Knowledge

Cell culturing in open microfluidics

Source đź“ť

294:. Not only does this allow for the ease of manipulating the environment of the cells, but having an open channel wall allows for a better understanding of biological interactions at this interface. Creating designs of microfluidic platforms with different compartments that are isolated and have different dimensions allows for co-culturing of several types of cells. These devices often incorporate droplet formation to encapsulate cells and act as transport and reaction vehicles in two or more immiscible phases, making it possible to carry out numerous parallel analyses using different conditions. Open microfluidics has also been coupled with fluorescence-activated 269:(SCF), and exposes cells to the surrounding environment. The miniaturization of this process allows for improved sensitivity, high throughput, and ease of manipulation and integration, as well as dimensions that can be more physiologically relevant. The benefits of both open and closed microfluidic platforms have allowed the option for the combination of the two, where the device is open for the introduction and culturing of cells, and can be sealed prior to analysis. 63: 22: 165: 298:(FACS) to allow for cells to be contained in individually sorted compartments in an open microfluidic network for culturing in an exposed environment. The exposure of one of the channel walls introduces the issue of evaporation and therefore cell loss, however this issue can be minimized by using droplet microfluidics where the cell-containing droplets are submerged in a 289:
conditioned medium to simulate the desired cell populations in traditional close-channel microfluidic devices. The challenge to support the cell growth and simultaneously study multiple cell types in a single device with an exposed channel is that the interactions between cells in this medium needs
326:
into the culture medium have both been posed as issues of using PDMS for biological studies, however these can be reduced by adopting pretreatment procedures to create optimal environments. Advantages of using PDMS include the ease of surface modification, low cost, biocompatibility, and optical
358:
and the cell culture medium is passively transported to the culture areas. A major advantage of this type of open-microfluidics includes the low cost, the variety of dimensions of porous papers that are commercially available, improved cell viability, adhesion, and migration over tissue culture
302:
oil. Although evaporation is a major disadvantage of using an open microfluidic system for cell culturing, the advantages over a closed system include ease of manipulation and access to the cells. For certain applications, such as the study of drug transport and lung function using
343:. Devices created with polystyrene by these methods include microfluidic platforms that integrate several microfluidic systems, creating arrays to study several cell cultures simultaneously. Another type of material that is used for open-microfluidic cell culturing is 327:
transparency. In addition, PDMS is an attractive material to use for generating oxygen gradients for cell culturing in studies that involve monitoring ROS governed cellular pathways due to its oxygen permeability. Plastics such as
688:
Nalayanda, Divya D.; Puleo, Christopher; Fulton, William B.; Sharpe, Leilani M.; Wang, Tza-Huei; Abdullah, Fizan (2009-05-30). "An open-access microfluidic model for lung-specific functional studies at an air-liquid interface".
387:
Lin, Dongguo; Li, Peiwen; Lin, Jinqiong; Shu, Bowen; Wang, Weixin; Zhang, Qiong; Yang, Na; Liu, Dayu; Xu, Banglao (2017-10-31). "Orthogonal Screening of Anticancer Drugs Using an Open-Access Microfluidic Tissue Array System".
1300:
YAN, Wei; ZHANG, Qiong; CHEN, Bin; LIANG, Guang-Tie; LI, Wei-Xuan; ZHOU, Xiao-Mian; LIU, Da-Yu (June 2013). "Study on Microenvironment Acidification by Microfluidic Chip with Multilayer-paper Supported Breast Cancer Tissue".
359:
plates. In addition, it is an attractive substrate for 3D cell culture devices due to its ability to incorporate essential characteristics such as oxygen and nutrient gradients, fluid flow that can control
290:
to be controlled since the timing and location of the interactions is critical. This issue can be addressed in several ways including the modification of the device design, using droplet microfluidics, and
967:
Regehr, Keil J.; Domenech, Maribella; Koepsel, Justin T.; Carver, Kristopher C.; Ellison-Zelski, Stephanie J.; Murphy, William L.; Schuler, Linda A.; Alarid, Elaine T.; Beebe, David J. (2009).
