Knowledge

Beryllium-10

Source πŸ“

252: 255:
Plot showing variations in solar activity, including variation in Be concentration which varies inversely with solar activity. (Note that the beryllium scale is inverted, so increases on this scale indicate lower beryllium-10
605:
S.V. Poluianov; G.A. Kovaltsov; A.L. Mishev; I.G. Usoskin (2016). "Production of cosmogenic isotopes Be, Be, C, Na, and Cl in the atmosphere: Altitudinal profiles of yield functions".
658:
G. Korschinek; A. Bergmaier; T. Faestermann; U. C. Gerstmann (2010). "A new value for the half-life of Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting".
790:
Paleari, Chiara I.; F. Mekhaldi; F. Adolphi; M. Christl; C. Vockenhuber; P. Gautschi; J. Beer; N. Brehm; T. Erhardt; H.-A. Synal; L. Wacker; F. Wilhelms; R. Muscheler (2022).
268:
5.5 (and rainwater above many industrialized areas can have a pH less than 5), it will dissolve and be transported to the Earth's surface via rainwater. As the
319:
in the carbon dioxide in air, and is one of the historical indicators of past activity at nuclear test sites. Be decay is a significant isotope used as a
733: 882: 502:
Tilley, D.R.; Kelley, J.H.; Godwin, J.L.; Millener, D.J.; Purcell, J.E.; Sheu, C.G.; Weller, H.R. (2004). "Energy levels of light nuclei".
232:
with a maximum energy of 556.2 keV. It decays through the reaction Be→B + e. Light elements in the atmosphere react with high energy
346:). This means more beryllium-10 is produced, and it can be detected millennia later. Beryllium-10 can thus serve as a marker of 581: 741: 529:
G.A. Kovaltsov; I.G. Usoskin (2010). "A new 3D numerical model of cosmogenic nuclide Be production in the atmosphere".
330:
The rate of production of beryllium-10 depends on the activity of the sun. When solar activity is low (low numbers of
568:. Physics of Earth and Space Environments. Vol. 26. Physics of Earth and Space Environments, Springer, Berlin. 877: 482: 472: 766: 477: 699:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
660:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
269: 792:"Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP" 367: 351: 127: 695:"Determination of the Be half-life by multicollector ICP-MS and liquid scintillation counting" 694: 391: 217: 209: 190: 754: 542: 803: 750: 706: 667: 624: 566:
Cosmogenic radionuclides: theory and applications in the terrestrial and space environments
538: 261: 8: 233: 807: 710: 671: 628: 826: 791: 640: 614: 587: 343: 327:
to characterize solar and extra-solar attributes of the past from terrestrial samples.
324: 657: 831: 644: 577: 444: 339: 229: 194: 91: 84: 30: 591: 515: 854: 821: 811: 758: 714: 675: 632: 604: 569: 546: 511: 427: 40: 355: 692: 816: 762: 718: 679: 550: 296: 137: 67: 573: 871: 412: 206: 50: 276:, beryllium drops out of solution. Cosmogenic Be thereby accumulates at the 835: 404: 347: 312: 292: 240:
of the reaction products is the source of Be (t, u particles like n or p):
172: 168: 858: 636: 436: 382: 251: 423: 418: 335: 320: 284:(1.387 million years) permits a long residence time before decaying to 237: 225: 163: 789: 395: 316: 281: 221: 213: 101: 619: 450: 308: 304: 300: 273: 563: 331: 849:
Philip Ball (Dec 19, 2001). "Flickering sun switched climate".
693:
J. Chmeleff; F. von Blanckenburg; K. Kossert; D. Jakob (2010).
