Knowledge

Gustatory cortex

Source 📝

222:
Chemosensory GC neurons are broadly tuned, meaning that a larger percentage of them respond to a larger number of tastants (4 and 5) as compared to the lower percentage responding to a fewer number of tastants (1 and 2). In addition, the number of neurons responding to a certain tastant stimulus varies. In the rat gustatory complex study, it was shown that more neurons responded to MSG, NaCl, sucrose, and citric acid (all activating approximately the same percentage of neurons) as compared to the compounds quinine (QHCl) and water.
235:, and sucrose), the vast majority of them responded to concentration changes in a complex manner. In such instances with several concentration tastants tested, the middle concentration might evoke the highest firing rate (like 0.1 M sucrose), or the highest and lowest concentrations might elicit the highest rates (NaCl ), or the neuron might respond to only one concentration. 47:. Because of its composition the primary gustatory cortex is sometimes referred to in literature as the AI/FO(Anterior Insula/Frontal Operculum). By using extracellular unit recording techniques, scientists have elucidated that neurons in the AI/FO respond to sweetness, saltiness, bitterness, and sourness, and they code the intensity of the taste stimulus. 185:, in which distinct tastes activate distinct neurons, specifically tuned to a particular taste and spatially distributed in a clustered manner (a gustotopic map). In contrast, the across-fiber model implies that taste is encoded in the ensemble firing patterns of mixed populations of broadly tuned cortical neurons, a process named 189:. Even though the labelled-line model better characterizes the activity of peripheral taste receptors, current evidence seems to support the population coding model in GC. Importantly, early evidence in rodent models pointed to the existence of a gustotopic map; however, recent studies in both mice, through 238:
GC neurons cohere and interact during tasting. GC neurons interact across milliseconds, and these interactions are taste specific and define distinct but overlapping neural assemblies that respond to the presence of each tastant by undergoing coupled changes in firing rate. These couplings are used
144:
in the frontal operculum. Electrical stimulation of the insula in the human elicit gustatory sensations. Gustatory information is conveyed to the orbitofrontal cortex, the secondary gustatory cortex from the AI/FO. Studies have shown that 8% of neurons in the orbitofrontal cortex respond to taste
204:
Some researchers have noted that the AI/FO neurons are intrinsically multimodal, that is, they respond to other modalities in addition to taste (often to olfaction and/or somatosensation). These findings could imply that GC is not strictly involved in taste perception but also in more domain general
163:
Chemosensory neurons are those that discriminate between tastant as well as between the presence or absence of a tastant. In these neurons, the responses to reinforced (stimulated by tastant) licks in rats were greater than to those for the unreinforced (not stimulated by tastant) licks. They found
127:
There have been many studies done to observe the functionality of the primary gustatory cortex and associated structures with various chemical and electrical stimulations as well as observations of patients with lesions and GC epileptic focus. It has been reported that electrical stimulation of the
230:
Studies using the Gustatory cortex of the rat model have shown that GC neurons exhibit complex responses to changes in concentration of tastant. For one tastant, the same neuron might increase its firing rate whereas for another tastant, it may only be responsive to an intermediate concentration.
247:
GC units signal taste familiarity at a delayed temporal phase of the response. An analysis suggests that specific neuronal populations participate in the processing of familiarity for specific tastants. Furthermore, the neural signature of familiarity is correlated with familiarization with a
154:
part of the insula caused gustatory disturbance, as well as taste recognition and intensity deficits in patients with insular cortex lesions. It has also been reported that a patient who had an epileptic focus in the frontal operculum and epileptic activity in the focus produced a disagreeable
221:
concentration resulted in a decrease in firing rate. GC neurons exhibit rapid and selective response to tastants. Sodium chloride and sucrose elicited the largest response in the rat gustatory cortex in rats, whereas citric acid causes only a moderate increase in activity in a single neuron.
