Knowledge

Carnot method

Source 📝

47:. Thus, the Carnot method is a form of an exergetic allocation method. It uses mean heat grid temperatures at the output of the process as a calculation basis. The Carnot method's advantage is that no external reference values are required to allocate the input to the different output streams; only endogenous process parameters are needed. Thus, the allocation results remain unbiased of assumptions or external reference values that are open for discussion. 449:
declines. Exergy does not only consider energy but also energy quality. It can be considered a product of both. Therefore any energy transformation should also be assessed according to its exergetic efficiency or loss ratios. The quality of the product "thermal energy" is fundamentally determined by
378:
The reciprocal value of the fuel factor (f-intensity) describes the effective efficiency of the assumed sub-process, which in case of CHP is only responsible for electrical or thermal energy generation. This equivalent efficiency corresponds to the effective efficiency of a "virtual boiler" or a
512:
The main application area of this method is cogeneration, but it can also be applied to other processes generating a joint products, such as a chiller generating cold and producing
1060:
EN 15316-4-5:2017 Energy performance of buildings - Method for calculation of system energy requirements and system efficiencies - Part 4-5: District heating and cooling
678:
describes the backward transformation. A reversible transformation is assumed, in order not to favour any of the two directions. Because of the exchangeability of
454:
describes how much of the fuel's potential to generate physical work remains in the joint energy products. With cogeneration the result is the following relation:
204:
In heating systems, a good approximation for the upper temperature is the average between forward and return flow on the distribution side of the heat exchanger.
994:
Tereshchenko, Tymofii; Nord, Natasa (2015-02-05), "Uncertainty of the allocation factors of heat and electricity production of combined cycle power plant",
437:
Next to the efficiency factor which describes the quantity of usable end energies, the quality of energy transformation according to the
1054: 613:
has to be solved, which is possible with a lot of adequate tuples. As second equation, the physical transformation of product
1048:
A novel exergy-based concept of thermodynamic quality and its application to energy system evaluation and process analysis
249: 137:: allocation factor for electrical energy, i.e. the share of the fuel input which is allocated to electricity production 516:
which could be used for low temperature heat demand, or a refinery with different liquid fuels plus heat as an output.
334:
To obtain the primary energy factors of cogenerated heat and electricity, the energy prechain needs to be considered.
546:
is a factor for rating the relevant product in the domain of primary energy, or fuel costs, or emissions, etc.
143:: allocation factor for thermal energy, i.e. the share of the fuel input which is allocated to heat production 970: 1034:
Allocating carbon dioxide emissions from cogeneration systems: descriptions of selected output-based methods
975: 438: 63:
for the thermal energy H (useful heat) respectively, can be calculated accordingly to the first and second
