Knowledge

Energy transformation

Source đź“ť

122: 530: 222:
with the disappearance of the thermal energy and its entropy content. Otherwise, only a part of that thermal energy may be converted to other kinds of energy (and thus useful work). This is because the remainder of the heat must be reserved to be transferred to a thermal reservoir at a lower temperature. The increase in entropy for this process is greater than the decrease in entropy associated with the transformation of the rest of the heat into other types of energy.
213:, and its defining feature is that the entropy of an isolated system never decreases. One cannot take a high-entropy system (like a hot substance, with a certain amount of thermal energy) and convert it into a low entropy state (like a low-temperature substance, with correspondingly lower energy), without that entropy going somewhere else (like the surrounding air). In other words, there is no way to concentrate energy without spreading out energy somewhere else. 1888: 1912: 240: 25: 1924: 1900: 396:. Such a fusion process is triggered by heat and pressure generated from the gravitational collapse of hydrogen clouds when they produce stars, and some of the fusion energy is then transformed into starlight. Considering the solar system, starlight, overwhelmingly from the Sun, may again be stored as gravitational potential energy after it strikes the Earth. This occurs in the case of 221:
states that the entropy of a closed system can never decrease. For this reason, thermal energy in a system may be converted to other kinds of energy with efficiencies approaching 100% only if the entropy of the universe is increased by other means, to compensate for the decrease in entropy associated
225:
In order to make energy transformation more efficient, it is desirable to avoid thermal conversion. For example, the efficiency of nuclear reactors, where the kinetic energy of the nuclei is first converted to thermal energy and then to electrical energy, lies at around 35%. By direct conversion of
200:
around another body converts its kinetic energy (speed) into gravitational potential energy (distance from the other object) as it moves away from its parent body. When it reaches the furthest point, it will reverse the process, accelerating and converting potential energy into kinetic. Since space
391:
of hydrogen in the Sun releases another store of potential energy which was created at the time of the Big Bang. At that time, according to one theory, space expanded and the universe cooled too rapidly for hydrogen to completely fuse into heavier elements. This resulted in hydrogen representing a
204:
Thermal energy is unique because it in most cases (willow) cannot be converted to other forms of energy. Only a difference in the density of thermal/heat energy (temperature) can be used to perform work, and the efficiency of this conversion will be (much) less than 100%. This is because thermal
438:
stored at the time of the Big Bang is later released by intermediate events, sometimes being stored in several different ways for long periods between releases, as more active energy. All of these events involve the conversion of one kind of energy into others, including heat.
328:, for example, such heat from the continued collapse of the planets' large gas atmospheres continue to drive most of the planets' weather systems. These systems, consisting of atmospheric bands, winds, and powerful storms, are only partly powered by sunlight. However, on 423:, when carbon dioxide and water are converted into a combustible combination of carbohydrates, lipids, and oxygen. The release of this energy as heat and light may be triggered suddenly by a spark, in a forest fire; or it may be available more slowly for animal or human 205:
energy represents a particularly disordered form of energy; it is spread out randomly among many available states of a collection of microscopic particles constituting the system (these combinations of position and momentum for each of the particles are said to form a
487:
In such a system, the first and fourth steps are highly efficient, but the second and third steps are less efficient. The most efficient gas-fired electrical power stations can achieve 50% conversion efficiency. Oil- and coal-fired stations are less efficient.
216:
Thermal energy in equilibrium at a given temperature already represents the maximal evening-out of energy between all possible states because it is not entirely convertible to a "useful" form, i.e. one that can do more than just affect temperature. The
187:
Conversions to thermal energy from other forms of energy may occur with 100% efficiency. Conversion among non-thermal forms of energy may occur with fairly high efficiency, though there is always some energy dissipated thermally due to
415:, which occurs when large unstable areas of warm ocean, heated over months, give up some of their thermal energy suddenly to power a few days of violent air movement. Sunlight is also captured by plants as a chemical 339:, a significant portion of the heat output from the interior of the planet, estimated at a third to half of the total, is caused by the slow collapse of planetary materials to a smaller size, generating heat. 226:
kinetic energy to electric energy, effected by eliminating the intermediate thermal energy transformation, the efficiency of the energy transformation process can be dramatically improved.
