemental 3747:Category 3642:Remnants 3538:Extremes 3498:Parallax 3471:Apparent 3461:Asterism 3439:Sunlight 3389:Globular 3374:Multiple 3299:Variable 3289:Rotation 3249:Dynamics 3140:Starspot 2814:Magnetar 2757:Remnants 2573:Subgiant 2546:Subdwarf 2398:post-AGB 2150:16835178 2039:16150778 1790:See also 1297:. For a 285:pressure 153:hydrogen 144:☉ 128:☉ 45:and the 3714:Gravity 3663:Related 3583:Nearest 3531:Chinese 3379:Cluster 3352:Contact 3189:Proplyd 3063:Remnant 2951:Blitzar 2925:Hawking 2881:Strange 2831:Burster 2787:Neutron 2740:Extreme 2691:He-weak 2336:T Tauri 2162:Bibcode 2130:Bibcode 2077:Sources 2062:Bibcode 2019:Bibcode 1974:Bibcode 1929:Bibcode 1891:, §5.1) 1879:, §7.1) 1477:is the 1274:is the 1252:opacity 1250:is the 1110:is the 730:is the 592:gravity 503:photons 304:density 172:ionized 106:opacity 101:buoyant 3704:Galaxy 3692:Planet 3680:Desert 3588:bright 3526:Arabic 3347:Binary 3167:Bubble 2891:Planck 2866:Exotic 2802:Binary 2797:Pulsar 2735:Helium 2696:Barium 2639:Carbon 2632:Yellow 2620:Yellow 2593:Yellow 2432:PG1159 2180:  2148:  2100:  2037:  1681:finite 1429:where 1230:where 1106:where 973:where 677:where 281:matter 160:fusion 157:helium 84:, but 41:, the 3709:Guest 3513:Lists 3394:Super 3048:Fusor 2921:Black 2906:Quark 2886:Preon 2871:Boson 2807:X-ray 2723:Shell 2676:Ap/Bp 2578:Giant 2496:Early 2442:OH/IR 2272:Stars 2226:BaSTI 2146:S2CID 2120:arXiv 2035:S2CID 2009:arXiv 1964:arXiv 1536:codes 265:model 151:, so 43:color 3384:Open 3279:Mass 3103:Core 3053:Nova 2946:Iron 2896:Dark 2706:Lead 2686:HgMn 2681:CEMP 2610:Blue 2583:Blue 2501:Late 2283:List 2224:The 2202:The 2178:ISBN 2098:ISBN 726:and 291:and 283:and 197:and 155:-to- 80:and 35:star 3685:Sub 3419:Sun 2838:SGR 2615:Red 2588:Red 2138:doi 2116:484 2058:162 2027:doi 2005:316 1982:doi 1960:576 1937:doi 1925:464 25:Sun 3776:: 2718:Be 2671:Am 2654:CH 2649:CN 2568:OB 2563:WR 2144:, 2136:, 2128:, 2114:, 2056:, 2033:, 2025:, 2017:, 2003:, 1980:, 1972:, 1958:, 1935:, 1923:, 1896:^ 1683:; 1489:, 1183:64 1114:. 576:. 509:, 92:. 65:. 2911:Q 2730:B 2644:S 2556:B 2551:O 2539:M 2534:K 2529:G 2524:F 2519:A 2514:B 2509:O 2264:e 2257:t 2250:v 2235:, 2215:. 2164:: 2140:: 2132:: 2122:: 2068:. 2064:: 2041:. 2029:: 2021:: 2011:: 1988:. 1984:: 1976:: 1966:: 1943:. 1939:: 1931:: 1752:f 1749:f 1746:e 1742:T 1738:= 1735:) 1732:R 1729:( 1726:T 1706:M 1703:= 1700:) 1697:R 1694:( 1691:m 1667:0 1664:= 1661:) 1658:0 1655:( 1652:m 1632:0 1629:= 1626:) 1623:R 1620:( 1617:P 1597:0 1594:= 1591:r 1571:R 1568:= 1565:r 1511:3 1507:/ 1503:5 1500:= 1463:v 1459:c 1454:/ 1448:p 1444:c 1440:= 1414:, 1408:r 1403:d 1396:P 1391:d 1381:P 1378:T 1372:) 1363:1 1355:1 1351:( 1347:= 1341:r 1336:d 1329:T 1324:d 1215:, 1207:3 1203:T 1194:2 1190:r 1178:l 1169:3 1160:= 1154:r 1149:d 1142:T 1137:d 1108:k 1091:, 1083:2 1079:r 1072:4 1068:l 1061:k 1058:1 1050:= 1044:r 1039:d 1032:T 1027:d 969:, 957:) 938:( 930:2 926:r 919:4 916:= 910:r 905:d 898:l 893:d 859:R 856:= 853:r 833:0 830:= 827:r 801:. 793:2 789:r 782:4 779:= 773:r 768:d 761:m 756:d 739:: 728:G 714:r 694:) 691:r 688:( 685:m 673:, 657:2 653:r 645:m 642:G 633:= 627:r 622:d 615:P 610:d 584:: 563:| 559:T 552:| 547:/ 543:T 485:r 465:r 460:d 438:) 435:r 432:( 409:) 406:r 403:( 400:l 380:) 377:r 374:( 371:P 351:) 348:r 345:( 342:T 322:) 319:r 316:( 149:K 141:M 125:M 122:(

Index


Sun
star
luminosity
color
future evolution
elemental
Radiative transfer

convection
radiative transfer
thermal conduction
white dwarfs
adiabatic process
buoyant
opacity
main sequence
solar masses
M
proton–proton chains
M
K
hydrogen
helium
fusion
CNO cycle
convective
ionized
ultraviolet
radiative

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