27:, end energy) in joint production processes that generate two or more energy products in one process (e.g. 1047: 1084: 1033: 1040: 64: 1066:, 2018-12-11. Annex V, C. Methodology, b) and Annex VI, B. Methodology, d) 1079: 965: 450:
the mean temperature level at which this heat is delivered. Hence, the exergetic efficiency η
220:
or - if more thermodynamic precision is needed - the logarithmic mean temperature is used
8: 1007: 244:
If process steam is delivered which condenses and evaporates at the same temperature, T
1064:
Directive (EU) 2018/2001 on the promotion of the use of energy from renewable sources
960: 44: 1089: 1036:, Journal of Cleaner Production, Volume 16, Issue 2, January 2008, p. 171–177. 1011: 1003: 1057:, Energy systems - Combined heat and power - Allocation and evaluation, Juli 2008. 1063: 59:
which is needed to generate the combined product electrical energy W (work) and a
43:) is used as the distribution key. For heat this potential can be assessed the 24: 1073: 955: 692:, the assessment of the two sides of the equation above with the two factors 32: 950: 28: 1016: 1039:
Andrej Jentsch: The Carnot-Method for Allocation of Fuel and Emissions,
513: 423:: effective efficiency of electricity generation within the CHP process 31:
or trigeneration). It is also suited to allocate other streams such as
766:
If we put this into the first equation, we see the following steps:
442: 429:: effective efficiency of heat generation within the CHP process 446: 40: 503:= exergetic efficiency of the virtual electricity-only process 260:
The fuel intensity or the fuel factor for electrical energy f
39:
or variable costs. The potential to provide physical work (
432: 706:
should therefore result in an equivalent outcome. Output
509:= exergetic efficiency of the virtual heat-only process 475:
The allocation with the Carnot method always results in:
23:
is an allocation procedure for dividing up fuel input (
549:evaluation of the input = evaluation of the output 1071: 993: 497:= exergetic efficiency of the combined process 268:is the relation of specific input to output. 201:: upper temperature, superior (useful heat) 524:Let's assume a joint production with Input 172:: Total heat, fuel or primary energy input 519: 379:"virtual generator" within the CHP plant. 189:(Carnot factor for electrical energy is 1) 1015: 599:are known. An equation with two unknowns 370:: primary energy factor of the used fuel 50: 329: 195:: lower temperature, inferior (ambient) 433:Performance factor of energy conversion 373: 1072: 1008:10.1016/j.applthermaleng.2014.11.019 720:shall be the same as the amount of 250:saturated steam of a given pressure 13: 1026: 650:is the transformation factor from 14: 1101: 1043:, Vol 12 II, 2015, p. 26-28. 1050:, dissertation, TU Berlin, 2010. 1002:, Amsterdam: Elsevier: 410–422, 441:is also important. With rising 987: 255: 1: 1053:Verein Deutscher Ingenieure: 981: 976:Second law of thermodynamics 7: 996:Applied Thermal Engineering 971:Nicolas Léonard Sadi Carnot 944: 16:Energy allocation procedure 10: 1106: 248:is the temperature of the 1055:VDI-Guideline 4608 Part 2 574:The factor for the input 627:and vice versa is used. 520:Mathematical derivation 581:and the quantities of 264:resp. thermal energy f 65:laws of thermodynamics 51:Fuel allocation factor 966:Joint product pricing 330:Primary energy factor 535:and a second output 374:Effective efficiency 885:) or respectively f 734:and evaluated with 