Knowledge

Cooper pair

Source đź“ť

1274: 1702: 1726: 1738: 1714: 208:
Cooper originally considered only the case of an isolated pair's formation in a metal. When one considers the more realistic state of many electronic pair formations, as is elucidated in the full BCS theory, one finds that the pairing opens a gap in the continuous spectrum of allowed energy states of
118:
that make up the rigid lattice of the metal. This attraction distorts the ion lattice, moving the ions slightly toward the electron, increasing the positive charge density of the lattice in the vicinity. This positive charge can attract other electrons. At long distances, this attraction between
239:
It should be mentioned that Cooper pairing does not involve individual electrons pairing up to form "quasi-bosons". The paired states are energetically favored, and electrons go in and out of those states preferentially. This is a fine distinction that John Bardeen makes:
224:) had lower superconducting transition temperatures. This can be explained by the theory of Cooper pairing: heavier ions are harder for the electrons to attract and move (how Cooper pairs are formed), which results in smaller binding energy for the pairs. 227:
The theory of Cooper pairs is quite general and does not depend on the specific electron-phonon interaction. Condensed matter theorists have proposed pairing mechanisms based on other attractive interactions such as
119:
electrons due to the displaced ions can overcome the electrons' repulsion due to their negative charge, and cause them to pair up. The rigorous quantum mechanical explanation shows that the effect is due to
170:
are symmetric under particle interchange. Therefore, unlike electrons, multiple Cooper pairs are allowed to be in the same quantum state, which is responsible for the phenomenon of superconductivity.
213:
leads to superconductivity, since small excitations such as scattering of electrons are forbidden. The gap appears due to many-body effects between electrons feeling the attraction.
134:, and thermal energy can easily break the pairs. So only at low temperatures, in metal and other substrates, are a significant number of the electrons bound in Cooper pairs. 1188: 540:
Ogg, Richard A. (1 February 1946). "Bose-Einstein Condensation of Trapped Electron Pairs. Phase Separation and Superconductivity of Metal-Ammonia Solutions".
698:
Schmidt, Vadim Vasil'evich. The physics of superconductors: Introduction to fundamentals and applications. Springer Science & Business Media, 2013.
141:
apart. This distance is usually greater than the average interelectron distance so that many Cooper pairs can occupy the same space. Electrons have
137:
The electrons in a pair are not necessarily close together; because the interaction is long range, paired electrons may still be many hundreds of
1053: 487: 216:
R. A. Ogg Jr., was first to suggest that electrons might act as pairs coupled by lattice vibrations in the material. This was indicated by the
102:
Although Cooper pairing is a quantum effect, the reason for the pairing can be seen from a simplified classical explanation. An electron in a
1181: 723: 786: 635:
Yang, C. N. (1 September 1962). "Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid He and of Superconductors".
1718: 1174: 617: 434: 1145: 883: 761: 993: 1706: 1081: 693: 471: 802: 998: 716: 781: 751: 198: 1742: 1687: 1298: 1122: 974: 918: 893: 592:
Bardeen, John (1973). "Electron-Phonon Interactions and Superconductivity". In H. Haken and M. Wagner (ed.).
1233: 1024: 953: 209:
the electrons, meaning that all excitations of the system must possess some minimum amount of energy. This
582:
Poole Jr, Charles P, "Encyclopedic dictionary of condensed matter physics", (Academic Press, 2004), p. 576
220:
effect observed in superconductors. The isotope effect showed that materials with heavier ions (different
969: 888: 1764: 1478: 1387: 1076: 1071: 756: 709: 1427: 1402: 1029: 776: 491: 236:
interactions. Currently, none of these other pairing interactions has been observed in any material.
159: 1784: 1769: 1597: 1351: 1341: 1197: 812: 624: 463: 259: 20: 1779: 1443: 1155: 1014: 946: 863: 513: 1066: 1039: 1019: 941: 601: 426: 341: 1494: 1473: 1407: 936: 127:
interactions, with the phonon being the collective motion of the positively-charged lattice.