912:
Shinn, Eric; HĂĽbler, Alfred; Lyon, Dave; Perdekamp, Matthias Grosse; Bezryadin, Alexey; Belkin, Andrey (January 2013). "Nuclear energy conversion with stacks of graphene nanocapacitors".
817:
Katinas, Vladislovas; MarÄŤiukaitis, Mantas; Perednis, Eugenijus; DzenajaviÄŤienÄ—, Eugenija Farida (1 March 2019). "Analysis of biodegradable waste use for energy generation in Lithuania".
130: 347:
Familiar examples of other such processes transforming energy from the Big Bang include nuclear decay, which releases energy that was originally "stored" in heavy
312:
A direct transformation of energy occurs when hydrogen produced in the Big Bang collects into structures such as planets, in a process during which part of the
799: 304:, later being "released" (that is, transformed to more active types of energy such as kinetic or radiant energy) by a triggering mechanism. 300:
Energy transformations in the universe over time are usually characterized by various kinds of energy, which have been available since the
89: 61: 1001: 1621: 261: 42: 1665: 1340: 68: 1807: 774: 171:, lighting or performing mechanical work to operate machines. For example, to heat a home, the furnace burns fuel, whose 167:
The energy in many of its forms may be used in natural processes, or to provide some service to society such as heating,
75: 287: 108: 269: 1748: 57: 971: 738: 637: 483:
Mechanical energy of the turbine is converted to electrical energy by the generator, which is the ultimate output
192:
and similar processes. Sometimes the efficiency is close to 100%, such as when potential energy is converted to
1758: 619: 265: 46: 1928: 1288: 218: 1847: 1106: 994: 625: 1950: 723: 698: 379:
bombs. In both cases, a portion of the energy binding the atomic nuclei together is released as heat.
363:
of these elements. This process uses the gravitational potential energy released from the collapse of
1955: 1753: 1611: 1273: 1218: 1198: 1193: 743: 196:
as an object falls in a vacuum. This also applies to the opposite case; for example, an object in an
172: 1682: 1026: 250: 164:, energy is transferable to a different location or object, but it cannot be created or destroyed. 82: 1904: 1842: 1827: 1223: 1203: 898: 313: 254: 35: 1355: 1251: 1178: 1168: 1049: 987: 728: 703: 161: 1295: 753: 551: 371:
and the Earth. The energy locked into uranium is released spontaneously during most types of
499:
Chemical energy in the fuel is converted into kinetic energy of expanding gas via combustion
1743: 1716: 1694: 1601: 1534: 1283: 1213: 1158: 921: 865: 733: 708: 649: 367:
to create these heavy elements before they are incorporated into star systems such as the
8: 1822: 1765: 1687: 1660: 1345: 1208: 1183: 925: 869: 1802: 1780: 1770: 1606: 834: 557: 121: 1911: 1704: 1529: 1390: 1350: 1320: 1305: 1278: 1188: 1091: 1031: 1021: 964: 878: 853: 838: 713: 615: 529: 405: 372: 364: 1863: 1837: 1832: 1812: 1797: 1638: 1628: 1408: 1335: 1071: 960: 929: 873: 826: 599: 435: 416: 1892: 1873: 1787: 1554: 1469: 1325: 1315: 1300: 1258: 1163: 1113: 1064: 748: 663: 593: 571: 565: 460: 376: 360: 1868: 1817: 1792: 1596: 1561: 1494: 1484: 1400: 1380: 1375: 1360: 1330: 1310: 1268: 1246: 1228: 1128: 1118: 1054: 830: 718: 655: 643: 561: 545: 474: 470: 464: 420: 393: 388: 197: 193: 176: 153: 1944: 1916: 1775: 1735: 1699: 1655: 1581: 1544: 1462: 1385: 1153: 1148: 1101: 1081: 854:"Exergy analysis of an operating boiling-water-reactor nuclear power station" 541:
