Knowledge

Electrical network

Source 📝

963: 156: 1478: 1516: 1488: 1468: 1473: 1483: 1463: 1641: 1631: 1626: 1621: 1616: 1636: 1387: 1598: 1376: 1371: 1445: 1402: 1356: 1511: 1506: 1407: 1435: 1392: 1361: 2086: 43: 1572: 1543: 1440: 1430: 1366: 1553: 1412: 1381: 1548: 1397: 1521: 1593: 1588: 1567: 1562: 1771:
of each element in the circuit are known. For a small signal analysis, every non-linear element can be linearized around its operation point to obtain the small-signal estimate of the voltages and currents. This is an application of Ohm's Law. The resulting linear circuit matrix can be solved with
1252:
An ideal independent source maintains the same voltage or current regardless of the other elements present in the circuit. Its value is either constant (DC) or sinusoidal (AC). The strength of voltage or current is not changed by any variation in the connected network.
1319:: In a linear network with several independent sources, the response in a particular branch when all the sources are acting simultaneously is equal to the linear sum of individual responses calculated by taking one independent source at a time. 1800:. Every time a diode switches from on to off or vice versa, the configuration of the linear network changes. Adding more detail to the approximation of equations increases the accuracy of the simulation, but also increases its running time. 1063:
is a network consisting of a closed loop, giving a return path for the current. Thus all circuits are networks, but not all networks are circuits (although networks without a closed loop are often imprecisely referred to as "circuits").
1068:
electrical networks, a special type consisting only of sources (voltage or current), linear lumped elements (resistors, capacitors, inductors), and linear distributed elements (transmission lines), have the property that signals are
1108:) sources, the result is a DC network. The effective resistance and current distribution properties of arbitrary resistor networks can be modeled in terms of their graph measures and geometrical properties. 1323:
Applying these laws results in a set of simultaneous equations that can be solved either algebraically or numerically. The laws can generally be extended to networks containing
1199:
because all of their, respectively, resistance, capacitance and inductance is assumed to be located ("lumped") at one place. This design philosophy is called the
993: 713: 1668: 1515: 686: 698: 1303:: Any network of voltage or current sources and resistors is electrically equivalent to an ideal current source in parallel with a single resistor. 1311:: Any network of voltage or current sources and resistors is electrically equivalent to a single voltage source in series with a single resistor. 1264:
depend upon a particular element of the circuit for delivering the power or voltage or current depending upon the type of source it is.
949: 718: 1104:
of resistive networks is less complicated than analysis of networks containing capacitors and inductors. If the sources are constant (
1661: 1167:
Passive networks do not contain any sources of electromotive force. They consist of passive elements like resistors and capacitors.
728: 107: 1878: 1682: 1510: 1505: 1339: 1101: 553: 79: 1796:
approximation of the equations governing the elements of a circuit. The circuit is treated as a completely linear network of
1179:; otherwise it is non-linear. Passive networks are generally taken to be linear, but there are exceptions. For instance, an 1762:
the voltages across and through each element of the circuit conform to the voltage/current equations governing that element.
1048: 568: 563: 190: 1654: 578: 1207:. This is the conventional approach to circuit design. At high enough frequencies, or for long enough circuits (such as 86: 1942: 1883: 60: 1164:. Active elements can inject power to the circuit, provide power gain, and control the current flow within the circuit. 2022:
Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, G. U . (2017). "Current distribution in conducting nanowire networks".
1726:
allow engineers to design circuits without the time, cost and risk of error involved in building circuit prototypes.
180: 126: 448: 93: 17: 2111: 1496: 363: 1797: 942: 708: 185: 75: 64: 1915: 1295:: The voltage across a resistor is equal to the product of the resistance and the current flowing through it. 723: 428: 2002: 1739: 1453: 588: 328: 195: 1187:
if driven with a large enough current. In this region, the behaviour of the inductor is very non-linear.