79:
interaction. The Cooper pair state is responsible for superconductivity, as described in the
593: 451: 414: 1774: 1463: 1238: 1140: 1096: 644: 549: 309: 250:
The mathematical description of the second-order coherence involved here is given by Yang.
8: 1417: 1397: 1382: 1331: 452: 422: 648: 553: 313: 1564: 1554: 1392: 1303: 1127: 878: 838: 459: 395: 377: 1725: 1672: 1637: 1544: 1468: 903: 732: 689: 660: 613: 594: 565: 467: 430: 415: 399: 245:"The idea of paired electrons, though not fully accurate, captures the sense of it." 1642: 1534: 1514: 1509: 1504: 1499: 1356: 1336: 1293: 1258: 1228: 1112: 1086: 858: 833: 766: 652: 605: 557: 387: 317: 111: 44: 16:
Pair of electrons bound together at low temperature, allowing for superconductivity
1667: 1622: 1288: 1205: 1135: 868: 681: 300: 186: 163: 92: 68: 609: 1730: 1677: 1559: 1448: 873: 817: 807: 771: 264: 656: 391: 1758: 1602: 1584: 1569: 1549: 1453: 1422: 1253: 664: 569: 322: 295: 274: 178: 167: 131: 130:
The energy of the pairing interaction is quite weak, of the order of 10 
107: 1539: 1361: 1263: 1166: 908: 898: 853: 848: 561: 518: 346: 202: 84: 64: 59:
Cooper showed that an arbitrarily small attraction between electrons in a
1659: 1377: 1346: 1326: 1273: 1034: 382: 96: 88: 48: 1574: 1412: 1248: 746: 181:
of helium-3 at low temperatures. In 2008 it was proposed that pairs of
80: 110:. The electron is repelled from other electrons due to their negative 63:
can cause a paired state of electrons to have a lower energy than the
1632: 1458: 1243: 449: 269: 138: 36: 701: 173:
The BCS theory is also applicable to other fermion systems, such as
142: 1061: 174: 120: 72: 47:
in a certain manner first described in 1956 by American physicist
1682: 1649: 1627: 1607: 233: 229: 221: 217: 205:
is responsible for the peculiar properties of superconductivity.
155: 40: 1617: 1612: 1218: 368:
Kadin, Alan M. (2005). "Spatial Structure of the Cooper Pair".
124: 76: 450:
Feynman, Richard P.; Leighton, Robert; Sands, Matthew (1965).
1592: 1213: 1117: 1091: 412: 182: 103: 60: 1150: 600:. Berlin, Heidelberg: Springer Berlin Heidelberg. p.  1223: 115: 67:, which implies that the pair is bound. In conventional 522:. Dept. of Physics and Astronomy, Georgia State Univ 350:. Dept. of Physics and Astronomy, Georgia State Univ 197:
The tendency for all the Cooper pairs in a body to "
192: 413:Fujita, Shigeji; Ito, Kei; Godoy, Salvador (2009). 548:(5–6). American Physical Society (APS): 243–244. 1756: 370:Journal of Superconductivity and Novel Magnetism 296:"Bound electron pairs in a degenerate Fermi gas" 177:. Indeed, Cooper pairing is responsible for the 162:of a Cooper pair is integer (0 or 1) so it is a 643:(4). American Physical Society (APS): 694–704. 335: 333: 1182: 717: 1196: 330: 1272: 1189: 1175: 724: 710: 381: 321: 591: 1757: 293: 1170: 731: 705: 514:"The BCS Theory of Superconductivity" 367: 1713: 634: 511: 339: 114:, but it also attracts the positive 1737: 539: 417:Quantum Theory of Conducting Matter 13: 675: 14: 1796: 686:Introduction to Superconductivity 193:Relationship to superconductivity 1736: 1724: 1712: 1701: 1700: 189:may be similar to Cooper pairs. 