491:
Lovchik, Robert D.; Bianco, Fabio; Tonna, Noemi; Ruiz, Ana; Matteoli, Michela; Delamarche, Emmanuel (May 2010). "Overflow Microfluidic Networks for Open and Closed Cell Cultures on Chip".
281:
can be patterned in microfluidic devices with one of the channel walls exposed in different geometries and designs depending on the behaviors and interactions to be studied, such as
829:
Birchler, Axel; Berger, Mischa; Jäggin, Verena; Lopes, Telma; Etzrodt, Martin; Misun, Patrick Mark; Pena-Francesch, Maria; Schroeder, Timm; Hierlemann, Andreas (2016-01-06).
1023:
Halldorsson, S., Lucumi, E., Gómez-Sjöberg, R., & Fleming, R. M. T. (2015). Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.
831:"Seamless Combination of Fluorescence-Activated Cell Sorting and Hanging-Drop Networks for Individual Handling and Culturing of Stem Cells and Microtissue Spheroids" 1075:
Young, Edmond W. K.; Berthier, Erwin; Guckenberger, David J.; Sackmann, Eric; Lamers, Casey; Meyvantsson, Ivar; Huttenlocher, Anna; Beebe, David J. (2011-02-15).
742:"Microfluidic Confinement of Single Cells of Bacteria in Small Volumes Initiates High-Density Behavior of Quorum Sensing and Growth and Reveals Its Variability" 186: 35: 801:
Kaigala, G. V., Lovchik, R. D., & Delamarche, E. (2012). Microfluidics in the “open Space” for performing localized chemistry on biological interfaces.
84: 77: 1218:
Ng, K., Gao, B., Yong, K. W., Li, Y., Shi, M., Zhao, X., … Xu, F. (2017). Paper-based cell culture platform and its emerging biomedical applications.
639: 885:
Casavant, B. P., Berthier, E., Theberge, A. B., Berthier, J., Montanez-Sauri, S. I., Bischel, L. L., … Beebe, D. J. (2013). Suspended microfluidics.
546:
Lee, J. J., Berthier, J., Brakke, K. A., Dostie, A. M., Theberge, A. B., & Berthier, E. (2018). Droplet Behavior in Open Biphasic Microfluidics.
127: 1243:
Mosadegh, Bobak; Dabiri, Borna E.; Lockett, Matthew R.; Derda, Ratmir; Campbell, Patrick; Parker, Kevin Kit; Whitesides, George M. (2014-02-12).
99: 638:
Lee, Sung Hoon; Heinz, Austen James; Shin, Sunghwan; Jung, Yong-Gyun; Choi, Sung-Eun; Park, Wook; Roe, Jung-Hye; Kwon, Sunghoon (April 2010).
433:"An open access microfluidic device for the study of the physical limits of cancer cell deformation during migration in confined environments" 106: 173: 113: 1047:
Lo, J. F., Sinkala, E., & Eddington, D. T. (2010). Oxygen gradients for open well cellular cultures via microfluidic substrates.
41: 95: 910:
Li, Chao; Yu, Jiaquan; Schehr, Jennifer; Berry, Scott M.; Leal, Ticiana A.; Lang, Joshua M.; Beebe, David J. (2018-05-08).
285:
or co-culturing of several types of cells. A majority of cell culturing has been carried out by introducing the cells in a
318:(PDMS) is a common material for open microfluidic devices that introduces additional advantages and disadvantages. The 912:"Exclusive Liquid Repellency: An Open Multi-Liquid-Phase Technology for Rare Cell Culture and Single-Cell Processing" 211: 146: 49: 120: 1132:
Guckenberger, David J.; de Groot, Theodorus E.; Wan, Alwin M. D.; Beebe, David J.; Young, Edmond W. K. (2015).
1191:
Tao, F. F., Xiao, X., Lei, K. F., & Lee, I. C. (2015). Paper-based cell culture microfluidic system.