145:
stimuli, and a part of these neurons are finely tuned to particular taste stimuli. It has also been shown in monkeys that the responses of orbitofrontal neurons to taste decreased when the monkey eats to satiety. Furthermore neurons in the orbitofrontal cortex respond to the visual, and/or
155:
taste. Activation in the insula also takes place when exposed to gustatory imagery. Studies compared the activated regions in subjects shown food pictures to those shown location pictures and found that food pictures activated the right insula/operculum and the left orbitofrontal cortex.
239:
to discriminate between tastants. Coupled changes in firing rate are the underlying source of GC interactions. Subsets of neurons in GC become coupled after presentation of particular tastants and the responses of neurons in that ensemble change in concert with those of others.
248:
specific tastant rather than with any tastant. This signature is evident 24 hours after initial exposure. This persistent cortical representation of taste familiarity requires slow post-acquisition processing to develop. This process may be related to the activation of
172:
How GC encodes taste qualities and representations has been a source of major debate. Cortical representation theories have been greatly influenced by peripheral taste coding models. In particular, there are two main model of peripheral taste coding: a
149:
stimuli in addition to the gustatory stimulus. These results suggest that gustatory neurons in the orbitofrontal cortex may play an important role in food identification and selection. A patient study reported that damage in the
59:, the taste system is defined by its specialized peripheral receptors and central pathways that relay and process taste information. Peripheral taste receptors are found on the upper surface of the tongue, soft palate, 231:
In studies of chemosensory GC neurons, it was evident that few chemosensory GC neurons monotonically increased or decreased their firing rates in response to changes in concentration of tastants (such as MSG,
99:, which is also known as the gustatory nucleus of the solitary tract complex. Axons from the rostral (gustatory) part of the solitary nucleus project to the ventral posterior complex of the 385:
Ogawa H, Ito S, Nomura T (August 1985). "Two distinct projection areas from tongue nerves in the frontal operculum of macaque monkeys as revealed with evoked potential mapping".
164:
that 34.2% of the GC neurons exhibited chemosensory responses. The remaining neurons discriminate between reinforced and unreinforced licks, or process task related information.
181:, which proposes that taste perception arises from the combined activity of multiple unspecific taste receptors. Accordingly, the labelld-line model suggests the existence of a 471:
Rolls ET, Yaxley S, Sienkiewicz ZJ (October 1990). "Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey".
197:, indicated distributed population coding in GC. These models have focused on the spatial organization of GC, while another proposed coding mechanism is 213:
GC chemosensory neurons exhibit concentration-dependent responses. In a study done on GC responses in rats during licking, an increase in MSG (
1231:
Bahar A, Dudai Y, Ahissar E (December 2004). "Neural signature of taste familiarity in the gustatory cortex of the freely behaving rat".
1294: 576:
Simmons WK, Martin A, Barsalou LW (October 2005). "Pictures of appetizing foods activate gustatory cortices for taste and reward".
67:. Taste cells synapse with primary sensory axons that run in the chorda tympani and greater superficial petrosal branches of the 369: 282: 194: 151: 88: 201:, which posits that information about taste quality is conveyed through a precise spiking pattern of GC neurons.   1472: 177:, which posits that each taste receptor codes for a specific taste quality (sweet, sour, salty, bitter, umami); and an 217:) concentration lingual exposure resulted in an increase in firing rate in the rat GC neurons, whereas an increase in 104: 541:
Pritchard TC, Macaluso DA, Eslinger PJ (August 1999). "Taste perception in patients with insular cortex lesions".
298:
Pritchard TC, Macaluso DA, Eslinger PJ (August 1999). "Taste perception in patients with insular cortex lesions".
83:, and esophagus respectively. The central axons of these primary sensory neurons in the respective cranial nerve 1502: 253: 1287: 182: 428:
Thorpe SJ, Rolls ET, Maddison S (1983). "The orbitofrontal cortex: neuronal activity in the behaving monkey".