71:, this attraction is due to the 628: 585: 95:for which they shared the 1972 576: 533: 505: 480: 443: 406: 361: 287: 54: 33:Bardeen–Cooper–Schrieffer pair 1: 1299:Spontaneous symmetry breaking 280: 7: 610:10.1007/978-3-642-86003-4_6 253: 10: 1801: 1479:Spin gapless semiconductor 1388:Nearly free electron model 1054:Technological applications 454:Lectures on Physics, Vol.3 1696: 1658: 1583: 1527: 1487: 1436: 1428:Density functional theory 1403:electronic band structure 1370: 1319: 1312: 1281: 1270: 1204: 1105: 1052: 1007: 983: 962: 926: 917: 826: 796:Characteristic parameters 795: 739: 657:10.1103/revmodphys.34.694 637:Reviews of Modern Physics 392:10.1007/s10948-006-0198-z 232:interactions or electron– 1598:Bogoliubov quasiparticle 1342:Quantum spin Hall effect 1234:Bose–Einstein condensate 1198:Condensed matter physics 813:London penetration depth 488:"Cooper Pairs of Bosons" 323:10.1103/PhysRev.104.1189 294:Cooper, Leon N. (1956). 21:condensed matter physics 1106:List of superconductors 984:By critical temperature 562:10.1103/physrev.69.243 512:Nave, Carl R. (2006). 340:Nave, Carl R. (2006). 106:normally behaves as a 1474:Topological insulator 1408:Anderson localization 752:Bean's critical state 596:Cooperative Phenomena 1352:Aharonov–Bohm effect 1239:Fermionic condensate 927:By magnetic response 260:Color–flavor locking 203:ground quantum state 43:) bound together at 1743:Physics WikiProject 1418:tight binding model 1398:Fermi liquid theory 1383:Free electron model 1332:Quantum Hall effect 1313:Electrons in solids 879:persistent currents 864:Little–Parks effect 649:1962RvMP...34..694Y 554:1946PhRv...69..243O 423:Springer Publishing 314:1956PhRv..104.1189C 1304:Critical phenomena 839:Andreev reflection 834:Abrikosov vortices 211:gap to excitations 1765:Superconductivity 1752: 1751: 1638:Exciton-polariton 1523: 1522: 1495:Thermoelectricity 1164: 1163: 1082:quantum computing 1048: 1047: 904:superdiamagnetism 733:Superconductivity 619:978-3-642-86005-8 436:978-0-387-88211-6 166:. This means the 1792: 1740: 1739: 1728: 1716: 1715: 1704: 1703: 1643:Phonon polariton 1535:Amorphous magnet 1515:Electrostriction 1510:Flexoelectricity 1505:Ferroelectricity 1500:Piezoelectricity 1357:Josephson effect 1337:Spin Hall effect 1317: 1316: 1294:Phase transition 1276: 1259:Luttinger liquid 1206:States of matter 1191: 1184: 1177: 1168: 1167: 1113:bilayer graphene 1087:Rutherford cable 999:room temperature 994:high temperature 924: 923: 884:proximity effect 859:Josephson effect 803:coherence length 726: 719: 712: 703: 702: 669: 668: 632: 626: 623: 599: 589: 583: 580: 574: 573: 537: 531: 530: 528: 527: 509: 503: 502: 500: 499: 490:. Archived from 484: 478: 477: 457: 447: 441: 440: 420: 410: 404: 403: 385: 383:cond-mat/0510279 365: 359: 358: 356: 355: 337: 328: 327: 325: 308:(4): 1189–1190. 