that convert one energy form into another. A short list of examples follows:
401: 387:
In a similar chain of transformations beginning at the dawn of the universe,
168: 1672: 1616: 1566: 1549: 1370: 1143: 1076: 693: 609: 368: 1677: 1643: 1517: 1507: 1450: 1433: 1418: 1365: 1263: 816: 679: 605: 520:
Rotary movement of drive wheels converted to linear motion of the vehicle
206: 179:, which is then transferred to the home's air to raise its temperature. 1711: 1633: 1571: 1539: 1479: 1173: 933: 675: 669: 631: 538: 502:
Kinetic energy of expanding gas converted to the linear piston movement
492: 428: 424: 411:
Sunlight also drives many weather phenomena on Earth. One example is a
397: 129: 408:, it can be used to drive turbine/generators to produce electricity). 1721: 1648: 1522: 1502: 1474: 1413: 589: 480:
Kinetic energy of steam converted to mechanical energy in the turbine
447: 412: 775:"Energy Transfers and Transformations | National Geographic Society" 239: 24: 1457: 1438: 1423: 1123: 583: 382: 301: 189: 182: 1591: 1133: 356: 352: 348: 325: 317: 307: 210: 145: 144:, is the process of changing energy from one form to another. In 1138: 1059: 1010: 800:"Advantages and Limitations of Ocean Thermal Energy Conversion" 548:(chemical energy in adenosine triphosphate → mechanical energy) 342: 329: 321: 149: 852:
Dunbar, William R.; Moody, Scott D.; Lior, Noam (March 1995).
608:, such as the internal combustion engine used in cars, or the 505:
Linear piston movement converted to rotary crankshaft movement
336: 201:
is a near-vacuum, this process has close to 100% efficiency.
508:
Rotary crankshaft movement passed into transmission assembly
1512: 1445: 1428: 1096: 972:
Energy Transfer and Transformation | Core knowledge science
659: 577: 453: 400:, or when water evaporates from oceans and is deposited as 157: 517:
Rotary movement passed out of differential to drive wheels
456:-fired power plant involves these energy transformations: 160:. In addition to being converted, according to the law of 979: 911: 951:"Energy—Volume 3: Nuclear energy and energy policies". 404:
high above sea level (where, after being released at a
152:
is a quantity that provides the capacity to perform
511:
Rotary movement passed out of transmission assembly
392:store of potential energy which can be released by 229: 133:
Energy transformation using Energy Systems Language
49:. Unsourced material may be challenged and removed. 448:Examples of sets of energy conversions in machines 209:). The measure of this disorder or randomness is 1942: 434:Through all of these transformation chains, the 383:Release of energy from hydrogen fusion potential 851: 183:Limitations in the conversion of thermal energy 156:or moving (e.g. lifting an object) or provides 495:, the following energy transformations occur: 308:Release of energy from gravitational potential 995: 646:(electromagnetic radiation → chemical energy) 514:Rotary movement passed through a differential 359:. This energy was stored at the time of the 343:Release of energy from radioactive potential 524: 268:. Unsourced material may be challenged and 125:Fire is an example of energy transformation 1002: 988: 316:is to be converted directly into heat. In 895:The Nuclear Fuel Cycle: From Ore to Waste 877: 682:→ electrical energy or mechanical energy) 288:Learn how and when to remove this message 109:Learn how and when to remove this message 819:Renewable and Sustainable Energy Reviews 798:Pandey, Er. Akanksha (9 February 2010). 