318: 1920: 1221: 1208: 881: 756: 653: 628: 548: 2076: 1959: 1284: 1276: 381: 1793: 1566: 1561: 1216: 935: 896: 423: 413: 353: 348: 288: 433: 1542: 1308: 866: 368: 1146: 1070: 746: 273: 263: 258: 53: 871: 841: 100: 1893: 1824: 1699:
need to be able to predict the voltages and currents at all places within the circuit. Simple
1696: 1477: 1279:: The sum of all currents entering a node is equal to the sum of all currents leaving the node. 693: 463: 238: 1888: 1597: 1571: 1487: 1467: 1316: 1184: 1176: 1012: 791: 478: 468: 418: 408: 1124:. Such networks are generally nonlinear and require more complex design and analysis tools. 2106: 2031: 1834: 1819: 1814: 1773: 1688: 1552: 1472: 1420: 1324: 1200: 1008: 916: 816: 781: 533: 398: 298: 283: 218: 969: 155: 8: 1547: 1482: 1462: 1300: 1215:
across the component dimensions. A new design model is needed for such cases called the
1153: 1086: 876: 856: 851: 658: 643: 528: 498: 393: 323: 2057: 2035: 1630: 2090: 1346: 1161: 1120: 1090: 1036: 751: 293: 253: 1327:. They cannot be used in networks that contain nonlinear or time-varying components. 1287:: The directed sum of the electrical potential differences around a loop must be zero. 1211:), the lumped assumption no longer holds because there is a significant fraction of a 962: 573: 1997: 1947: 1937: 1078: 811: 1640: 1620: 1386: 2039: 1953: 1903: 1708: 1615: 1606: 1272:
A number of electrical laws apply to all linear resistive networks. These include:
1261: 1157: 1112: 1074: 911: 826: 786: 776: 663: 618: 601: 518: 453: 223: 147: 1355: 1925: 1856: 1809: 1767: 1692: 1635: 1233: 846: 771: 766: 633: 508: 473: 333: 233: 31: 1625: 1375: 1370: 886: 1972: 1704: 1700: 1587: 1520: 1411: 1380: 1228:
A distributed-element circuit that includes some lumped components is called a
1142: 1138: 1105: 1082: 1065: 1044: 1040: 806: 801: 623: 513: 438: 388: 338: 311: 268: 243: 213: 206: 1100:
is a network containing only resistors and ideal current and voltage sources.
2100: 1898: 1839: 1592: 1195:
Discrete passive components (resistors, capacitors and inductors) are called
921: 906: 891: 831: 543: 458: 443: 358: 343: 248: 966:
A simple electric circuit made up of a voltage source and a resistor. Here,
1844: 1755: 1444: 1292: 996: 901: 796: 761: 703: 638: 558: 523: 403: 278: 1992: 1723: 1401: 1360: 1115: 1056: 821: 673: 503: 165: 1734:
More complex circuits can be analyzed numerically with software such as
1244:
Sources can be classified as independent sources and dependent sources.
1987: 1982: 1977: 1406: 1365: 1212: 1052: 1032: 538: 30:
For electrical power transmission grids and distribution networks, see
2043: 1861: 1829: 1707:. In more complex cases the circuit may be analyzed with specialized 1434: 1391: 1024: 861: 836: 648: 170: 42: 2085: 1789: 1719: 1439: 1429: 1180: 1020: 1016: 613: 608: 228: 1758:, that is, one where all nodes conform to Kirchhoff's current law 1754:
When faced with a new circuit, the software first tries to find a
1866: 583: 2067:. Stanford University, Electrical Engineering Department. 1999. 1743: 1715: 1396: 1028: 668: 175: 1785: 1735: 1711:
or estimation techniques such as the piecewise-linear model.
