Knowledge

Fiber laser

Source đź“ť

338:(SESAMs) can also be used to mode lock fiber lasers. A major advantage SESAMs have over other saturable absorber techniques is that absorber parameters can be easily tailored to meet the needs of a particular laser design. For example, saturation fluence can be controlled by varying the reflectivity of the top reflector while modulation depth and recovery time can be tailored by changing the low temperature growing conditions for the absorber layers. This freedom of design has further extended the application of SESAMs into modelocking of fiber lasers where a relatively high modulation depth is needed to ensure self-starting and operation stability. Fiber lasers working at 1 ÎĽm and 1.5 ÎĽm were successfully demonstrated. 266:(MOPA) scheme. In amplifiers for ultrashort optical pulses, the optical peak intensities can become very high, so that detrimental nonlinear pulse distortion or even destruction of the gain medium or other optical elements may occur. This is generally avoided by employing chirped-pulse amplification (CPA). State of the art high-power fiber laser technologies using rod-type amplifiers have reached 1 kW with 260 fs pulses and made outstanding progress and delivered practical solutions for the most of these problems. 371: 2000: 192: 297:
MOPA containing large-pitch fibers (LPF). However, the shortcoming of amplification systems with LPF is their relatively long (up to 1.2 m) unbendable rod-type fibers meaning a rather bulky and cumbersome optical scheme. LPF fabrication is highly complex requiring significant processing such as
108:
An advantage of fiber lasers over other types of lasers is that the laser light is both generated and delivered by an inherently flexible medium, which allows easier delivery to the focusing location and target. This can be important for laser cutting, welding, and folding of metals and polymers.
361:
Multi-wavelength emission in a fiber laser demonstrated simultaneous blue and green coherent light using ZBLAN optical fiber. The end-pumped laser was based on an upconversion optical gain media using a longer wavelength semiconductor laser to pump a Pr3+/Yb3+ doped fluoride fiber that used coated
280:
The main approach to solving the problems related to increasing the output power of pulses has been to increase the core diameter of the fiber. Special active fibers with large modes were developed to increase the surface-to-active-volume ratio of active fibers and, hence, improve heat dissipation
352:
In the non-mode locking regime, a dark soliton fiber laser was successfully created using an all-normal dispersion erbium-doped fiber laser with a polarizer in-cavity. Experimental findings indicate that apart from the bright pulse emission, under appropriate conditions the fiber laser could also
224:
into a much higher-brightness signal. There is an important question about the shape of the double-clad fiber; a fiber with circular symmetry seems to be the worst possible design. The design should allow the core to be small enough to support only a few (or even one) modes. It should provide
219:
pump beam propagates in the inner cladding layer. The outer cladding keeps this pump light confined. This arrangement allows the core to be pumped with a much higher-power beam than could otherwise be made to propagate in it, and allows the conversion of pump light with relatively low
293:(T-DCF). The mode field diameter (MFD) achieved with these low aperture technologies usually does not exceed 20–30 ÎĽm. The micro-structured rod-type fiber has much larger MFD (up to 65 ÎĽm ) and good performance. An impressive 2.2 mJ pulse energy was demonstrated by a 137:. Fiber lasers are reliable and exhibit high temperature and vibrational stability and extended lifetime. High peak power and nanosecond pulses improve marking and engraving. The additional power and better beam quality provide cleaner cut edges and faster cutting speeds. 109:
Another advantage is high output power compared to other types of laser. Fiber lasers can have active regions several kilometers long, and so can provide very high optical gain. They can support kilowatt levels of continuous output power because of the fiber's high
288:
Several types of active fibers with a large effective mode area (LMA) have been developed for high power scaling including LMA fibers with a low-aperture core, micro-structured rod-type fiber helical core or chirally-coupled fibers, and
328:, blocking low-intensity light but allowing high intensity light to pass with little attenuation. This allows the laser to form mode-locked pulses, and then the non-linearity of the fiber further shapes each pulse into an ultra-short 284:
Moreover, specially developed double cladding structures have been used to reduce the brightness requirements of the high-power pump diodes by controlling pump propagation and absorption between the inner cladding and the core.
1460: 388:. In such lasers, the pump is not confined within the cladding of the fiber, but instead pump light is delivered across the core multiple times because it is coiled in on itself. This configuration is suitable for 1766:
Baney, D. M., Rankin, G., Change, K. W. "Simultaneous blue and green upconversion lasing in a diode-pumped Pr3+/Yb3+ doped fluoride fiber laser,"Appl. Phys. Lett, vol. 69 No 12, pp. 1622-1624, Sept 1996.
269:
However, despite the attractive characteristics of fiber lasers, several problems arise when power scaling. The most significant are thermal lensing and material resistance, nonlinear effects such as
1385:
Li N.; Xue J.; Ouyang C.; Wu K.; Wong J. H.; Aditya S.; Shum P. P. (2012). "Cavity-length optimization for high energy pulse generation in a long cavity passively mode-locked all-fiber ring laser".