291: 222:nuclear isotopes 201:" into the same 152: 151: 147: 45:low temperatures 1800: 1799: 1795: 1794: 1793: 1791: 1790: 1789: 1785:Charge carriers 1770:Superconductors 1755: 1754: 1753: 1748: 1692: 1673:Granular matter 1668:Amorphous solid 1654: 1579: 1565:Antiferromagnet 1555:Superparamagnet 1528:Magnetic phases 1519: 1483: 1432: 1393:Bloch's theorem 1366: 1308: 1289:Order parameter 1282:Phase phenomena 1277: 1268: 1200: 1195: 1165: 1160: 1131: 1101: 1044: 1003: 990:low temperature 979: 958: 913: 869:Meissner effect 822: 818:Silsbee current 791: 757:Ginzburg–Landau 735: 730: 682:Michael Tinkham 678: 676:Further reading 673: 672: 633: 629: 620: 590: 586: 581: 577: 542:Physical Review 538: 534: 525: 523: 510: 506: 497: 495: 486: 485: 481: 474: 448: 444: 437: 411: 407: 366: 362: 353: 351: 338: 331: 301:Physical Review 292: 288: 283: 256: 195: 187:optical lattice 164:composite boson 149: 145: 144: 93:John Schrieffer 69:superconductors 57: 35:) is a pair of 17: 12: 11: 5: 1798: 1788: 1787: 1782: 1780:Quantum phases 1777: 1772: 1767: 1750: 1749: 1747: 1746: 1734: 1731:Physics Portal 1722: 1710: 1697: 1694: 1693: 1691: 1690: 1685: 1680: 1678:Liquid crystal 1675: 1670: 1664: 1662: 1656: 1655: 1653: 1652: 1647: 1646: 1645: 1640: 1630: 1625: 1620: 1615: 1610: 1605: 1600: 1595: 1589: 1587: 1585:Quasiparticles 1581: 1580: 1578: 1577: 1572: 1567: 1562: 1557: 1552: 1547: 1545:Superdiamagnet 1542: 1537: 1531: 1529: 1525: 1524: 1521: 1520: 1518: 1517: 1512: 1507: 1502: 1497: 1491: 1489: 1485: 1484: 1482: 1481: 1476: 1471: 1469:Superconductor 1466: 1461: 1456: 1451: 1449:Mott insulator 1446: 1440: 1438: 1434: 1433: 1431: 1430: 1425: 1420: 1415: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1374: 1372: 1368: 1367: 1365: 1364: 1359: 1354: 1349: 1344: 1339: 1334: 1329: 1323: 1321: 1314: 1310: 1309: 1307: 1306: 1301: 1296: 1291: 1285: 1283: 1279: 1278: 1271: 1269: 1267: 1266: 1261: 1256: 1251: 1246: 1241: 1236: 1231: 1226: 1221: 1216: 1210: 1208: 1202: 1201: 1194: 1193: 1186: 1179: 1171: 1162: 1161: 1159: 1158: 1153: 1148: 1143: 1138: 1133: 1129: 1125: 1120: 1115: 1109: 1107: 1103: 1102: 1100: 1099: 1094: 1089: 1084: 1079: 1074: 1069: 1067:electromagnets 1064: 1058: 1056: 1050: 1049: 1046: 1045: 1043: 1042: 1037: 1032: 1027: 1022: 1017: 1011: 1009: 1008:By composition 1005: 1004: 1002: 1001: 996: 991: 987: 985: 981: 980: 978: 977: 975:unconventional 972: 966: 964: 963:By explanation 960: 959: 957: 956: 951: 950: 949: 944: 939: 930: 928: 921: 919:Classification 915: 914: 912: 911: 906: 901: 896: 891: 886: 881: 876: 871: 866: 861: 856: 851: 846: 841: 836: 830: 828: 824: 823: 821: 820: 815: 810: 808:critical field 805: 799: 797: 793: 792: 790: 789: 784: 779: 777:Mattis–Bardeen 774: 769: 764: 762:Kohn–Luttinger 759: 754: 749: 743: 741: 737: 736: 729: 728: 721: 714: 706: 700: 699: 696: 677: 674: 671: 670: 627: 618: 584: 575: 532: 504: 479: 472: 460:Addison–Wesley 442: 435: 405: 376:(4): 285–292. 