2021: 1175:
A network is linear if its signals obey the principle of
1749: 1035:) or a model of such an interconnection, consisting of 1145:
that can supply energy to the network indefinitely. A
1073:. They are thus more easily analyzed, using powerful 2074: 1718:(an analog circuit simulator), and languages such as 972: 1872: 1232:
design. An example of a semi-lumped circuit is the
67:. Unsourced material may be challenged and removed. 1152:An active network contains one or more sources of 987: 1779: 2098: 1156:. Practical examples of such sources include a 1729: 1219:. Networks designed to this model are called 1765:Once the steady state solution is found, the 1662: 943: 1239: 1149:network does not contain an active source. 1267: 27:Assemblage of connected electrical elements 1669: 1655: 950: 936: 154: 1742:, or symbolically using software such as 1687:To design any electrical circuit, either 127:Learn how and when to remove this message 1137:An active network contains at least one 961: 699:Electromagnetism and special relativity 14: 2099: 1966: 1879:Network analysis (electrical circuits) 1683:Network analysis (electrical circuits) 1714:Circuit simulation software, such as 1183:with an iron core can be driven into 719:Maxwell equations in curved spacetime 1750:Linearization around operating point 1203:and networks so designed are called 65:adding citations to reliable sources 36: 1884:Mathematical methods in electronics 24: 25: 2123: 1873:Design and analysis methodologies 1850: 1330: 1127: 2084: 1639: 1634: 1629: 1624: 1619: 1614: 1596: 1591: 1586: 1570: 1565: 1560: 1551: 1546: 1541: 1519: 1514: 1509: 1504: 1486: 1481: 1476: 1471: 1466: 1461: 1443: 1438: 1433: 1428: 1410: 1405: 1400: 1395: 1390: 1385: 1379: 1374: 1369: 1364: 1359: 1354: 1334: 41: 1943:Mechanical–electrical analogies 1190: 1170: 1132: 52:needs additional citations for 2050: 2015: 1909: 1780:Piecewise-linear approximation 1703:can be analyzed by hand using 1247: 13: 1: 2008: 1916:Network analyzer (electrical) 724:Relativistic electromagnetism 2003:Series and parallel circuits 1931: 1454:Series and parallel circuits 1256: 1222:distributed-element circuits 7: 1921:Network analyzer (AC power) 1803: 1730:Network simulation software 10: 2128: 2024:Journal of Applied Physics 1960:Through and across analogy 1680: 1118:components is known as an 449:LiĂ©nard–Wiechert potential 29: 1612: 1605: 1584: 1580:Network analysis methods 1579: 1502: 1495: 1459: 1452: 1426: 1419: 1352: 1345: 1337: 1240:Classification of sources 1217:distributed-element model 1007:is an interconnection of 714:Mathematical descriptions 424:Electromagnetic radiation 414:Electromagnetic induction 354:Magnetic vector potential 349:Magnetic scalar potential 1268:Applying electrical laws 1209:power transmission lines 1111:A network that contains 1285:Kirchhoff's voltage law 1277:Kirchhoff's current law 1205:lumped-element circuits 1071:linearly superimposable 264:Electrostatic induction 259:Electrostatic discharge 2112:Electrical engineering 