987:
Müller, Michael; Kienel, Marco; Klenke, Arno; Gottschall, Thomas; Shestaev, Evgeny; Plötner, Marco; Limpert, Jens; Tünnermann, Andreas (2016-08-01). "1 kW 1 mJ eight-channel ultrafast fiber laser".
344:
saturable absorbers have also been used for mode locking fiber lasers. Graphene's saturable absorption is not very sensitive to wavelength, making it useful for mode locking tunable lasers.
1457: 471: 1328:
Eidam, Tino; Rothhardt, Jan; Stutzki, Fabian; Jansen, Florian; Hädrich, Steffen; Carstens, Henning; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas (2011-01-03).
1185:
Wang, P.; Cooper, L. J.; Sahu, J. K.; Clarkson, W. A. (2006-01-15). "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser".
1125:
Limpert, J.; Deguil-Robin, N.; Manek-Hönninger, I.; Salin, F.; Röser, F.; Liem, A.; Schreiber, T.; Nolte, S.; Zellmer, H.; Tünnermann, A.; Broeng, J. (2005-02-21).
1821:
1999 IEEE LEOS Annual Meeting Conference Proceedings. LEOS'99. 12th Annual Meeting. IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat. No.99CH37009)
2267: 762:
Leproux, P.; S. Fevrier; V. Doya; P. Roy; D. Pagnoux (2003). "Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of pump".
1555:
Zhang, H; Tang, DY; Zhao, LM; Bao, QL; Loh, KP (28 September 2009). "Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene".
1440: 353:
emit single or multiple dark pulses. Based on numerical simulations the dark pulse formation in the laser may be a result of dark soliton shaping.
298:
precision drilling of the fiber pre-forms.  The LPF fibers are highly sensitive to bending meaning robustness and portability is compromised.
255:
powers from Yb-doped fiber lasers have increased from 100 W in 2001 to a combined beam fiber laser demonstrated power of 30 kW in 2014.
1304: 445: 133:
of comparable power, because the fiber can be bent and coiled, except in the case of thicker rod-type designs, to save space. They have lower
1684: 571:
Phillips, Katherine C.; Gandhi, Hemi H.; Mazur, Eric; Sundaram, S. K. (Dec 31, 2015). "Ultrafast laser processing of materials: a review".
1989: 1776:
Ueda, Ken-ichi (1998). Kudryashov, Alexis V.; Galarneau, Pierre (eds.). "Optical cavity and future style of high-power fiber lasers".
496: 231:(T-DCF) has tapered core and cladding which enables power scaling of amplifiers and lasers without thermal lensing mode instability. 688:
Kouznetsov, D.; Moloney, J.V. (2003). "Efficiency of pump absorption in double-clad fiber amplifiers. 2: Broken circular symmetry".
2148: 446:"Growing adoption of laser cutting machine market in the US through 2021, due to the need for superior-quality products: Technavio" 247:. Due to the introduction of large mode area (LMA) fibers as well as continuing advances in high power and high brightness diodes, 1880:
Ueda; Sekiguchi H.; Matsuoka Y.; Miyajima H.; H.Kan (1999). "Conceptual design of kW-class fiber-embedded disk and tube lasers".
335: 324:
causes a change in polarization that varies with the light's intensity. This allows a polarizer in the laser cavity to act as a
1701: 1617: 725:
Kouznetsov, D.; Moloney, J.V. (2003). "Efficiency of pump absorption in double-clad fiber amplifiers.3:Calculation of modes".
2166: 1897: 1836: 259: 651:
A. Liu; K. Ueda (1996). "The absorption characteristics of circular, offset, and rectangular double-clad fibers".
2302: 1982: 1922: 274: 2224: 1494:
Zhang H.; et al. (2009). "Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser".
244: 1882:
Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464)
1438:
H. Zhang et al., "Induced solitons formed by cross polarization coupling in a birefringent cavity fiber laser"
1884:. Vol. 2. Lasers and Electro-Optics Society 1999 12th Annual Meeting. LEOS '99. IEEE. pp. 217–218. 1239:
Lefrancois, Simon; Sosnowski, Thomas S.; Liu, Chi-Hung; Galvanauskas, Almantas; Wise, Frank W. (2011-02-14).
225:
sufficient cladding to confine the core and optical pump section over a relatively short piece of the fiber.
904:
Filippov, Valery; Kerttula, Juho; Chamorovskii, Yuri; Golant, Konstantin; Okhotnikov, Oleg G. (2010-06-07).
78: 1437: 2353: 270: 211:. The gain medium forms the core of the fiber, which is surrounded by two layers of cladding. The lasing 961: 1975: 172: 2068: 847:
Filippov, V.; Chamorovskii, Yu; Kerttula, J.; Golant, K.; Pessa, M.; Okhotnikov, O. G. (2008-02-04).
614:
S. Bedö; W. Lüthy; H. P. Weber (1993). "The effective absorption coefficient in double-clad fibers".
290: 228: 1866: 1480:
H. Zhang et al., "Coherent energy exchange between components of a vector soliton in fiber lasers",
520:
Zervas, Michalis N.; Codemard, Christophe A. (September 2014). "High Power Fiber Lasers: A Review".