1454: 1424: 838:"Spatially Distributed Representation of Taste Quality in the Gustatory Insular Cortex of Behaving Mice" 1528: 1280: 1245: 1523: 590: 1419: 256:
detected in the insular cortex in the first hours after the consumption of an unfamiliar taste.
1382: 1240: 585: 137: 72: 40: 682:
Ohla K, Yoshida R, Roper SD, Di Lorenzo PM, Victor JD, Boughter JD, et al. (April 2019).
205:
functions, such as decision making regarding consummatory behaviors and valence processing.
214: 8: 740:"Against gustotopic representation in the human brain: There is no Cartesian Restaurant" 1208: 1199: 1183: 1159: 1134: 1107: 1082: 1058: 1033: 1009: 984: 960: 935: 916: 862: 837: 813: 788: 764: 739: 708: 683: 656: 629: 453: 410: 346: 1399: 1364: 1340: 1258: 1213: 1164: 1112: 1063: 1014: 965: 920: 908: 867: 818: 769: 713: 661: 603: 558: 523: 506:
Rolls ET (September 1989). "Information processing in the taste system of primates".
488: 445: 402: 398: 365: 315: 278: 186: 112: 96: 36: 457: 1394: 1345: 1304: 1250: 1203: 1195: 1154: 1146: 1102: 1094: 1053: 1045: 1004: 1000: 996: 955: 947: 898: 857: 849: 808: 800: 759: 751: 703: 695: 651: 646: 641: 595: 550: 515: 480: 437: 414: 394: 342: 307: 249: 56: 1135:"Rethinking the role of taste processing in insular cortex and forebrain circuits" 1335: 1330: 1325: 1150: 755: 198: 190: 141: 119:), which becomes activated when the subject is consuming and experiencing taste. 554: 311: 1372: 1081:
Levitan D, Lin JY, Wachutka J, Mukherjee N, Nelson SB, Katz DB (October 2019).
1049: 951: 133: 116: 92: 32: 983:
Avery JA, Liu AG, Ingeholm JE, Riddell CD, Gotts SJ, Martin A (January 2020).
903: 886: 853: 484: 1517: 1083:"Single and population coding of taste in the gustatory cortex of awake mice" 936:"Distinct representations of basic taste qualities in human gustatory cortex" 333:
Kobayashi M (2006). "Functional Organization of the Human Gustatory Cortex".
129: 804: 699: 599: 1429: 1377: 1262: 1217: 1168: 1116: 1067: 1018: 969: 912: 871: 822: 773: 717: 665: 607: 562: 319: 68: 44: 1497: 1254: 1098: 628:
Stapleton JR, Lavine ML, Wolpert RL, Nicolelis MA, Simon SA (April 2006).
527: 519: 492: 449: 406: 1387: 1184:"Taste-specific neuronal ensembles in the gustatory cortex of awake rats" 76: 441: 277:(Third ed.). Boston: Benjamin Cummings/Pearson. pp. 391–395. 80: 1320: 684:"Recognizing Taste: Coding Patterns Along the Neural Axis in Mammals" 146: 108: 79:(Cranial nerve X) to innervate the taste buds in the tongue, palate, 64: 208: 1464: 1446: 1434: 1272: 100: 218: 84: 60: 31:. It consists of two substructures: the anterior insula on the 1312: 933: 787:
Chen X, Gabitto M, Peng Y, Ryba NJ, Zuker CS (September 2011).
627: 934:
Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK (March 2019).