1894:Topology (electronics) 1000: 989: 694:Electromagnetic tensor 1889:Superposition theorem 1784:Software such as the 1756:steady state solution 1705:complex number theory 1317:Superposition theorem 1009:electrical components 990: 965: 687:Covariant formulation 479:Synchrotron radiation 419:Electromagnetic pulse 409:Electromagnetic field 1835:Open-circuit voltage 1815:Ground (electricity) 1774:Gaussian elimination 1697:electrical engineers 1497:Impedance transforms 1201:lumped-element model 988:{\displaystyle v=iR} 970: 729:Stress–energy tensor 654:Reluctance (complex) 399:Displacement current 76:"Electrical network" 61:improve this article 2036:2017JAP...122d5101K 1967:Specific topologies 1956:(Firestone analogy) 1607:Two-port parameters 1529:Generator theorems 1154:electromotive force 1037:electrical elements 644:Magnetomotive force 529:Electromotive force 499:Alternating current 434:Jefimenko equations 394:Cyclotron radiation 1309:ThĂ©venin's theorem 1121:electronic circuit 1091:transient response 1079:Laplace transforms 1061:electrical circuit 1005:electrical network 1001: 985: 492:Electrical network 329:Gauss magnetic law 294:Static electricity 254:Electric potential 2044:10.1063/1.4985792 1998:Potential divider 1950:(Maxwell analogy) 1948:Impedance analogy 1938:Hydraulic analogy 1709:computer programs 1679: 1678: 1262:Dependent sources 1098:resistive network 960: 959: 659:Reluctance (real) 629:Gyrator–capacitor 574:Resonant cavities 464:Maxwell equations 137: 136: 129: 111: 16:(Redirected from 2119: 2089: 2088: 2080: 2069: 2068: 2062: 2054: 2048: 2047: 2019: 1954:Mobility analogy 1904:Prototype filter 1794:piecewise-linear 1768:operating points 1671: 1664: 1657: 1643: 1638: 1633: 1628: 1623: 1618: 1600: 1595: 1590: 1574: 1569: 1564: 1555: 1550: 1545: 1523: 1518: 1513: 1508: 1490: 1485: 1480: 1475: 1470: 1465: 1447: 1442: 1437: 1432: 1414: 1409: 1404: 1399: 1394: 1389: 1383: 1378: 1373: 1368: 1363: 1358: 1340:network analysis 1335: 1301:Norton's theorem 1077:methods such as 1075:frequency domain 994: 992: 991: 986: 952: 945: 938: 619:Electric machine 602:Magnetic circuit 564:Parallel circuit 554:Network analysis 519:Electric current 454:London equations 299:Triboelectricity 289:Potential energy 158: 148:Electromagnetism 139: 138: 132: 125: 121: 118: 112: 110: 69: 45: 37: 21: 18:Electric circuit 2127: 2126: 2122: 2121: 2120: 2118: 2117: 2116: 2097: 2096: 2095: 2083: 2075: 2073: 2072: 2060: 2056: 2055: 2051: 2020: 2016: 2011: 1969: 1962:(Trent analogy) 1934: 1926:Continuity test 1912: 1875: 1857:Circuit diagram 1853: 1810:Digital circuit 1806: 1782: 1752: 1732: 1701:linear circuits 1685: 1675: 1384: 1333: 1270: 1259: 1250: 1242: 1234:combline filter 1197:lumped elements 1193: 1173: 1135: 1130: 1081:, to determine 1045:current sources 1041:voltage sources 995:, according to 971: 968: 967: 956: 927: 926: 742: 734: 733: 689: 679: 678: 634:Induction motor 604: 594: 593: 509:Current density 494: 484: 483: 474:Poynting vector 384: 382:Electrodynamics 374: 