528: 128: 120: 672:(mechanical energy → electrical energy) 427:when these molecules are ingested, and 1943: 1622:Integrated gasification combined cycle 892: 797: 537:There are many different machines and 1666:Radioisotope thermoelectric generator 1341:Quantum chromodynamics binding energy 983: 554:(chemical energy → electrical energy) 1899: 628:(electrical energy → heat and light) 473:of the exhaust gases converted into 266:adding citations to reliable sources 233: 47:adding citations to reliable sources 18: 1923: 1808:World energy supply and consumption 13: 944: 580:(chemical energy → heat and light) 467:in the exhaust gases of combustion 375:, and can be suddenly released in 14: 1967: 332:, little of this process occurs. 1922: 1910: 1898: 1887: 1886: 858:Energy Conversion and Management 779:education.nationalgeographic.org 238: 230:History of energy transformation 23: 739:Ocean thermal energy conversion 431:is triggered by enzyme action. 34:needs additional citations for 905: 886: 845: 810: 791: 767: 620:gravitational potential energy 477:of steam through heat exchange 463:in the coal is converted into 1: 760: 965:10.1016/0306-2619(79)90027-8 879:10.1016/0196-8904(94)00054-4 652:(strain → electrical energy) 219:second law of thermodynamics 7: 686: 634:(sound → electrical energy) 442: 10: 1972: 1009: 831:10.1016/j.rser.2018.11.022 724:Groundwater energy balance 640:(heat → electrical energy) 612:(heat → mechanical energy) 16:Process of changing energy 1882: 1856: 1732: 1612:Fossil fuel power station 1580: 1493: 1399: 1274:Electric potential energy 1239: 1219:Thermodynamic temperature 1199:Thermodynamic free energy 1194:Thermodynamic equilibrium 1040: 1017: 744:Thermodynamic equilibrium 602:(heat→ electrical energy) 533:Lamatalaventosa Wind Farm 173:chemical potential energy 1683:Concentrated solar power 959:(4): 321. October 1979. 574:(electric energy → heat) 525:Other energy conversions 1224:Volume (thermodynamics) 1204:Thermodynamic potential 1107:Mass–energy equivalence 899:Oxford University Press 586:(kinetic energy → heat) 314:gravitational potential 58:"Energy transformation" 1179:Quantum thermodynamics 1169:Laws of thermodynamics 1050:Conservation of energy 729:Laws of thermodynamics 704:Conservation of energy 534: 162:conservation of energy 134: 126: 1296:Interatomic potential 1087:Energy transformation 893:Wilson, P.D. (1996). 754:Uncertainty principle 552:Battery (electricity) 532: 138:Energy transformation 132: 124: 1744:Efficient energy use 1717:Airborne wind energy 1695:Solar thermal energy 1602:Electricity delivery 1214:Thermodynamic system 1159:Irreversible process 709:Conservation of mass 622:→ electrical energy) 596:→ electrical energy) 568:→ electrical energy) 262:improve this section 43:improve this article 1766:Energy conservation 1688:Photovoltaic system 1661:Nuclear power plant 1346:Quantum fluctuation 1209:Thermodynamic state 1184:Thermal equilibrium 926:2013Cmplx..18c..24S 870:1995ECM....36..149D 804:India Study Channel 638:Ocean thermal power 1803:Sustainable energy 1781:Energy development 1771:Energy consumption 1607:Energy engineering 934:10.1002/cplx.21427 558:Electric generator 535: 491:In a conventional 365:Type II supernovae 175:is