2142: 2023: 801: 764: 216: 2332: 1682: 2125: 413: 2358: 2156: 2136: 1618:"Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker" 653: 616: 239:
Recent developments in fiber laser technology have led to a rapid and large rise in achieved
121:
properties reduce or eliminate thermal distortion of the optical path, typically producing a
1785: 1726: 1642: 1574: 1513: 1394: 1341: 1252: 1194: 1138: 1072: 1060: 1006: 917: 860: 810: 773: 736: 699: 662: 625: 580: 529: 30: 8: 2119: 240: 160: 122: 1789: 1730: 1646: 1578: 1517: 1398: 1345: 1256: 1198: 1142: 1076: 1010: 921: 864: 814: 799:
D.Kouznetsov; J.Moloney (2004). "Boundary behaviour of modes of a Dirichlet Laplacian".
777: 740: 703: 666: 629: 584: 533: 1903: 1854: 1842: 1801: 1742: 1716: 1658: 1632: 1598: 1564: 1537: 1503: 1281: 1240: 1038: 996: 826: 553: 401: 325: 146: 46: 38: 2307: 2131: 2003: 1893: 1846: 1832: 1805: 1746: 1662: 1602: 1590: 1529: 1420: 1367: 1359: 1286: 1268: 1218: 1210: 1164: 1156: 1104: 1096: 1088: 1030: 1022: 943: 935: 886: 878: 830: 674: 637: 596: 545: 208: 202: 195: 175:(DFB) where a phase-shifted Bragg grating overlaps the gain medium. Fiber lasers are 164: 134: 126: 1907: 1042: 557: 1930: 1885: 1824: 1793: 1750: 1734: 1666: 1650: 1582: 1541: 1521: 1410: 1402: 1349: 1276: 1260: 1202: 1146: 1080: 1014: 925: 868: 818: 781: 744: 707: 670: 633: 588: 537: 385: 379: 171:. They may also be designed for single longitudinal mode operation of ultra-narrow 168: 97: 93: 89: 1688: 1464: 1444: 329: 263: 252: 248: 212: 156: 1458:"Observation of high-order polarization-locked vector solitons in a fiber laser" 472:"Fiber lasers continue to gain market share in material processing applications" 2235: 2089: 1889: 1738: 541: 425: 316:
used with other lasers, fiber lasers can be passively mode locked by using the
1615: 822: 2347: 2317: 2277: 2262: 1828: 1363: 1272: 1241:"Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber" 1214: 1160: 1092: 1026: 939: 882: 600: 549: 389: 317: 176: 42: 748: 711: 258:
High average power fiber lasers generally consist of a relatively low-power
2327: 2322: 2272: 2084: 2036: 2031: 1953: 1934: 1819:
K. Ueda (1999). "Scaling physics of disk-type fiber lasers for kW output".
1616:
Han Zhang; Qiaoliang Bao; Dingyuan Tang; Luming Zhao; Kianping Loh (2009).
1594: 1533: 1424: 1371: 1290: 1222: 1168: 1151: 1126: 1108: 1034: 947: 890: 785: 405: 313: 307: 152: 110: 66: 1967: 2292: 2287: 2282: 2015: 1586: 1525: 1406: 1354: 1329: 1264: 1206: 1084: 1018: 930: 905: 873: 848: 592: 321: 294: 180: 2240: 2114: 2106: 1949: 1415: 1124: 62: 1879: 1797: 1654: 392:
in which many pump sources are used around the periphery of the coil.
100:
can also provide gain and thus serve as gain media for a fiber laser.
1330:"Fiber chirped-pulse amplification system emitting 3.8 GW peak power" 1100: 130: 118: 58: 54: 1920: 1059:
Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew (2000-04-01).
2312: 2245: 1001: 409: 341: 221: 1721: 1637: 1569: 1508: 1238: 906:"Highly efficient 750 W tapered double-clad ytterbium fiber laser" 903: 846: 761: 370: 125:, high-quality optical beam. Fiber lasers are compact compared to 2181: 74: 70: 362:
dielectric mirrors on each end of the fiber to form the cavity.
1700:
Zhang, H.; Tang, D. Y.; Zhao, L. M.; Wu, X. (27 October 2009).