528:and a first output 181:: Carnot factor 1-T 164:W: electrical work 1041:EuroHeat&Power 1085:Energy conversion 961:Power loss factor 45:Carnot efficiency 1097: 1046:Andrej Jentsch: 1021: 1020: 1019: 991: 55:The fuel share a 1105: 1104: 1100: 1099: 1098: 1096: 1095: 1094: 1070: 1069: 1029: 1027:Further reading 1024: 992: 988: 984: 947: 939: 932: 924: 917: 908: 904: 900: 896: 892: 888: 884: 880: 876: 872: 868: 861: 857: 853: 849: 845: 838: 834: 830: 826: 822: 815: 811: 807: 803: 799: 792: 788: 784: 780: 776: 772: 763: 759: 755: 751: 747: 739: 732: 727:generated from 725: 718: 713:evaluated with 711: 704: 697: 690: 683: 676: 669: 662: 655: 648: 641: 637: 633: 625: 618: 611: 604: 597: 590: 579: 571: 567: 563: 559: 555: 540: 533: 522: 508: 504: 502: 498: 496: 492: 490: 489: 488: 484: 480: 476: 472: 468: 464: 460: 453: 435: 428: 424: 422: 418: 416: 415: 414: 410: 406: 402: 398: 397: 393: 389: 385: 376: 369: 365: 363: 362: 361: 357: 353: 349: 348: 344: 340: 332: 325: 321: 317: 313: 309: 305: 301: 294: 290: 286: 282: 278: 274: 267: 263: 258: 247: 243: 241: 237: 233: 229: 225: 221: 219: 217: 213: 209: 205: 200: 196: 194: 190: 188: 184: 180: 176: 171: 167: 166:H: useful heat 165: 163: 162: 158: 154: 153: 149: 142: 138: 136: 132: 130: 129: 127: 123: 116: 112: 108: 104: 100: 96: 89: 85: 81: 77: 73: 62: 58: 53: 36: 17: 12: 11: 5: 1103: 1093: 1092: 1087: 1082: 1068: 1067: 1061: 1058: 1051: 1044: 1037: 1028: 1025: 1023: 1022: 985: 983: 980: 979: 978: 973: 968: 963: 958: 953: 946: 943: 937: 930: 922: 915: 906: 902: 898: 894: 890: 886: 882: 878: 874: 870: 866: 859: 855: 851: 847: 843: 836: 832: 828: 824: 820: 813: 809: 805: 801: 797: 790: 786: 782: 778: 774: 770: 761: 757: 753: 749: 745: 737: 730: 723: 716: 709: 702: 695: 688: 681: 674: 667: 664:, the inverse 660: 653: 646: 639: 635: 631: 623: 616: 609: 602: 595: 588: 577: 569: 565: 561: 557: 553: 538: 531: 521: 518: 506: 500: 494: 486: 482: 478: 470: 466: 462: 458: 451: 434: 431: 426: 420: 412: 408: 404: 400: 395: 391: 387: 383: 375: 372: 367: 359: 355: 351: 346: 342: 338: 331: 328: 323: 319: 315: 311: 307: 303: 299: 292: 288: 284: 280: 276: 272: 265: 261: 257: 254: 245: 239: 235: 231: 227: 223: 215: 211: 207: 198: 192: 186: 182: 178: 169: 160: 156: 151: 147: 140: 134: 125: 121: 114: 110: 106: 102: 98: 94: 87: 83: 79: 75: 71: 60: 56: 52: 49: 34: 25:primary energy 15: 9: 6: 4: 3: 2: 1102: 1091: 1088: 1086: 1083: 1081: 1078: 1077: 1075: 1065: 1062: 1059: 1056: 1052: 1049: 1045: 1042: 1038: 1035: 1031: 1030: 1018: 1017:11250/2581526 1013: 1009: 1005: 1001: 997: 990: 986: 977: 974: 972: 969: 967: 964: 962: 959: 957: 956:Variable cost 954: 952: 949: 948: 942: 941: 933: 926: 918: 910: 863: 840: 817: 794: 767: 764: 742: 740: 733: 726: 719: 712: 705: 698: 691: 684: 677: 670: 663: 656: 649: 642: 628: 626: 619: 612: 605: 598: 591: 584: 580: 572: 550: 547: 545: 541: 534: 527: 517: 515: 510: 473: 455: 448: 444: 440: 430: 380: 371: 335: 327: 296: 269: 253: 251: 202: 173: 144: 118: 91: 68: 66: 48: 46: 42: 38: 30: 26: 22: 21:Carnot method 1080:Cogeneration 1032:Marc Rosen: 999: 995: 989: 951:Cogeneration 935: 928: 920: 913: 911: 864: 841: 818: 795: 768: 765: 743: 735: 728: 721: 714: 707: 700: 693: 686: 679: 672: 665: 658: 651: 644: 643: 629: 621: 614: 607: 600: 593: 586: 582: 575: 573: 551: 548: 543: 536: 529: 525: 523: 511: 474: 456: 436: 381: 377: 336: 333: 297: 270: 259: 203: 174: 145: 119: 92: 69: 67:as follows: 54: 29:cogeneration 20: 18: 