converted into 135: 127: 1951:Energy conversion 1938: 1937: 1705:Solar power tower 1351:Quantum potential 1189:Thermal reservoir 1092:Energy transition 734:Noether's theorem 714:Energy accounting 664:electrical energy 616:Hydroelectric dam 406:hydroelectric dam 373:radioactive decay 298: 297: 290: 142:energy conversion 119: 118: 111: 93: 1963: 1956:Energy (physics) 1926: 1925: 1914: 1902: 1901: 1890: 1889: 1864:Carbon footprint 1798:Renewable energy 1639:Hydroelectricity 1629:Geothermal power 1072:Energy condition 1004: 997: 990: 981: 980: 968: 938: 937: 909: 903: 902: 890: 884: 883: 881: 849: 843: 842: 814: 808: 807: 795: 789: 788: 786: 785: 771: 699:Conservation law 600:Geothermal power 436:potential energy 417:potential energy 293: 286: 282: 279: 273: 242: 234: 198:elliptical orbit 140:, also known as 114: 107: 103: 100: 94: 92: 51: 27: 19: 1971: 1970: 1966: 1965: 1964: 1962: 1961: 1960: 1941: 1940: 1939: 1934: 1878: 1874:Waste-to-energy 1852: 1788:Energy security 1734: 1728: 1584: 1576: 1555:Natural uranium 1489: 1470:Mechanical wave 1401:Energy carriers 1395: 1235: 1164:Isolated system 1042: 1036: 1013: 1008: 977: 950: 947: 945:Further reading 942: 941: 910: 906: 891: 887: 850: 846: 815: 811: 796: 792: 783: 781: 773: 772: 768: 763: 758: 749:Thermoeconomics 689: 594:chemical energy 572:Electric heater 566:mechanical work 527: 461:Chemical energy 450: 445: 385: 377:nuclear fission 361:nucleosynthesis 345: 310: 294: 283: 277: 274: 259: 243: 232: 185: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 1969: 1959: 1958: 1953: 1936: 1935: 1933: 1932: 1920: 1908: 1896: 1883: 1880: 1879: 1877: 1876: 1871: 1869:Jevons paradox 1866: 1860: 1858: 1854: 1853: 1851: 1850: 1845: 1840: 1835: 1830: 1825: 1820: 1815: 1810: 1805: 1800: 1795: 1793:Energy storage 1790: 1785: 1784: 1783: 1773: 1768: 1763: 1762: 1761: 1756: 1751: 1740: 1738: 1730: 1729: 1727: 1726: 1725: 1724: 1719: 1709: 1708: 1707: 1702: 1692: 1691: 1690: 1685: 1675: 1670: 1669: 1668: 1663: 1653: 1652: 1651: 1646: 1641: 1631: 1626: 1625: 1624: 1619: 1609: 1604: 1599: 1597:Electric power 1594: 1588: 1586: 1578: 1577: 1575: 1574: 1569: 1564: 1559: 1558: 1557: 1547: 1542: 1537: 1532: 1527: 1526: 1525: 1520: 1515: 1505: 1499: 1497: 1495:Primary energy 1491: 1490: 1488: 1487: 1482: 1477: 1472: 1467: 1466: 1465: 1455: 1454: 1453: 1443: 1442: 1441: 1436: 1426: 1421: 1416: 1411: 1405: 1403: 1397: 1396: 1394: 1393: 1388: 1383: 1378: 1373: 1368: 1363: 1358: 1353: 1348: 1343: 1338: 1333: 1328: 1323: 1318: 1313: 1308: 1303: 1298: 1293: 1292: 1291: 1281: 1276: 1271: 1266: 1261: 1256: 1255: 1254: 1243: 1241: 1237: 1236: 1234: 1233: 1232: 1231: 1226: 1221: 1216: 1211: 1206: 1201: 1196: 1191: 1186: 1181: 1176: 1171: 1166: 1161: 1156: 1151: 1146: 1141: 1136: 1131: 1129:Entropic force 1126: 1119:Thermodynamics 1116: 1111: 1110: 1109: 1104: 1094: 1089: 1084: 1079: 1074: 1069: 1068: 1067: 1057: 1052: 1046: 1044: 1038: 1037: 1035: 1034: 1029: 1024: 1018: 1015: 1014: 1007: 1006: 999: 992: 984: 975: 974: 969: 953:Applied Energy 946: 943: 940: 939: 904: 885: 864:(3): 149–159. 