727: 690: 114: 82: 50: 962:"Many lasers become one in Lockheed Martin's 30kW fiber laser" 2297: 1999: 1061:"Single-mode operation of a coiled multimode fiber amplifier" 34: 986: 1327: 724: 687: 570: 191: 1305:"AEROGAIN-ROD HIGH POWER YTTERBIUM ROD FIBER GAIN MODULES" 613: 400:
Applications of fiber lasers include material processing,
1384: 277:(SBS), mode instabilities, and poor output beam quality. 2268:
ZEUS-HLONS (HMMWV Laser Ordnance Neutralization System)
849:"Double clad tapered fiber for high power applications" 1184: 522:
IEEE Journal of Selected Topics in Quantum Electronics
16:
Laser using an optical fiber as the active gain medium
798: 1058: 117:
ratio, which allows efficient cooling. The fiber's
1950:"7: Fiber laser overview and medical applications" 1487: 1127:"High-power rod-type photonic crystal fiber laser" 1378: 155:in fiber lasers is constructed monolithically by 2345: 1554: 1699: 519: 1983: 1921:Hamamatsu Photonics K.K. Laser group (2006). 650: 501:Industrial Laser Solutions for Manufacturing 356: 320:of the fiber itself. The non-linear optical 81:, which provide light amplification without 1997: 497:"High-power fiber lasers gain market share" 1990: 1976: 1447:, Opt. Lett., 33, 2317–2319. (2008). 718: 681: 207:Many high-power fiber lasers are based on 1914: 1720: 1636: 1568: 1507: 1414: 1353: 1280: 1150: 1000: 929: 872: 140: 2149:Neodymium-doped yttrium lithium fluoride 1493: 792: 369: 336:Semiconductor saturable-absorber mirrors 190: 1818: 151:Unlike most other types of lasers, the 2346: 1702:"Dark pulse emission of a fiber laser" 494: 469: 2167:Neodymium-doped yttrium orthovanadate 1971: 1947: 1323: 1321: 1234: 1232: 1180: 1178: 1120: 1118: 1054: 1052: 982: 980: 978: 842: 840: 1775: 755: 365: 186: 1873: 1812: 1769: 607: 384:Another type of fiber laser is the 13: 1318: 1229: 1175: 1115: 1049: 975: 837: 644: 103: 14: 2370: 2178:Yttrium calcium oxoborate (YCOB) 1823:. Vol. 2. pp. 788–789. 1998: 1923:"The Fiber Disk Laser explained" 573:Advances in Optics and Photonics 347: 234: 215:propagates in the core, while a 2303:Laboratory for Laser Energetics 1941: 1760: 1693: 1676: 1609: 1548: 1474: 1450: 1431: 1297: 954: 897: 395: 301: 275:stimulated Brillouin scattering 245:diode-pumped solid-state lasers 2225:Diode-pumped solid-state laser 1960:(2nd ed.). New York: CRC. 1484:, 16,12618–12623 (2008). 564: 513: 488: 463: 438: 1: 964:. Gizmag.com. 3 February 2014 431: 675:10.1016/0030-4018(96)00368-9 638:10.1016/0030-4018(93)90338-6 495:Shiner, Bill (Feb 1, 2006). 470:Shiner, Bill (Feb 1, 2016). 312:In addition to the types of 7: 1784:(Laser Resonators): 14–22. 419: 271:stimulated Raman scattering 173:distributed feedback lasers 94:stimulated Raman scattering 10: 2375: 1958:Tunable Laser Applications 1890:10.1109/CLEOPR.1999.811381 1739:10.1103/PhysRevA.80.045803 1687:February 19, 2012, at the 542:10.1109/JSTQE.2014.2321279 377: 305: 291:tapered double-clad fibers 200: 183:or by other fiber lasers. 159:different types of fiber; 144: 2255: 2217: 2104: 2077: 2022: 2010: 823:10.1080/09500340408232504 357:Multi-wavelength emission 229:Tapered double-clad fiber 2143:Yttrium lithium fluoride 2024:Yttrium aluminium garnet 1829:10.1109/leos.1999.811970 802:Journal of Modern Optics 765:Optical Fiber Technology 281:enabling power scaling. 2333:List of petawatt lasers 1625:Applied Physics Letters 1469:Physical Review Letters 749:10.1364/JOSAB.19.001304 712:10.1364/JOSAB.19.001259 414:directed energy weapons 374:Three fiber disk lasers 2126:Terbium gallium garnet 1935:10.1038/nphoton.2006.6 1152:10.1364/OPEX.13.001055 786:10.1006/ofte.2001.0361 375: 198: 141:Design and manufacture 79:doped fiber amplifiers 77:. They are related to 2157:Yttrium orthovanadate 2137:Solid-state dye laser 1471:, 101, 153904 (2008). 