285: 311:. It is also formed in nuclear explosions by a reaction of 277: 528: 501: 338:), the barrier against cosmic rays that exists beyond the 265: 291:
Be and its daughter product have been used to examine
216:. It is formed in the Earth's atmosphere mainly by 869: 725: 564:J. Beer; K. McCracken; R. von Steiger (2012). 731: 848: 220:of nitrogen and oxygen. Beryllium-10 has a 825: 815: 651: 618: 354:. There can be an effect on climate (see 883:Radionuclides used in radiometric dating 250: 732:Balco, Greg; Shuster, David L. (2009). 686: 870: 783: 557: 598: 522: 260:Because beryllium tends to exist in 742:Earth and Planetary Science Letters 280:surface, where its relatively long 13: 465: 224:of 1.39 Γ— 10 years, and decays by 14: 894: 842: 516:10.1016/j.nuclphysa.2004.09.059 495: 483:Brookhaven National Laboratory 244:N(t,5u)Be; Example: N(n,p Ξ±)Be 1: 459: 478:National Nuclear Data Center 7: 361: 10: 899: 817:10.1038/s41467-021-27891-4 763:10.1016/j.epsl.2009.07.025 719:10.1016/j.nimb.2009.09.012 680:10.1016/j.nimb.2009.09.020 551:10.1016/j.epsl.2010.01.011 344:Cosmic ray#Cosmic-ray flux 195:Complete table of nuclides 574:10.1007/978-3-642-14651-0 189: 179: 162: 157: 136: 126: 100: 90: 83: 66: 49: 45:beryllium-10, 10Be, Be-10 39: 29: 24: 734:"Al-Be–Ne burial dating" 755:2009E&PSL.286..570B 543:2010E&PSL.291..182K 531:Earth Planet. Sci. Lett 368:Surface exposure dating 352:774-775 carbon-14 spike 607:J. Geophys. Res. Atmos 257: 878:Isotopes of beryllium 473:"Decay Radiation: Be" 303:, the development of 272:quickly becomes more 254: 218:cosmic ray spallation 191:Isotopes of beryllium 20:Beryllium-10, Be 859:10.1038/news011220-9 637:10.1002/2016JD025034 16:Isotope of beryllium 808:2022NatCo..13..214P 711:2010NIMPB.268..192C 672:2010NIMPB.268..187K 629:2016JGRD..121.8125P 388:Beryllium-10 is an 325:cosmogenic nuclides 234:galactic cosmic ray 21: 258: 19: 613:(13): 8125–8136. 583:978-3-642-14650-3 504:Nuclear Physics A 457: 456: 342:is weakened (see 340:termination shock 200: 199: 92:Natural abundance 890: 863: 862: 846: 840: 839: 829: 819: 787: 781: 780: 778: 777: 771: 765:. Archived from 749:(3–4): 570–575. 738: 729: 723: 722: 690: 684: 683: 655: 649: 648: 622: 602: 596: 595: 561: 555: 554: 537:(1–4): 182–199. 526: 520: 519: 510:(3–4): 155–362. 499: 493: 492: 490: 489: 469: 441:of beryllium-10 376: 375: 182: 152: 150: 146: 122: 120: 113: 76: 59: 22: 18: 898: 897: 893: 892: 891: 889: 888: 887: 868: 867: 866: 847: 843: 788: 784: 775: 773: 769: 736: 730: 726: 691: 687: 656: 652: 603: 599: 584: 562: 558: 527: 523: 500: 496: 487: 485: 471: 470: 466: 462: 448: 440: 416: 402: 389: 380: 373: 364: 356:Homeric Minimum 307:and the age of 305:lateritic soils 236:particles. The 193: 180: 148: 144: 142: 118: 116: 111: 104: 70: 53: 17: 12: 11: 5: 896: 886: 885: 880: 865: 864: 841: 782: 724: 705:(2): 192–199. 685: 666:(2): 187–191. 