844: 809: 790: 765: 764: 762: 759: 757: 756: 751: 746: 741: 736: 731: 726: 721: 719:Energy quality 716: 711: 706: 701: 696: 690: 688: 685: 684: 683: 673: 667: 656:Thermoelectric 653: 650:Piezoelectrics 647: 644:Photosynthesis 641: 635: 629: 623: 613: 603: 597: 587: 581: 575: 569: 562:kinetic energy 555: 549: 546:ATP hydrolysis 526: 523: 522: 521: 518: 515: 512: 509: 506: 503: 500: 485: 484: 481: 478: 475:thermal energy 471:Thermal energy 468: 465:thermal energy 449: 446: 444: 441: 421:photosynthesis 394:nuclear fusion 389:nuclear fusion 384: 381: 344: 341: 309: 306: 296: 295: 246: 244: 237: 231: 228: 194:kinetic energy 184: 181: 177:thermal energy 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 1968: 1957: 1954: 1952: 1949: 1948: 1946: 1931: 1930: 1921: 1919: 1918: 1913: 1909: 1907: 1906: 1897: 1895: 1894: 1885: 1884: 1881: 1875: 1872: 1870: 1867: 1865: 1862: 1861: 1859: 1855: 1849: 1848:United States 1846: 1844: 1843:South America 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1794: 1791: 1789: 1786: 1782: 1779: 1778: 1777: 1776:Energy policy 1774: 1772: 1769: 1767: 1764: 1760: 1757: 1755: 1752: 1750: 1747: 1746: 1745: 1742: 1741: 1739: 1737: 1731: 1723: 1720: 1718: 1715: 1714: 1713: 1710: 1706: 1703: 1701: 1700:Solar furnace 1698: 1697: 1696: 1693: 1689: 1686: 1684: 1681: 1680: 1679: 1676: 1674: 1671: 1667: 1664: 1662: 1659: 1658: 1657: 1656:Nuclear power 1654: 1650: 1647: 1645: 1642: 1640: 1637: 1636: 1635: 1632: 1630: 1627: 1623: 1620: 1618: 1615: 1614: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1590: 1589: 1587: 1583: 1582:Energy system 1579: 1573: 1570: 1568: 1565: 1563: 1560: 1556: 1553: 1552: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1535:Gravitational 1533: 1531: 1528: 1524: 1521: 1519: 1516: 1514: 1511: 1510: 1509: 1506: 1504: 1501: 1500: 1498: 1496: 1492: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1464: 1463:Hydrogen fuel 1461: 1460: 1459: 1456: 1452: 1449: 1448: 1447: 1444: 1440: 1437: 1435: 1432: 1431: 1430: 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1407: 1406: 1404: 1402: 1398: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1290: 1287: 1286: 1285: 1284:Gravitational 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1253: 1250: 1249: 1248: 1245: 1244: 1242: 1238: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1154:Heat transfer 1152: 1150: 1149:Heat capacity 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1121: 1120: 1117: 1115: 1112: 1108: 1105: 1103: 1102:Negative mass 1100: 1099: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1082:Energy system 1080: 1078: 1075: 1073: 1070: 1066: 1063: 1062: 1061: 1058: 1056: 1053: 1051: 1048: 1047: 1045: 1039: 1033: 1030: 1028: 1025: 1023: 1020: 1019: 1016: 1012: 1005: 1000: 998: 993: 991: 986: 985: 982: 978: 973: 970: 966: 962: 958: 954: 949: 948: 935: 931: 927: 923: 919: 915: 908: 900: 896: 889: 880: 875: 871: 867: 863: 859: 855: 848: 840: 836: 832: 828: 824: 820: 813: 805: 801: 794: 780: 776: 770: 766: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 691: 681: 677: 674: 671: 668: 665: 661: 657: 654: 651: 648: 645: 642: 639: 636: 633: 630: 627: 626:Electric lamp 624: 621: 617: 614: 611: 607: 604: 601: 598: 595: 591: 588: 585: 582: 579: 576: 573: 570: 567: 563: 559: 556: 553: 550: 547: 544: 543: 542: 540: 531: 519: 516: 513: 510: 507: 504: 501: 498: 497: 496: 494: 489: 482: 479: 476: 472: 469: 466: 462: 459: 458: 457: 455: 440: 437: 432: 430: 426: 422: 418: 414: 409: 407: 403: 402:precipitation 399: 395: 390: 380: 378: 374: 370: 366: 362: 358: 354: 350: 340: 338: 333: 331: 327: 323: 319: 315: 305: 303: 292: 289: 281: 271: 267: 263: 257: 256: 252: 247:This section 245: 241: 236: 235: 227: 223: 220: 214: 212: 208: 202: 199: 195: 191: 180: 178: 174: 170: 169:refrigeration 165: 163: 159: 155: 151: 147: 143: 139: 131: 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: â€“  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1927: 1915: 1903: 1891: 1673:Oil refinery 1617:Cogeneration 1550:Nuclear fuel 1356:Quintessence 1144:Free entropy 1086: 1077:Energy level 1041:Fundamental 976: 956: 952: 920:(3): 24–27. 