373: 369:Right-hand rule 334:Magnetic dipole 324:Biot–Savart law 314: 304: 303: 239:Electric dipole 234:Electric charge 209: 133: 122: 116: 113: 70: 68: 58: 46: 35: 32:Electrical grid 28: 23: 22: 15: 12: 11: 5: 2125: 2115: 2114: 2109: 2094: 2093: 2071: 2070: 2049: 2013: 2012: 2010: 2007: 2006: 2005: 2000: 1995: 1990: 1985: 1980: 1975: 1973:Bridge circuit 1968: 1965: 1964: 1963: 1957: 1951: 1945: 1940: 1933: 1930: 1929: 1928: 1923: 1918: 1911: 1908: 1907: 1906: 1901: 1896: 1891: 1886: 1881: 1874: 1871: 1870: 1869: 1864: 1859: 1852: 1851:Representation 1849: 1848: 1847: 1842: 1837: 1832: 1827: 1822: 1817: 1812: 1805: 1802: 1781: 1778: 1751: 1748: 1731: 1728: 1677: 1676: 1674: 1673: 1666: 1659: 1651: 1649: 1646: 1645: 1610: 1609: 1603: 1602: 1582: 1581: 1577: 1576: 1557: 1537: 1536: 1530: 1526: 1525: 1500: 1499: 1493: 1492: 1457: 1456: 1450: 1449: 1424: 1423: 1417: 1416: 1350: 1349: 1343: 1342: 1332: 1331:Design methods 1329: 1321: 1320: 1313: 1312: 1305: 1304: 1297: 1296: 1289: 1288: 1281: 1280: 1269: 1266: 1258: 1255: 1249: 1246: 1241: 1238: 1192: 1189: 1172: 1169: 1143:current source 1139:voltage source 1134: 1131: 1129: 1128:Classification 1126: 984: 981: 978: 975: 958: 957: 955: 954: 947: 940: 932: 929: 928: 925: 924: 919: 914: 909: 904: 899: 894: 889: 884: 879: 874: 869: 864: 859: 854: 849: 844: 839: 834: 829: 824: 819: 814: 809: 804: 799: 794: 789: 784: 779: 774: 769: 764: 759: 754: 749: 743: 740: 739: 736: 735: 732: 731: 726: 721: 716: 711: 709:Four-potential 706: 701: 696: 690: 685: 684: 681: 680: 677: 676: 671: 666: 661: 656: 651: 646: 641: 636: 631: 626: 624:Electric motor 621: 616: 611: 605: 600: 599: 596: 595: 592: 591: 586: 581: 579:Series circuit 576: 571: 566: 561: 556: 551: 549:Kirchhoff laws 546: 541: 536: 531: 526: 521: 516: 514:Direct current 511: 506: 501: 495: 490: 489: 486: 485: 482: 481: 476: 471: 469:Maxwell tensor 466: 461: 456: 451: 446: 441: 439:Larmor formula 436: 431: 426: 421: 416: 411: 406: 401: 396: 391: 389:Bremsstrahlung 385: 380: 379: 376: 375: 372: 371: 366: 361: 356: 351: 346: 341: 339:Magnetic field 336: 331: 326: 321: 315: 312:Magnetostatics 310: 309: 306: 305: 302: 301: 296: 291: 286: 281: 276: 271: 266: 261: 256: 251: 246: 244:Electric field 241: 236: 231: 226: 221: 216: 214:Charge density 210: 207:Electrostatics 205: 204: 201: 200: 199: 198: 193: 188: 183: 178: 173: 168: 160: 159: 151: 150: 144: 143: 142:Articles about 135: 134: 49: 47: 40: 26: 9: 6: 4: 3: 2: 2124: 2113: 2110: 2108: 2105: 2104: 2102: 2092: 2087: 2082: 2081: 2078: 2066: 2059: 2053: 2045: 2041: 2037: 2033: 2030:(4): 045101. 