650: 597: 582: 556: 521: 494: 463: 461: 458: 455: 454: 442: 433: 409: 408: 399: 386: 371: 370: 363: 360: 350:, such as the 297:soil formation 249: 248: 245: 198: 197: 187: 186: 183: 177: 176: 166: 160: 159: 155: 154: 140: 138:Binding energy 134: 133: 130: 124: 123: 114: 109: 98: 97: 94: 88: 87: 81: 80: 77: 64: 63: 60: 47: 46: 43: 37: 36: 33: 27: 26: 15: 9: 6: 4: 3: 2: 895: 884: 881: 879: 876: 875: 873: 860: 856: 852: 845: 837: 833: 828: 823: 818: 813: 809: 805: 801: 797: 793: 786: 772:on 2015-09-23 768: 764: 760: 756: 752: 748: 744: 743: 735: 728: 720: 716: 712: 708: 704: 700: 696: 689: 681: 677: 673: 669: 665: 661: 654: 646: 642: 638: 634: 630: 626: 621: 616: 612: 608: 601: 593: 589: 585: 579: 575: 571: 567: 560: 552: 548: 544: 540: 536: 532: 525: 517: 513: 509: 505: 498: 484: 480: 479: 474: 468: 464: 453: 452: 446: 443: 439: 438: 434: 432: 429: 425: 421: 420: 414: 413:Decay product 411: 410: 407: 406: 400: 398: 397: 393: 387: 385: 384: 378: 377: 374: 369: 366: 365: 359: 357: 353: 349: 348:Miyake events 345: 341: 337: 333: 328: 326: 322: 318: 314: 313:fast neutrons 310: 306: 302: 298: 294: 289: 287: 283: 279: 275: 271: 270:precipitation 267: 263: 253: 246: 243: 242: 241: 239: 235: 231: 227: 223: 219: 215: 211: 208: 204: 196: 192: 188: 184: 178: 174: 170: 167: 165: 161: 156: 141: 139: 135: 131: 129: 125: 121:10 years 115: 108: 103: 99: 95: 93: 89: 86: 82: 78: 74: 69: 65: 61: 57: 52: 48: 44: 42: 38: 34: 32: 28: 23: 850: 844: 802:(214): 214. 799: 795: 785: 774:. Retrieved 767:the original 746: 740: 727: 702: 698: 688: 663: 659: 653: 610: 606: 600: 565: 559: 534: 530: 524: 507: 503: 497: 486:. Retrieved 476: 467: 449: 435: 431: 417: 405:Beryllium-11 403: 390: 381: 372: 329: 323:measure for 293:soil erosion 290: 264:below about 259: 203:Beryllium-10 202: 201: 169:Decay energy 106: 85:Nuclide data 72: 55: 796:Nat. Commun 437:Decay chain 383:Beryllium-9 207:radioactive 158:Decay modes 872:Categories 776:2012-12-10 620:1606.05899 488:2013-10-16 460:References 419:lithium-11 336:solar wind 321:proxy data 238:spallation 228:to stable 226:beta decay 205:(Be) is a 164:Decay mode 645:119301845 401:Heavier: 396:beryllium 379:Lighter: 309:ice cores 282:half-life 262:solutions 247:O(t,7u)Be 222:half-life 214:beryllium 102:Half-life 836:35017519 592:55739885 451:boron-10 362:See also 334:and low 332:sunspots 301:regolith 274:alkaline 256:levels). 230:boron-10 68:Neutrons 827:8752676 804:Bibcode 751:Bibcode 707:Bibcode 668:Bibcode 625:Bibcode 539:Bibcode 392:isotope 210:isotope 51:Protons 25:General 851:Nature 834:  824:  643:  590:  580:  445:Decays 185:0.5560 31:Symbol 770:(PDF) 737:(PDF) 641:S2CID 615:arXiv 588:S2CID 315:with 299:from 96:trace 41:Names 832:PMID 578:ISBN 447:to: 415:of: 278:soil 151:0.08 128:Spin 117:1.39 855:doi 822:PMC 812:doi 759:doi 747:286 715:doi 703:268 676:doi 664:268 633:doi 611:121 570:doi 547:doi 535:291 512:doi 508:745 394:of 358:). 212:of 173:MeV 153:keV 145:976 110:1/2 874:: 853:. 830:. 820:. 810:. 800:13 798:. 794:. 757:. 745:. 739:. 713:. 701:. 697:. 674:. 662:. 639:. 631:. 623:. 609:. 586:. 576:. 545:. 533:. 506:. 481:. 475:. 426:, 295:, 288:. 266:pH 147:.3 143:64 132:0+ 35:Be 861:. 857:: 838:. 814:: 806:: 779:. 761:: 753:: 721:. 717:: 709:: 682:. 678:: 670:: 647:. 635:: 627:: 617:: 594:. 572:: 553:. 549:: 541:: 518:. 514:: 491:. 430:) 428:n 424:Ξ² 422:( 317:C 286:B 181:Ξ² 175:) 171:( 149:Β± 119:Γ— 112:) 107:t 105:( 79:6 75:) 73:N 71:( 62:4 58:) 56:Z 54:(

Index

Symbol
Names
Protons
Neutrons
Nuclide data
Natural abundance
Half-life
Spin
Binding energy
Decay mode
Decay energy
MeV
Isotopes of beryllium
Complete table of nuclides
radioactive
isotope
beryllium
cosmic ray spallation
half-life
beta decay
boron-10
galactic cosmic ray
spallation

solutions
pH
precipitation
alkaline
soil
half-life

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