347:. Cell culturing on paper-based microfluidic devices is accomplished either by encapsulating cells in a 254: 344: 257:
and sample volume requirement, however using open microfluidic channels adds the benefit of removing
178: 73: 1342: 1347: 253:
The use of conventional microfluidic devices for cell studies has already improved upon the
315: 8: 1077:"Rapid Prototyping of Arrayed Microfluidic Systems in Polystyrene for Cell-Based Assays" 1277: 1244: 1166: 1133: 1109: 1076: 1001: 968: 944: 911: 863: 830: 774: 741: 722: 610: 577: 465: 432: 336: 304: 225: 1314: 1318: 1282: 1264: 1171: 1153: 1114: 1096: 1006: 988: 949: 931: 868: 850: 779: 761: 714: 706: 667: 659: 615: 597: 526: 518: 470: 452: 413: 405: 340: 332: 238: 1134:"Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices" 726: 322:
of small biological molecules from cell culturing samples as well as the release of
1310: 1272: 1256: 1227: 1200: 1161: 1145: 1104: 1088: 1056: 1032: 996: 980: 939: 923: 894: 858: 842: 810: 769: 753: 698: 651: 605: 589: 555: 508: 500: 460: 444: 397: 266: 1231: 969:"Biological implications of polydimethylsiloxane-based microfluidic cell culture" 846: 559: 401: 262: 234: 431:
Malboubi, Majid; Jayo, Asier; Parsons, Maddy; Charras, Guillaume (August 2015).
1036: 640:"Capillary Based Patterning of Cellular Communities in Laterally Open Channels" 360: 282: 258: 242: 1204: 702: 448: 1336: 1322: 1268: 1157: 1100: 992: 935: 854: 765: 710: 663: 601: 522: 456: 409: 331:
can be used to create microfluidic devices by embossing and bonding methods,
898: 740:
Boedicker, James Q.; Vincent, Meghan E.; Ismagilov, Rustem F. (2009-07-27).
1286: 1260: 1175: 1118: 1010: 953: 927: 872: 814: 783: 757: 718: 671: 619: 530: 474: 417: 355: 299: 295: 291: 328: 1149: 513: 319: 1092: 655: 593: 504: 1060: 984: 352: 323: 286: 62: 364: 348: 1074: 278: 576:
Schneider, Thomas; Kreutz, Jason; Chiu, Daniel T. (2013-03-15).
164: 363:, and stacking filter papers with different cells suspended in 307:
cells, air exposure to is essential for developing the lungs.
1131: 966: 1245:"Three-Dimensional Paper-Based Model for Cardiac Ischemia" 1242: 687: 578:"The Potential Impact of Droplet Microfluidics in Biology" 430: 828: 739: 367:
to monitor cellular interactions or complex populations.
490: 575: 1299: 1334: 637: 909: 887:Proceedings of the National Academy of Sciences 386: 50:Learn how and when to remove these messages 1276: 1165: 1108: 1000: 943: 862: 803:Angewandte Chemie - International Edition 773: 609: 512: 464: 212:Learn how and when to remove this message 147:Learn how and when to remove this message 229:can be employed in the multidimensional 189:of all important aspects of the article. 