2029: 2025: 2018: 2014: 2004: 2001: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1970: 1961: 1958: 1955: 1952: 1949: 1946: 1944: 1941: 1939: 1936: 1935: 1927: 1924: 1922: 1919: 1917: 1914: 1913: 1905: 1902: 1900: 1899:Mesh analysis 1897: 1895: 1892: 1890: 1887: 1885: 1882: 1880: 1877: 1876: 1868: 1865: 1863: 1860: 1858: 1855: 1854: 1846: 1843: 1841: 1840:Short circuit 1838: 1836: 1833: 1831: 1828: 1826: 1823: 1821: 1818: 1816: 1813: 1811: 1808: 1807: 1801: 1799: 1795: 1791: 1788:interface to 1787: 1777: 1775: 1770: 1769: 1763: 1761: 1757: 1747: 1745: 1741: 1737: 1727: 1725: 1721: 1717: 1712: 1710: 1706: 1702: 1698: 1694: 1690: 1684: 1672: 1667: 1665: 1660: 1658: 1653: 1652: 1650: 1648: 1647: 1644: 1642: 1637: 1632: 1627: 1622: 1617: 1611: 1608: 1604: 1601: 1599: 1594: 1589: 1583: 1578: 1575: 1573: 1568: 1563: 1558: 1556: 1554: 1549: 1544: 1539: 1538: 1534: 1531: 1528: 1527: 1524: 1522: 1517: 1512: 1507: 1501: 1498: 1494: 1491: 1489: 1484: 1479: 1474: 1469: 1464: 1458: 1455: 1451: 1448: 1446: 1441: 1436: 1431: 1425: 1422: 1418: 1415: 1413: 1408: 1403: 1398: 1393: 1388: 1382: 1377: 1372: 1367: 1362: 1357: 1351: 1348: 1344: 1341: 1336: 1328: 1326: 1318: 1315: 1314: 1310: 1307: 1306: 1302: 1299: 1298: 1294: 1291: 1290: 1286: 1283: 1282: 1278: 1275: 1274: 1273: 1265: 1263: 1254: 1245: 1237: 1235: 1231: 1226: 1224: 1223: 1218: 1214: 1210: 1206: 1202: 1198: 1188: 1186: 1182: 1178: 1177:superposition 1168: 1165: 1163: 1159: 1155: 1150: 1148: 1144: 1140: 1125: 1123: 1122: 1117: 1114: 1109: 1107: 1103: 1099: 1094: 1092: 1088: 1084: 1080: 1076: 1072: 1067: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 998: 982: 979: 976: 973: 964: 953: 948: 946: 941: 939: 934: 933: 931: 930: 923: 920: 918: 915: 913: 910: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 883: 880: 878: 875: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 753: 750: 748: 745: 744: 738: 737: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 691: 688: 683: 682: 675: 672: 670: 667: 665: 662: 660: 657: 655: 652: 650: 647: 645: 642: 640: 637: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 606: 603: 598: 597: 590: 587: 585: 582: 580: 577: 575: 572: 570: 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 544:Joule heating 542: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 515: 512: 510: 507: 505: 502: 500: 497: 496: 493: 488: 487: 480: 477: 475: 472: 470: 467: 465: 462: 460: 459:Lorentz force 457: 455: 452: 450: 447: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 386: 383: 378: 377: 370: 367: 365: 362: 360: 359:Magnetization 357: 355: 352: 350: 347: 345: 344:Magnetic flux 342: 340: 337: 335: 332: 330: 327: 325: 322: 320: 317: 316: 313: 308: 307: 300: 297: 295: 292: 290: 287: 285: 282: 280: 277: 275: 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 249:Electric flux 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 217: 215: 212: 211: 208: 203: 202: 197: 194: 192: 189: 187: 186:Computational 184: 182: 179: 177: 174: 172: 169: 167: 164: 163: 162: 161: 157: 153: 152: 149: 146: 145: 141: 140: 131: 128: 120: 109: 106: 102: 99: 95: 92: 88: 85: 81: 78: â€“  77: 73: 72:Find sources: 66: 62: 56: 55: 50:This article 48: 44: 39: 38: 33: 19: 2064: 2052: 2027: 2023: 2017: 1845:Voltage drop 1798:ideal diodes 1783: 1766: 1764: 1759: 1753: 1733: 1713: 1686: 1613: 1585: 1559: 1540: 1532: 1503: 1460: 1427: 1353: 1322: 1271: 1260: 1251: 1243: 1229: 1227: 1220: 1204: 1196: 1194: 1191:By lumpiness 1174: 1171:By