360: 342:"Cooper Pairs" 329: 285: 284: 282: 279: 278: 277: 272: 267: 265:Superinsulator 262: 255: 252: 248: 247: 194: 191: 168:wave functions 154:, so they are 56: 53: 15: 9: 6: 4: 3: 2: 1797: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1762: 1760: 1745: 1744: 1735: 1733: 1732: 1727: 1723: 1721: 1720: 1711: 1709: 1708: 1699: 1698: 1695: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1665: 1663: 1661: 1657: 1651: 1648: 1644: 1641: 1639: 1636: 1635: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1604: 1601: 1599: 1596: 1594: 1591: 1590: 1588: 1586: 1582: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1532: 1530: 1526: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1492: 1490: 1486: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1454:Semiconductor 1452: 1450: 1447: 1445: 1442: 1441: 1439: 1435: 1429: 1426: 1424: 1423:Hubbard model 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1375: 1373: 1369: 1363: 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1324: 1322: 1318: 1315: 1311: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1286: 1284: 1280: 1275: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1211: 1209: 1207: 1203: 1199: 1192: 1187: 1185: 1180: 1178: 1173: 1172: 1169: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1139: 1137: 1134: 1132: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1110: 1108: 1104: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1068: 1065: 1063: 1060: 1059: 1057: 1055: 1051: 1041: 1038: 1036: 1033: 1031: 1028: 1026: 1025:heavy fermion 1023: 1021: 1018: 1016: 1013: 1012: 1010: 1006: 1000: 997: 995: 992: 989: 988: 986: 982: 976: 973: 971: 968: 967: 965: 961: 955: 954:ferromagnetic 952: 948: 945: 943: 940: 938: 935: 934: 932: 931: 929: 925: 922: 920: 916: 910: 907: 905: 902: 900: 899:supercurrents 897: 895: 892: 890: 887: 885: 882: 880: 877: 875: 872: 870: 867: 865: 862: 860: 857: 855: 852: 850: 847: 845: 842: 840: 837: 835: 832: 831: 829: 825: 819: 816: 814: 811: 809: 806: 804: 801: 800: 798: 794: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 753: 750: 748: 745: 744: 742: 738: 734: 727: 722: 720: 715: 713: 708: 707: 704: 697: 695: 694:0-486-43503-2 691: 687: 683: 680: 679: 666: 662: 658: 654: 650: 646: 642: 638: 631: 625: 621: 615: 611: 607: 603: 598: 597: 588: 579: 571: 567: 563: 559: 555: 551: 547: 543: 536: 521: 520: 515: 508: 494:on 2015-12-09 493: 489: 483: 475: 473:0-201-02118-8 469: 465: 461: 456: 455: 446: 438: 432: 428: 424: 419: 418: 409: 401: 397: 393: 389: 384: 379: 375: 371: 364: 349: 348: 343: 336: 334: 324: 319: 315: 311: 307: 303: 302: 297: 290: 286: 276: 275:Electron pair 273: 271: 268: 266: 263: 261: 258: 257: 251: 246: 243: 242: 241: 237: 235: 231: 225: 223: 219: 214: 212: 206: 204: 200: 190: 188: 184: 180: 179:superfluidity 176: 171: 169: 165: 161: 157: 153: 140: 135: 133: 128: 126: 122: 117: 113: 109: 108:free particle 105: 100: 98: 94: 90: 86: 83:developed by 82: 78: 74: 70: 66: 62: 52: 50: 46: 42: 38: 34: 30: 26: 22: 1741: 