1303:Chinese Journal of Analytical Chemistry 746:Angewandte Chemie International Edition 1335: 1070: 1068: 916:ACS Applied Materials & Interfaces 185:Please consider expanding the lead to 96:"Cell culturing in open microfluidics" 83:Please improve this article by adding 1214: 1212: 1187: 1185: 824: 822: 248: 797: 795: 793: 683: 681: 633: 631: 629: 571: 569: 567: 542: 540: 486: 484: 382: 380: 351:or directly seeding them in stacked 158: 56: 15: 1065: 233:for various applications including 13: 1209: 1182: 819: 237:studies, oxygen-driven reactions, 14: 1359: 790: 678: 626: 564: 537: 481: 377: 31:This article has multiple issues. 245:, and other cellular pathways. 163: 61: 20: 1293: 1236: 1125: 1041: 1017: 960: 903: 879: 261:to drive flow, now governed by 177:may be too short to adequately 39:or discuss these issues on the 733: 424: 187:provide an accessible overview 1: 1315:10.1016/s1872-2040(13)60661-1 1249:Advanced Healthcare Materials 1025:Biosensors and Bioelectronics 370: 85:secondary or tertiary sources 1232:10.1016/j.mattod.2016.07.001 847:10.1021/acs.analchem.5b03513 560:10.1021/acs.langmuir.8b00380 402:10.1021/acs.analchem.7b02021 7: 437:Microelectronic Engineering 10: 1364: 1037:10.1016/j.bios.2014.07.029 1205:10.1007/s13206-015-9202-7 703:10.1007/s10544-009-9325-5 449:10.1016/j.mee.2015.02.022 345:paper-based microfluidics 272: 899:10.1073/pnas.1302566110 691:Biomedical Microdevices 310: 265:that drive spontaneous 231:culturing of cell types 1261:10.1002/adhm.201300575 928:10.1021/acsami.8b03627 815:10.1002/anie.201201798 758:10.1002/anie.200901550 72:relies excessively on 1081:Analytical Chemistry 835:Analytical Chemistry 644:Analytical Chemistry 582:Analytical Chemistry 493:Analytical Chemistry 390:Analytical Chemistry 316:Polydimethylsiloxane 922:(20): 17065–17070. 893:(25), 10111–10116. 809:(45), 11224–11240. 396:(22): 11976–11984. 305:alveolar epithelium 1150:10.1039/C5LC00234F 255:cost effectiveness 249:Usage and benefits 226:Open microfluidics 1144:(11): 2364–2378. 1093:10.1021/ac102897h 1055:(18), 2394–2401. 979:(15): 2132–2139. 752:(32): 5908–5911. 656:10.1021/ac902903q 594:10.1021/ac400257c 554:(18), 5358–5366. 505:10.1021/ac100771r 341:stereolithography 337:injection molding 239:neurodegeneration 222: 221: 214: 204: 203: 157: 156: 149: 131: 54: 1355: 1327: 1326: 1297: 1291: 1290: 1280: 1255:(7): 1036–1043. 1240: 1234: 1216: 1207: 1189: 1180: 1179: 1169: 1129: 1123: 1122: 1112: 1087:(4): 1408–1417. 1072: 1063: 1061:10.1039/c004660d 1045: 1039: 1021: 1015: 1014: 1004: 985:10.1039/b903043c 964: 958: 957: 947: 907: 901: 883: 877: 876: 866: 841:(2): 1222–1229. 826: 817: 799: 788: 787: 777: 737: 731: 730: 697:(5): 1081–1089. 685: 676: 675: 650:(7): 2900–2906. 635: 624: 623: 613: 588:(7): 3476–3482. 573: 562: 544: 535: 534: 516: 499:(9): 3936–3942. 488: 479: 478: 468: 428: 422: 421: 384: 263:surface tensions 217: 210: 199: 196: 190: 167: 159: 152: 145: 141: 138: 132: 130: 89: 65: 57: 46: 24: 23: 16: 1363: 1362: 1358: 1357: 1356: 1354: 1353: 1352: 1333: 1332: 1331: 1330: 1298: 1294: 1241: 1237: 1220:Materials Today 1217: 1210: 1193:Biochip Journal 1190: 1183: 1130: 1126: 1073: 1066: 1046: 1042: 1022: 1018: 965: 961: 908: 904: 884: 880: 827: 820: 800: 791: 738: 734: 686: 679: 636: 627: 574: 565: 545: 538: 489: 482: 429: 425: 385: 378: 373: 313: 275: 251: 235:organ-on-a-chip 218: 207: 206: 205: 200: 194: 191: 184: 172:This article's 168: 153: 142: 136: 133: 90: 88: 82: 78:primary sources 66: 25: 21: 12: 11: 5: 1361: 1351: 1350: 1345: 1329: 1328: 1309:(6): 822–827. 