439:entropy law 256:Fuel factor 1074:Categories 982:References 514:waste heat 37:-emissions 556:· I = f 283:= 1 / (η 945:See also 234:) / ln(T 74:= (1 · η 1090:Pricing 800:· I = f 773:· I = f 495:x,total 479:x,total 459:x,total 443:entropy 427:th, eff 421:el, eff 411:= 1 / f 401:th, eff 394:= 1 / f 384:el, eff 120:Note: a 831:/I + η 592:, and 447:exergy 218:) / 2 105:) / (η 78:) / (η 41:exergy 912:with 756:) = f 657:into 417:with 364:with 352:PE,th 339:PE,el 159:= H/Q 150:= W/Q 927:and 897:/ (η 873:/ (η 850:· (η 839:/I) 827:· (O 804:· (O 785:· (η 748:· (η 699:and 685:and 606:and 507:x,th 501:x,el 491:with 487:x,th 483:x,el 413:F,th 396:F,el 368:PE,F 360:PE,F 356:F,th 347:PE,F 343:F,el 314:/ (η 300:F,th 273:F,el 266:F,th 262:F,el 226:= (T 210:= (T 175:and 131:with 97:= (η 19:The 1012:hdl 1004:doi 905:· η 901:+ η 893:· f 889:= η 881:· η 877:+ η 869:= f 858:· η 854:+ η 846:= f 835:· O 823:= f 812:· O 808:+ η 789:× O 781:+ f 777:· O 760:· O 752:· O 666:1/η 638:· O 634:= η 620:in 568:· O 564:+ f 560:· O 485:= η 481:= η 469:· η 465:+ η 461:= η 407:/ a 403:= η 390:/ a 386:= η 358:· f 354:= f 345:· f 341:= f 322:· η 318:+ η 310:= η 306:/ η 302:= a 291:· η 287:+ η 279:/ η 275:= a 128:= 1 124:+ a 113:· η 109:+ η 101:· η 86:· η 82:+ η 1076:: 1010:, 1000:76 998:, 940:/I 934:= 925:/I 919:= 909:) 903:21 891:21 879:21 862:) 856:21 833:21 816:) 810:21 793:) 787:21 750:21 741:. 675:12 668:21 647:21 636:21 585:, 542:. 471:th 463:el 445:, 409:th 405:th 392:el 388:el 326:) 324:th 316:el 308:th 304:th 295:) 293:th 285:el 281:el 277:el 252:. 242:) 240:RF 238:/T 236:FF 232:RF 230:-T 228:FF 216:RF 214:+T 212:FF 185:/T 157:th 148:el 141:th 135:el 126:th 122:el 117:) 115:th 107:el 103:th 95:th 90:) 88:th 80:el 76:el 72:el 61:th 57:el 33:CO 1014:: 1006:: 938:2 936:O 931:2 929:η 923:1 921:O 916:1 914:η 907:2 899:1 895:i 887:2 883:2 875:1 871:i 867:1 865:f 860:2 852:1 848:1 844:i 842:f 837:2 829:1 825:1 821:i 819:f 814:2 806:1 802:1 798:i 796:f 791:2 783:1 779:1 775:1 771:i 769:f 762:2 758:2 754:2 746:1 744:f 738:1 736:f 731:2 729:O 724:1 722:O 717:2 715:f 710:2 708:O 703:2 701:f 696:1 694:f 689:2 687:O 682:1 680:O 673:η 671:= 661:1 659:O 654:2 652:O 645:η 640:2 632:1 630:O 624:2 622:O 617:1 615:O 610:2 608:f 603:1 601:f 596:2 594:O 589:1 587:O 583:I 578:i 576:f 570:2 566:2 562:1 558:1 554:i 552:f 544:f 539:2 537:O 532:1 530:O 526:I 505:η 499:η 493:η 477:η 467:c 457:η 452:x 425:η 419:η 399:η 382:η 366:f 350:f 337:f 320:c 312:c 298:f 289:c 271:f 246:s 224:s 222:T 208:s 206:T 199:s 197:T 193:i 191:T 187:s 183:i 179:c 177:η 170:F 168:Q 161:F 155:η 152:F 146:η 139:a 133:a 111:c 99:c 93:a 84:c 70:a 35:2

Index

primary energy
cogeneration
CO2-emissions
exergy
Carnot efficiency
laws of thermodynamics
saturated steam of a given pressure
entropy law
entropy
exergy
waste heat
Cogeneration
Variable cost
Power loss factor
Joint product pricing
Nicolas Léonard Sadi Carnot
Second law of thermodynamics
doi
10.1016/j.applthermaleng.2014.11.019
hdl
11250/2581526
Allocating carbon dioxide emissions from cogeneration systems: descriptions of selected output-based methods
EuroHeat&Power
A novel exergy-based concept of thermodynamic quality and its application to energy system evaluation and process analysis
VDI-Guideline 4608 Part 2
Directive (EU) 2018/2001 on the promotion of the use of energy from renewable sources
Categories
Cogeneration
Energy conversion
Pricing

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.