917: 913: 907: 897:. New York: 894: 888: 861: 857: 847: 822: 818: 812: 803: 793: 782:. Retrieved 778: 769: 694:Chaos theory 610:steam engine 606:Heat engines 536: 490: 486: 451: 433: 410: 386: 369:Solar System 346: 334: 311: 299: 284: 275: 260:Please help 248: 224: 215: 203: 186: 166: 141: 137: 136: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 1929:WikiProject 1749:Agriculture 1678:Solar power 1644:Tidal power 1518:Natural gas 1508:Fossil fuel 1451:Latent heat 1419:Electricity 825:: 559–567. 680:wind energy 539:transducers 207:phase space 1945:Categories 1712:Wind power 1634:Hydropower 1585:components 1540:Hydropower 1530:Geothermal 1480:Sound wave 1391:Zero-point 1321:Mechanical 1306:Ionization 1279:Electrical 1174:Negentropy 1055:Energetics 914:Complexity 784:2022-05-29 761:References 670:Wave power 632:Microphone 493:automobile 429:catabolism 425:metabolism 398:avalanches 351:, such as 69:newspapers 1823:Australia 1759:Transport 1754:Computing 1722:Wind farm 1649:Wave farm 1523:Petroleum 1503:Bioenergy 1475:Radiation 1414:Capacitor 1336:Potential 839:117316732 590:Fuel cell 413:hurricane 249:does not 99:July 2017 1893:Category 1458:Hydrogen 1424:Enthalpy 1326:Negative 1316:Magnetic 1301:Internal 1259:Chemical 1124:Enthalpy 1043:concepts 687:See also 676:Windmill 584:Friction 443:Examples 349:isotopes 302:Big Bang 278:May 2019 190:friction 1905:Commons 1733:Use and 1592:Biomass 1562:Radiant 1409:Battery 1381:Thermal 1376:Surface 1361:Radiant 1331:Phantom 1311:Kinetic 1289:Binding 1269:Elastic 1252:Nuclear 1247:Binding 1134:Entropy 1032:Outline 1022:History 922:Bibcode 866:Bibcode 357:thorium 353:uranium 326:Neptune 318:Jupiter 270:removed 255:sources 211:entropy 146:physics 83:scholar 1917:Portal 1838:Mexico 1833:Europe 1828:Canada 1813:Africa 1736:supply 1545:Marine 1434:Fossil 1386:Vacuum 1139:Exergy 1060:Energy 1011:Energy 837:  330:Uranus 324:, and 322:Saturn 150:energy 85:  78:  71:  64:  56:  1857:Misc. 1567:Solar 1371:Sound 1240:Types 1114:Power 1065:Units 1027:Index 835:S2CID 337:Earth 90:JSTOR 76:books 1818:Asia 1572:Wind 1513:Coal 1485:Work 1446:Heat 1429:Fuel 1366:Rest 1264:Dark 1229:Work 1097:Mass 660:heat 578:Fire 454:coal 419:via 355:and 253:any 251:cite 158:heat 154:work 62:news 1439:Oil 961:doi 930:doi 874:doi 827:doi 823:101 564:or 335:On 264:by 45:by 1947:: 955:. 928:. 918:18 916:. 872:. 862:36 860:. 856:. 833:. 821:. 802:. 777:. 662:→ 452:A 320:, 148:, 1003:e 996:t 989:v 967:. 963:: 957:5 936:. 932:: 924:: 901:. 882:. 876:: 868:: 841:. 829:: 806:. 787:. 678:( 666:) 658:( 618:( 592:( 560:( 291:) 285:( 280:) 276:( 272:. 258:. 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Energy transformation"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message


physics
energy
work
heat
conservation of energy
refrigeration
chemical potential energy
thermal energy
friction
kinetic energy
elliptical orbit
phase space
entropy
second law of thermodynamics

cite
sources

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