1292: 1235: 1208: 1181: 1124: 1064: 1040: 1016: 959: 902: 878: 818: 789: 732: 677: 625: 563: 536: 480: 423: 375: 374: 372: 369: 361:cell migration 312: 309: 283:quorum sensing 274: 271: 267:capillary flow 250: 247: 243:cell migration 220: 219: 202: 201: 181:the key points 171: 169: 162: 155: 154: 69: 67: 60: 55: 29: 28: 26: 19: 9: 6: 4: 3: 2: 1360: 1349: 1346: 1344: 1343:Microfluidics 1341: 1340: 1338: 1324: 1320: 1316: 1312: 1308: 1304: 1296: 1288: 1284: 1279: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1239: 1233: 1229: 1225: 1221: 1215: 1213: 1206: 1202: 1199:(2), 97–104. 1198: 1194: 1188: 1186: 1177: 1173: 1168: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1138:Lab on a Chip 1135: 1128: 1120: 1116: 1111: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1071: 1069: 1062: 1058: 1054: 1050: 1049:Lab on a Chip 1044: 1038: 1034: 1030: 1026: 1020: 1012: 1008: 1003: 998: 994: 990: 986: 982: 978: 974: 973:Lab on a Chip 970: 963: 955: 951: 946: 941: 937: 933: 929: 925: 921: 917: 913: 906: 900: 896: 892: 888: 882: 874: 870: 865: 860: 856: 852: 848: 844: 840: 836: 832: 825: 823: 816: 812: 808: 804: 798: 796: 794: 785: 781: 776: 771: 767: 763: 759: 755: 751: 747: 743: 736: 728: 724: 720: 716: 712: 708: 704: 700: 696: 692: 684: 682: 673: 669: 665: 661: 657: 653: 649: 645: 641: 634: 632: 630: 621: 617: 612: 607: 603: 599: 595: 591: 587: 583: 579: 572: 570: 568: 561: 557: 553: 549: 543: 541: 532: 528: 524: 520: 515: 510: 506: 502: 498: 494: 487: 485: 476: 472: 467: 462: 458: 454: 450: 446: 442: 438: 434: 427: 419: 415: 411: 407: 403: 399: 395: 391: 383: 381: 376: 368: 366: 362: 357: 356:filter papers 354: 350: 346: 342: 338: 334: 330: 325: 321: 317: 308: 306: 301: 297: 293: 288: 284: 280: 270: 268: 264: 260: 259:syringe pumps 256: 246: 244: 240: 236: 232: 228: 227: 216: 213: 198: 188: 182: 180: 175: 170: 166: 161: 160: 151: 148: 140: 129: 126: 122: 119: 115: 112: 108: 105: 101: 98: â€“  97: 93: 92:Find sources: 86: 80: 79: 75: 70:This article 68: 64: 59: 58: 53: 51: 44: 43: 38: 37: 32: 27: 18: 17: 1348:Cell culture 1306: 1302: 1295: 1252: 1248: 1238: 1226:(1), 32–44. 1223: 1219: 1196: 1192: 1141: 1137: 1127: 1084: 1080: 1052: 1048: 1043: 1028: 1024: 1019: 976: 972: 962: 919: 915: 905: 890: 886: 881: 838: 834: 806: 802: 749: 745: 735: 694: 690: 647: 643: 585: 581: 551: 547: 496: 492: 440: 436: 426: 393: 389: 314: 296:cell sorting 292:cell sorting 276: 252: 230: 224: 223: 208: 192: 176: 174:lead section 143: 134: 124: 117: 110: 103: 91: 71: 47: 40: 34: 33:Please help 30: 1031:, 218–231. 514:2434/141404 333:CNC milling 329:polystyrene 300:fluorinated 1337:Categories 371:References 320:adsorption 277:Cells and 107:newspapers 74:references 36:improve it 1323:1872-2040 1269:2192-2640 1158:1473-0197 1101:0003-2700 993:1473-0197 936:1944-8244 855:0003-2700 766:1433-7851 711:1387-2176 664:0003-2700 602:0003-2700 523:0003-2700 457:0167-9317 443:: 42–45. 