654:Optics Communications 617:Optics Communications 373: 262:, or seed laser, and 194: 163:replace conventional 1780:. Laser Resonators. 1587:10.1364/OE.17.017630 1526:10.1364/oe.17.012692 1407:10.1364/AO.51.003726 1355:10.1364/OE.19.000255 1265:10.1364/OE.19.003464 1207:10.1364/OL.31.000226 1085:10.1364/OL.25.000442 1019:10.1364/OL.41.003439 931:10.1364/OE.18.012499 874:10.1364/OE.16.001929 593:10.1364/AOP.7.000684 161:fiber Bragg gratings 31:Commonwealth English 2120:Yttrium iron garnet 2016:Semiconductor laser 1790:1998SPIE.3267...14U 1731:2009PhRvA..80d5803Z 1647:2009ApPhL..95n1103Z 1579:2009OExpr..1717630Z 1518:2009OExpr..1712692Z 1399:2012ApOpt..51.3726L 1346:2011OExpr..19..255E 1257:2011OExpr..19.3464L 1199:2006OptL...31..226W 1143:2005OExpr..13.1055L 1077:2000OptL...25..442K 1011:2016OptL...41.3439M 922:2010OExpr..1812499F 916:(12): 12499–12512. 865:2008OExpr..16.1929F 815:2004JMOp...51.1955K 778:2001OptFT...7..324L 741:2002JOSAB..19.1304K 704:2002JOSAB..19.1259K 667:1996OptCo.132..511A 630:1993OptCo..99..331B 585:2015AdOP....7..684P 534:2014IJSTQ..20..219Z 241:diffraction-limited 123:diffraction-limited 47:rare-earth elements 2354:Solid-state lasers 2004:Solid-state lasers 1948:Popov, S. (2009). 1502:(2): 12692–12697. 1463:2010-01-20 at the 1456:D.Y. Tang et al., 1443:2011-07-07 at the 402:telecommunications 376: 326:saturable absorber 199: 165:dielectric mirrors 147:Laser construction 39:active gain medium 2341: 2340: 2139:(SSDL/SSOL/SSDPL) 2132:Ti:sapphire laser 2011:Distinct subtypes 1929:. sample: 14–15. 1899:978-0-7803-5661-0 1838:978-0-7803-5634-4 1798:10.1117/12.308104 1709:Physical Review A 1655:10.1063/1.3244206 1393:(17): 3726–3730. 995:(15): 3439–3442. 809:(13): 1362–3044. 366:Fiber disk lasers 260:master oscillator 243:beam powers from 209:double-clad fiber 203:Double-clad fiber 196:Double-clad fiber 187:Double-clad fiber 179:by semiconductor 135:cost of ownership 2366: 2002: 1992: 1985: 1978: 1969: 1968: 1962: 1961: 1945: 1939: 1938: 1927:Nature Photonics 1918: 1912: 1911: 1877: 1871: 1870: 1864: 1860: 1858: 1850: 1816: 1810: 1809: 1773: 1767: 1764: 1758: 1757: 1755: 1749:. Archived from 1724: 1706: 1697: 1691: 1680: 1674: 1673: 1671: 1665:. Archived from 1640: 1622: 1613: 1607: 1606: 1572: 1552: 1546: 1545: 1511: 1491: 1485: 1478: 1472: 1454: 1448: 1435: 1429: 1428: 1418: 1382: 1376: 1375: 1357: 1325: 1316: 1315: 1313: 1311: 1301: 1295: 1294: 1284: 1251:(4): 3464–3470. 1236: 1227: 1226: 1182: 1173: 1172: 1154: 1137:(4): 1055–1058. 1122: 1113: 1112: 1056: 1047: 1046: 1004: 984: 973: 972: 970: 969: 958: 952: 951: 933: 901: 895: 894: 876: 859:(3): 1929–1944. 844: 835: 834: 796: 790: 789: 759: 753: 752: 735:(6): 1304–1309. 722: 716: 715: 698:(6): 1259–1263. 685: 679: 678: 661:(5–6): 511–518. 648: 642: 641: 624:(5–6): 331–335. 611: 605: 604: 568: 562: 561: 517: 511: 510: 508: 507: 492: 486: 485: 483: 482: 467: 461: 460: 458: 457: 442: 386:fiber disk laser 380:Fiber disk laser 169:optical feedback 98:four-wave mixing 2374: 2373: 2369: 2368: 2367: 2365: 2364: 2363: 2344: 2343: 2342: 2337: 2308:Laser MĂ©gajoule 2256:Specific lasers 2251: 2213: 2207: 2201: 2172: 2162: 2100: 2073: 2018: 2006: 1996: 1966: 1965: 1946: 1942: 1919: 1915: 1900: 1878: 1874: 1862: 1861: 1852: 1851: 1839: 1817: 1813: 1774: 1770: 1765: 1761: 1753: 1704: 1698: 1694: 1689:Wayback Machine 1681: 1677: 1669: 1620: 1614: 1610: 1563:(20): 17630–5. 