1729: 1717: 1705: 1623:Pines' demon 1362:Kondo effect 1264:Time crystal 1035:oxypnictides 970:conventional 909:superstripes 854:flux pumping 849:flux pinning 844:Cooper pairs 843: 685: 640: 636: 630: 595: 587: 578: 545: 541: 535: 524:. Retrieved 519:HyperPhysics 517: 507: 496:. Retrieved 492:the original 482: 453: 445: 416: 408: 373: 369: 363: 352:. Retrieved 347:HyperPhysics 345: 305: 299: 289: 249: 244: 238: 226: 215: 210: 207: 196: 172: 136: 129: 101: 85:John Bardeen 65:Fermi energy 58: 32: 28: 24: 18: 1775:Spintronics 1660:Soft matter 1560:Ferromagnet 1378:Drude model 1347:Berry phase 1327:Hall effect 894:SU(2) color 874:Homes's law 462:. pp.  425:. pp.  97:Nobel Prize 89:Leon Cooper 55:Description 49:Leon Cooper 25:Cooper pair 1759:Categories 1575:Spin glass 1570:Metamagnet 1550:Paramagnet 1437:Conduction 1413:BCS theory 1254:Superfluid 1249:Supersolid 1030:iron-based 889:reentrance 526:2008-07-24 498:2009-09-01 354:2008-07-24 281:References 160:total spin 158:, but the 139:nanometers 81:BCS theory 39:(or other 1633:Polariton 1540:Diamagnet 1488:Couplings 1464:Conductor 1459:Semimetal 1444:Insulator 1320:Phenomena 1244:Fermi gas 827:Phenomena 665:0034-6861 570:0031-899X 270:Lone pair 228:electron– 37:electrons 1707:Category 1688:Colloids 1062:cryotron 1020:cuprates 1015:covalent 772:Matthias 740:Theories 400:54948290 254:See also 199:condense 175:helium-3 156:fermions 121:electron 73:electron 41:fermions 29:BCS pair 1719:Commons 1683:Polymer 1650:Polaron 1628:Plasmon 1608:Exciton 1156:more... 1040:organic 645:Bibcode 550:Bibcode 466:–7, 8. 310:Bibcode 234:plasmon 230:exciton 218:isotope 148:⁄ 1618:Phonon 1613:Magnon 1371:Theory 1229:Plasma 1219:Liquid 933:Types 767:London 692:  663:  616:  568:  470:  433:  398:  185:in an 183:bosons 125:phonon 112:charge 91:, and 77:phonon 1593:Anyon 1214:Solid 1146:TBCCO 1118:BSCCO 1097:wires 1092:SQUID 429:–27. 396:S2CID 378:arXiv 143:spin- 104:metal 61:metal 1603:Hole 1151:YBCO 1141:NbTi 1136:NbSn 1123:LBCO 690:ISBN 661:ISSN 614:ISBN 566:ISSN 468:ISBN 431:ISBN 116:ions 23:, a 1224:Gas 1128:MgB 1077:NMR 1072:MRI 947:1.5 787:WHH 782:RVB 747:BCS 653:doi 606:doi 558:doi 388:doi 318:doi 306:104 27:or 19:In 1761:: 942:II 688:, 684:, 659:. 651:. 641:34 639:. 612:. 604:. 602:67 564:. 556:. 546:69 544:. 516:. 464:21 458:. 427:15 421:. 394:. 386:. 374:20 372:. 344:. 332:^ 316:. 304:. 298:. 132:eV 99:. 87:, 51:. 1190:e 1183:t 1176:v 1130:2 937:I 725:e 718:t 711:v 667:. 655:: 647:: 622:. 608:: 572:. 560:: 552:: 529:. 501:. 476:. 439:. 402:. 390:: 380:: 357:. 326:. 320:: 312:: 150:2 146:1 123:– 75:– 31:(

Index

condensed matter physics
electrons
fermions
low temperatures
Leon Cooper
metal
Fermi energy
superconductors
electron
phonon
BCS theory
John Bardeen
Leon Cooper
John Schrieffer
Nobel Prize
metal
free particle
charge
ions
electron
phonon
eV
nanometers
spin-12
fermions
total spin
composite boson
wave functions
helium-3
superfluidity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