410:0003-2700 353:cellulose 324:oligomers 195:July 2019 179:summarize 137:July 2019 42:talk page 1287:24574054 1176:25906246 1119:21261280 1011:19606288 954:29738227 873:26694967 784:19565587 727:33091691 719:19484389 672:20210331 620:23495853 548:Langmuir 531:20392062 475:26412914 418:29053257 365:hydrogel 349:hydrogel 287:perfused 279:proteins 1278:4107065 1167:4439323 1110:3052265 1002:2792742 945:9703972 864:7610554 775:2748941 611:3631535 466:4567073 121:scholar 1321:  1285:  1275:  1267:  1174:  1164:  1156:  1117:  1107:  1099:  1009:  999:  991:  952:  942:  934:  871:  861:  853:  782:  772:  764:  725:  717:  709:  670:  662:  618:  608:  600:  529:  521:  473:  463:  455:  416:  408:  273:Design 123:  116:  109:  102:  94:  723:S2CID 339:, or 128:JSTOR 114:books 1319:ISSN 1283:PMID 1265:ISSN 1172:PMID 1154:ISSN 1115:PMID 1097:ISSN 1007:PMID 989:ISSN 950:PMID 932:ISSN 869:PMID 851:ISSN 780:PMID 762:ISSN 715:PMID 707:ISSN 668:PMID 660:ISSN 616:PMID 598:ISSN 527:PMID 519:ISSN 471:PMID 453:ISSN 414:PMID 406:ISSN 311:PDMS 100:news 1311:doi 1273:PMC 1257:doi 1228:doi 1201:doi 1162:PMC 1146:doi 1105:PMC 1089:doi 1057:doi 1033:doi 997:PMC 981:doi 940:PMC 924:doi 895:doi 891:110 859:PMC 843:doi 811:doi 770:PMC 754:doi 699:doi 652:doi 606:PMC 590:doi 556:doi 509:hdl 501:doi 461:PMC 445:doi 441:144 398:doi 76:to 1339:: 1317:. 1307:41 1305:. 1281:. 1271:. 1263:. 1251:. 1247:. 1224:20 1222:, 1211:^ 1195:, 1184:^ 1170:. 1160:. 1152:. 1142:15 1140:. 1136:. 1113:. 1103:. 1095:. 1085:83 1083:. 1079:. 1067:^ 1053:10 1051:, 1029:63 1027:, 1005:. 995:. 987:. 975:. 971:. 948:. 938:. 930:. 920:10 918:. 914:. 889:, 867:. 857:. 849:. 839:88 837:. 833:. 821:^ 807:51 805:, 792:^ 778:. 768:. 760:. 750:48 748:. 744:. 721:. 713:. 705:. 695:11 693:. 680:^ 666:. 658:. 648:82 646:. 642:. 628:^ 614:. 604:. 596:. 586:85 584:. 580:. 566:^ 552:34 550:, 539:^ 525:. 517:. 507:. 497:82 495:. 483:^ 469:. 459:. 451:. 439:. 435:. 412:. 404:. 394:89 392:. 379:^ 335:, 241:, 87:. 45:. 1325:. 1313:: 1289:. 1259:: 1253:3 1230:: 1203:: 1197:9 1178:. 1148:: 1121:. 1091:: 1059:: 1035:: 1013:. 983:: 977:9 956:. 926:: 897:: 875:. 845:: 813:: 786:. 756:: 729:. 701:: 674:. 654:: 622:. 592:: 558:: 533:. 511:: 503:: 477:. 447:: 420:. 400:: 215:) 209:( 197:) 193:( 183:. 150:) 144:( 139:) 135:( 125:· 118:· 111:· 104:· 81:. 52:) 48:(

Index

improve it
talk page
Learn how and when to remove these messages

references
primary sources
secondary or tertiary sources
"Cell culturing in open microfluidics"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

lead section
summarize
provide an accessible overview
Learn how and when to remove this message
Open microfluidics
organ-on-a-chip
neurodegeneration
cell migration
cost effectiveness
syringe pumps
surface tensions
capillary flow
proteins
quorum sensing
perfused

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