1553: 1549: 1492: 1488: 1479: 1475: 1465:Wayback Machine 1455: 1451: 1445:Wayback Machine 1436: 1432: 1383: 1379: 1326: 1319: 1309: 1307: 1303: 1302: 1298: 1237: 1230: 1183: 1176: 1123: 1116: 1057: 1050: 985: 976: 967: 965: 960: 959: 955: 902: 898: 845: 838: 797: 793: 760: 756: 723: 719: 686: 682: 649: 645: 612: 608: 569: 565: 518: 514: 505: 503: 493: 489: 480: 478: 468: 464: 455: 453: 444: 443: 439: 434: 422: 398: 382: 368: 359: 350: 330:optical soliton 310: 304: 264:power amplifier 253:transverse-mode 249:continuous-wave 237: 205: 189: 157:fusion splicing 149: 143: 106: 104:Characteristics 17: 12: 11: 5: 2372: 2362: 2361: 2356: 2339: 2338: 2336: 2335: 2330: 2325: 2320: 2315: 2310: 2305: 2300: 2295: 2290: 2285: 2280: 2275: 2270: 2265: 2259: 2257: 2253: 2252: 2250: 2249: 2243: 2238: 2236:Figure-8 laser 2233: 2228: 2221: 2219: 2215: 2214: 2212: 2211: 2208: 2205: 2202: 2199: 2196: 2193: 2190: 2187: 2186: 2185: 2176: 2175: 2174: 2170: 2160: 2154: 2153: 2152: 2140: 2134: 2129: 2123: 2117: 2111: 2109: 2102: 2101: 2099: 2098: 2095: 2092: 2087: 2081: 2079: 2075: 2074: 2072: 2071: 2066: 2063: 2060: 2057: 2054: 2051: 2048: 2045: 2042: 2039: 2034: 2028: 2026: 2020: 2019: 2014: 2012: 2008: 2007: 1995: 1994: 1987: 1980: 1972: 1964: 1963: 1940: 1913: 1898: 1872: 1863:|journal= 1837: 1811: 1768: 1759: 1756:on 2011-07-17. 1692: 1675: 1672:on 2011-07-17. 1631:(14): 141103. 1608: 1557:Optics Express 1547: 1496:Optics Express 1486: 1482:Optics Express 1473: 1449: 1430: 1387:Applied Optics 1377: 1340:(1): 255–260. 1334:Optics Express 1317: 1296: 1245:Optics Express 1228: 1193:(2): 226–228. 1187:Optics Letters 1174: 1131:Optics Express 1114: 1071:(7): 442–444. 1065:Optics Letters 1048: 989:Optics Letters 974: 953: 910:Optics Express 896: 853:Optics Express 836: 791: 772:(4): 324–339. 754: 717: 680: 643: 606: 579:(4): 684–712. 563: 528:(5): 219–241. 512: 487: 462: 436: 435: 433: 430: 429: 428: 426:Figure-8 laser 421: 418: 397: 394: 378:Main article: 367: 364: 358: 355: 349: 346: 306:Main article: 303: 300: 236: 233: 201:Main article: 188: 185: 142: 139: 105: 102: 90:nonlinearities 15: 9: 6: 4: 3: 2: 2371: 2360: 2357: 2355: 2352: 2351: 2349: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2318:Mercury laser 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2294: 2291: 2289: 2286: 2284: 2281: 2279: 2278:Cyclops laser 2276: 2274: 2271: 2269: 2266: 2264: 2263:Trident laser 2261: 2260: 2258: 2254: 2247: 2244: 2242: 2239: 2237: 2234: 2232: 2229: 2226: 2223: 2222: 2220: 2216: 2209: 2203: 2197: 2194: 2191: 2188: 2183: 2180: 2179: 2177: 2168: 2165: 2164: 2158: 2155: 2150: 2147: 2146: 2144: 2141: 2138: 2135: 2133: 2130: 2127: 2124: 2121: 2118: 2116: 2113: 2112: 2110: 2108: 2103: 2096: 2093: 2091: 2088: 2086: 2083: 2082: 2080: 2076: 2070: 2067: 2064: 2061: 2058: 2055: 2052: 2049: 2046: 2043: 2040: 2038: 2035: 2033: 2030: 2029: 2027: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1993: 1988: 1986: 1981: 1979: 1974: 1973: 1970: 1959: 1955: 1954:Duarte, F. J. 1951: 1944: 1936: 1932: 1928: 1924: 1917: 1909: 1905: 1901: 1895: 1891: 1887: 1883: 1876: 1868: 1856: 1848: 1844: 1840: 1834: 1830: 1826: 1822: 1815: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1779: 1772: 1763: 1752: 1748: 1744: 1740: 1736: 1732: 1728: 1723: 1718: 1715:(4): 045803. 1714: 1710: 1703: 1696: 1690: 1686: 1683: 1679: 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1639: 1634: 1630: 1626: 1619: 1612: 1604: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1571: 1566: 1562: 1558: 1551: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1510: 1505: 1501: 1497: 1490: 1483: 1477: 1470: 1466: 1462: 1459: 1453: 1446: 1442: 1439: 1434: 1426: 1422: 1417: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1381: 1373: 1369: 1365: 1361: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1324: 1322: 1306: 1300: 1292: 1288: 1283: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1235: 1233: 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1181: 