linearity 1166: 1151: 1136: 1133:By passivity 1119: 1110: 1097: 1095: 1060: 1057:capacitances 1004: 1002: 704:Four-current 639:Linear motor 524:Electrolysis 491: 404:Eddy current 364:Permeability 284:Polarization 279:Permittivity 123: 114: 104: 97: 90: 83: 71: 59:Please help 54:verification 51: 2107:Electricity 2091:Electronics 1993:RLC circuit 1910:Measurement 1724:verilog-AMS 1248:Independent 1230:semi-lumped 1087:AC response 1083:DC response 1053:inductances 1049:resistances 1033:transistors 674:Transformer 504:Capacitance 429:Faraday law 224:Coulomb law 166:Electricity 2101:Categories 2009:References 1988:RL circuit 1983:RC circuit 1978:LC circuit 1681:See also: 1421:Components 1325:reactances 1213:wavelength 1185:saturation 1116:electronic 1025:capacitors 741:Scientists 589:Waveguides 569:Resistance 539:Inductance 319:AmpĂšre law 117:March 2016 87:newspapers 1932:Analogies 1862:Schematic 1830:Memristor 1820:Impedance 1535:theorems 1293:Ohm's law 1257:Dependent 1162:generator 1021:inductors 1017:resistors 1013:batteries 997:Ohm's law 897:Steinmetz 827:Kirchhoff 812:Jefimenko 807:Hopkinson 792:Helmholtz 787:Heaviside 649:Permeance 534:Impedance 274:Insulator 269:Gauss law 219:Conductor 196:Phenomena 191:Textbooks 171:Magnetism 2058:"HSPICE" 1804:See also 1790:Simulink 1720:VHDL-AMS 1347:Elements 1181:inductor 1102:Analysis 1029:switches 922:Wiechert 877:Poynting 767:Einstein 614:DC motor 609:AC motor 444:Lenz law 229:Electret 2032:Bibcode 1867:Netlist 1693:digital 1533:Network 1338:Linear 1158:battery 1147:passive 1039:(e.g., 1011:(e.g., 907:Thomson 882:Ritchie 872:Poisson 857:Neumann 852:Maxwell 847:Lorentz 842:LiĂ©nard 772:Faraday 757:Coulomb 584:Voltage 559:Ohm law 181:History 101:scholar 2077:Portal 2065:HSpice 1744:SapWin 1740:GNUCAP 1716:HSPICE 1689:analog 1113:active 1089:, and 1066:Linear 1059:). An 892:Singer 887:Savart 867:Ørsted 832:Larmor 822:Kelvin 777:Fizeau 747:AmpĂšre 669:Stator 176:Optics 103:  96:  89:  82:  74:  2061:(PDF) 1792:uses 1786:PLECS 1736:SPICE 1160:or a 917:Weber 912:Volta 902:Tesla 817:Joule 802:Hertz 797:Henry 782:Gauss 664:Rotor 108:JSTOR 94:books 1825:Load 1722:and 1670:edit 1663:talk 1656:view 837:Lenz 762:Davy 752:Biot 80:news 2040:doi 2028:122 1760:and 1738:or 1691:or 1141:or 1003:An 862:Ohm 63:by 2103:: 2063:. 2038:. 2026:. 1776:. 1746:. 1695:, 1236:. 1225:. 1106:DC 1096:A 1093:. 1085:, 1055:, 1051:, 1047:, 1043:, 1031:, 1027:, 1023:, 1019:, 1015:, 2079:: 2046:. 2042:: 2034:: 999:. 983:R 980:i 977:= 974:v 951:e 944:t 937:v 130:) 124:( 119:) 115:( 105:· 98:· 91:· 84:· 57:. 34:. 20:)

Index

Electric circuit
Electrical grid

verification
improve this article
adding citations to reliable sources
"Electrical network"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Electromagnetism
Solenoid
Electricity
Magnetism
Optics
History
Computational
Textbooks
Phenomena
Electrostatics
Charge density
Conductor
Coulomb law
Electret
Electric charge
Electric dipole
Electric field

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