1179: 1170: 1166: 1162: 1158: 1153: 1148: 1144: 1140: 1136: 1132: 1128: 1121: 1119: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1055: 1053: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1003: 998: 994: 990: 983: 981: 979: 963: 957: 949: 945: 941: 937: 932: 927: 923: 919: 915: 911: 907: 900: 892: 888: 884: 880: 875: 870: 866: 862: 858: 854: 850: 843: 841: 832: 828: 824: 820: 816: 812: 808: 804: 803: 795: 787: 783: 779: 775: 771: 767: 766: 758: 750: 746: 742: 738: 734: 730: 729: 721: 713: 709: 705: 701: 697: 693: 692: 684: 676: 672: 668: 664: 660: 656: 655: 647: 639: 635: 631: 627: 623: 619: 618: 610: 602: 598: 594: 590: 586: 582: 578: 574: 567: 559: 555: 551: 547: 543: 539: 535: 531: 527: 523: 516: 502: 498: 491: 477: 473: 466: 452:. Feb 2, 2017 451: 450:Business Wire 447: 441: 437: 427: 424: 423: 417: 415: 411: 407: 403: 393: 391: 390:power scaling 387: 381: 372: 363: 354: 348:Dark solitons 345: 343: 339: 337: 333: 331: 327: 323: 319: 318:birefringence 315: 309: 299: 296: 292: 286: 282: 278: 276: 272: 267: 265: 261: 256: 254: 250: 246: 242: 235:Power scaling 232: 230: 226: 223: 218: 214: 210: 204: 197: 193: 184: 182: 178: 174: 170: 166: 162: 158: 154: 148: 138: 136: 132: 128: 124: 120: 116: 112: 101: 99: 95: 91: 86: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 43:optical fiber 40: 37:in which the 36: 32: 28: 24: 19: 2359:Fiber optics 2328:Vulcan laser 2273:Nova (laser) 2230: 2037:Er:YAG laser 2032:Nd:YAG laser 1957: 1943: 1926: 1916: 1881: 1875: 1820: 1814: 1781: 1777: 1771: 1762: 1751:the original 1712: 1708: 1695: 1678: 1667:the original 1628: 1624: 1611: 1560: 1556: 1550: 1499: 1495: 1489: 1481: 1476: 1468: 1452: 1433: 1390: 1386: 1380: 1337: 1333: 1308:. Retrieved 1299: 1248: 1244: 1190: 1186: 1134: 1130: 1068: 1064: 992: 988: 966:. Retrieved 956: 913: 909: 899: 856: 852: 806: 800: 794: 769: 763: 757: 732: 726: 720: 695: 689: 683: 658: 652: 646: 621: 615: 609: 576: 572: 566: 525: 521: 515: 504:. Retrieved 500: 490: 479:. Retrieved 475: 465: 454:. Retrieved 449: 440: 406:spectroscopy 399: 396:Applications 383: 360: 351: 340: 334: 314:mode locking 311: 308:Mode-locking 302:Mode locking 287: 283: 279: 268: 257: 238: 227: 206: 181:laser diodes 153:laser cavity 150: 111:surface area 107: 87: 67:praseodymium 26: 22: 20: 18: 2293:Shiva laser 2288:Argus laser 2283:Janus laser 2231:Fiber laser 2094:Er:Yb:glass 1778:Proceedings 1416:10220/10097 322:Kerr effect 295:femtosecond 167:to provide 127:solid-state 45:doped with 27:fibre laser 23:fiber laser 2348:Categories 2241:Disk laser 2218:Structures 2115:Ruby laser 2107:gain media 1310:14 January 1002:2101.08498 968:2014-02-04 506:2020-02-08 481:2020-02-08 456:2020-02-08 432:References 222:brightness 145:See also: 131:gas lasers 92:, such as 63:dysprosium 2065:Ce:Gd:YAG 2047:Nd:Ce:YAG 2041:Nd:Cr:YAG 1865:ignored ( 1855:cite book 1847:120732530 1806:136018975 1747:118581850 1722:0910.5799 1663:119284608 1638:0909.5540 1603:207313024 1570:0909.5536 1509:0907.1782 1364:1094-4087 1273:1094-4087 1215:1539-4794 1161:1094-4087 1093:1539-4794 1027:1539-4794 940:1094-4087 883:1094-4087 831:209833904 601:1943-8206 550:1077-260X 217:multimode 119:waveguide 59:neodymium 55:ytterbium 2313:LULI2000 2246:F-center 2192:Ce:LiCAF 2189:Ce:LiSAF 2151:(Nd:YLF) 2097:Yb:glass 2090:Er:glass 2085:Nd:glass 1908:30251829 1685:Archived 1595:19907547 1534:19654674 1461:Archived 1441:Archived 1425:22695649 1372:21263564 1291:21369169 1223:16441038 1169:19494970 1109:18064073 1043:11678581 1035:27472588 948:20588376 891:18542272 558:36779372 420:See also 410:medicine 342:Graphene 49:such as 2323:ISKRA-6 2227:(DPSSL) 2210:Yb:SFAP 2195:Cr:ZnSe 2182:Nd:YCOB 2169:(Nd:YVO 1956:(ed.). 1786:Bibcode 1727:Bibcode 1643:Bibcode 1575:Bibcode 1542:1512526 1514:Bibcode 1395:Bibcode 1342:Bibcode 1282:3135632 1253:Bibcode 1195:Bibcode 1139:Bibcode 1073:Bibcode 1007:Bibcode 918:Bibcode 861:Bibcode 811:Bibcode 774:Bibcode 737:Bibcode 700:Bibcode 663:Bibcode 626:Bibcode 581:Bibcode 530:Bibcode 476:SME.org 332:pulse. 273:(SRS), 251:single- 75:holmium 71:thulium 33:) is a 2204:Sm:CaF 2145:(YLF) 2105:Other 2069:Gd:YAG 2062:Ce:YAG 2059:Tb:YAG 2056:Sm:YAG 2053:Dy:YAG 2050:Ho:YAG 2044:Yb:YAG 1906:  1896:  1845:  1835:  1804:  1745:  1661:  1601:  1593:  1540:  1532:  1423:  1370:  1362:  1289:  1279:  1271:  1221:  1213:  1167:  1159:  1107:  1101:751138 1099:  1091:  1041:  1033:  1025:  946:  938:  889:  881:  829:  728:JOSA B 691:JOSA B 599:  556:  548:  412:, and 177:pumped 115:volume 88:Fiber 83:lasing 51:erbium 41:is an 2298:HiPER 2248:laser 2198:U:CaF 2184:laser 2128:(TGG) 2122:(YIG) 2078:Glass 1952:. In 1904:S2CID 1843:S2CID 1802:S2CID 1754:(PDF) 1743:S2CID 1717:arXiv 1705:(PDF) 1670:(PDF) 1659:S2CID 1633:arXiv 1621:(PDF) 1599:S2CID 1565:arXiv 1538:S2CID 1504:arXiv 1039:S2CID 997:arXiv 827:S2CID 554:S2CID 35:laser 2159:(YVO 1894:ISBN 1867:help 1833:ISBN 1782:3267 1591:PMID 1530:PMID 1421:PMID 1368:PMID 1360:ISSN 1312:2020 1287:PMID 1269:ISSN 1219:PMID 1211:ISSN 1165:PMID 1157:ISSN 1105:PMID 1097:OSTI 1089:ISSN 1031:PMID 1023:ISSN 944:PMID 936:ISSN 887:PMID 879:ISSN 597:ISSN 546:ISSN 213:mode 73:and 25:(or 1931:doi 1886:doi 1825:doi 1794:doi 1735:doi 1651:doi 1583:doi 1522:doi 1411:hdl 1403:doi 1350:doi 1277:PMC 1261:doi 1203:doi 1147:doi 1081:doi 1015:doi 926:doi 869:doi 819:doi 782:doi 745:doi 708:doi 671:doi 659:132 634:doi 589:doi 538:doi 129:or 113:to 96:or 29:in 2350:: 2163:) 1925:. 1902:. 1892:. 1859:: 1857:}} 1853:{{ 1841:. 1831:. 1800:. 1792:. 1741:. 1733:. 1725:. 1713:80 1711:. 1707:. 1657:. 1649:. 1641:. 1629:95 1627:. 1623:. 1597:. 1589:. 1581:. 1573:. 1561:17 1559:. 1536:. 1528:. 1520:. 1512:. 1500:17 1498:. 1467:, 1419:. 1409:. 1401:. 1391:51 1389:. 1366:. 1358:. 1348:. 1338:19 1336:. 1332:. 1320:^ 1285:. 1275:. 1267:. 1259:. 1249:19 1247:. 1243:. 1231:^ 1217:. 1209:. 1201:. 1191:31 1189:. 1177:^ 1163:. 1155:. 1145:. 1135:13 1133:. 1129:. 1117:^ 1103:. 1095:. 1087:. 1079:. 1069:25 1067:. 1063:. 1051:^ 1037:. 1029:. 1021:. 1013:. 1005:. 993:41 991:. 977:^ 942:. 934:. 924:. 914:18 912:. 908:. 885:. 877:. 867:. 857:16 855:. 851:. 839:^ 825:. 817:. 807:51 805:. 780:. 768:. 743:. 733:19 731:. 706:. 696:39 694:. 669:. 657:. 632:. 622:99 620:. 595:. 587:. 575:. 552:. 544:. 536:. 526:20 524:. 499:. 474:. 448:. 416:. 408:, 404:, 85:. 69:, 65:, 61:, 57:, 53:, 21:A 2206:2 2200:2 2173:) 2171:4 2161:4 1991:e 1984:t 1977:v 1937:. 1933:: 1910:. 1888:: 1869:) 1849:. 1827:: 1808:. 1796:: 1788:: 1737:: 1729:: 1719:: 1653:: 1645:: 1635:: 1605:. 1585:: 1577:: 1567:: 1544:. 1524:: 1516:: 1506:: 1427:. 1413:: 1405:: 1397:: 1374:. 1352:: 1344:: 1314:. 1293:. 1263:: 1255:: 1225:. 1205:: 1197:: 1171:. 1149:: 1141:: 1111:. 1083:: 1075:: 1045:. 1017:: 1009:: 999:: 971:. 950:. 928:: 920:: 893:. 871:: 863:: 833:. 821:: 813:: 788:. 784:: 776:: 770:7 751:. 747:: 739:: 714:. 710:: 702:: 677:. 673:: 665:: 640:. 636:: 628:: 603:. 591:: 583:: 577:7 560:. 540:: 532:: 509:. 484:. 459:.

Index

Commonwealth English
laser
active gain medium
optical fiber
rare-earth elements
erbium
ytterbium
neodymium
dysprosium
praseodymium
thulium
holmium
doped fiber amplifiers
lasing
nonlinearities
stimulated Raman scattering
four-wave mixing
surface area
volume
waveguide
diffraction-limited
solid-state
gas lasers
cost of ownership
Laser construction
laser cavity
fusion splicing
fiber Bragg gratings
dielectric mirrors
optical feedback

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