630:"Rapid taste responses in the gustatory cortex during licking" 225: 75:(cranial nerve IX), and the superior laryngeal branch of the 28: 789:"A gustotopic map of taste qualities in the mammalian brain" 1411: 1080: 232: 107:. This nucleus projects in turn to several regions of the 681: 540: 297: 27:) is a brain structure responsible for the perception of 982: 364:(2nd ed.). Sunderland, Mass: Sinauer Association. 470: 575: 1031: 786: 427: 16:
Brain structure responsible for perception of taste
1181: 835: 1230: 985:"Taste Quality Representation in the Human Brain" 209:Tastant concentration-dependent neuronal activity 111:which includes the gustatory cortex (the frontal 103:, where they terminate in the medial half of the 1515: 1132: 623: 621: 619: 617: 122: 71:(cranial nerve VII), the lingual branch of the 1182:Katz DB, Simon SA, Nicolelis MA (March 2002). 836:Chen K, Kogan JF, Fontanini A (January 2021). 384: 252:receptors, modulation of gene expression, and 1288: 1032:Carleton A, Accolla R, Simon SA (July 2010). 614: 1224: 1175: 569: 50: 534: 272: 1295: 1281: 1034:"Coding in the mammalian gustatory system" 499: 464: 421: 226:Responsiveness to changes in concentration 91:and lateral regions of the nucleus of the 1244: 1207: 1158: 1106: 1057: 1008: 959: 902: 884: 861: 812: 763: 707: 655: 645: 589: 332: 158: 1516: 1133:Boughter JD, Fletcher M (April 2021). 359: 1276: 1128: 1126: 737: 733: 731: 729: 727: 677: 675: 505: 1302: 242: 508:The Journal of Experimental Biology 13: 1473:Posterior limb of internal capsule 1200:10.1523/JNEUROSCI.22-05-01850.2002 1123: 724: 672: 14: 1540: 105:ventral posterior medial nucleus 1074: 1025: 976: 927: 878: 829: 780: 254:posttranslational modifications 167: 1001:10.1523/JNEUROSCI.1751-19.2019 647:10.1523/JNEUROSCI.0092-06.2006 378: 353: 326: 291: 266: 136:, and a lingual branch of the 1: 1455:Ventral posteromedial nucleus 1139:Current Opinion in Physiology 885:Fontanini A (February 2023). 744:Current Opinion in Physiology 347:10.1016/S1349-0079(06)80007-1 259: 123:Functionality and stimulation 1151:10.1016/j.cophys.2020.12.009 756:10.1016/j.cophys.2021.01.005 399:10.1016/0168-0102(85)90017-3 63:, and the upper part of the 7: 1425:Medial parabrachial nucleus 1188:The Journal of Neuroscience 989:The Journal of Neuroscience 634:The Journal of Neuroscience 555:10.1037/0735-7044.113.4.663 430:Experimental Brain Research 335:Journal of Oral Biosciences 312:10.1037/0735-7044.113.4.663 273:Marieb EN, Katja H (2008). 10: 1545: 1233:Journal of Neurophysiology 1087:Journal of Neurophysiology 1050:10.1016/j.tins.2010.04.002 952:10.1038/s41467-019-08857-z 473:Journal of Neurophysiology 191:two-photon calcium imaging 1503:Special visceral afferent 1490: 1463: 1445: 1410: 1363: 1356: 1311: 904:10.1016/j.cub.2023.01.005 854:10.1016/j.cub.2020.10.014 485:10.1152/jn.1990.64.4.1055 51:Role in the taste pathway 275:Anatomy & Physiology 1420:Central tegmental tract 1038:Trends in Neurosciences 805:10.1126/science.1204076 738:Avery JA (April 2021). 543:Behavioral Neuroscience 300:Behavioral Neuroscience 360:Purves D, ed. (2001). 193:, and humans, through 138:glossopharyngeal nerve 73:glossopharyngeal nerve 41:inferior frontal gyrus 1255:10.1152/jn.00198.2004 1099:10.1152/jn.00357.2019 940:Nature Communications 700:10.1093/chemse/bjz013 600:10.1093/cercor/bhi038 520:10.1242/jeb.146.1.141 387:Neuroscience Research 215:monosodium glutamate 159:Chemosensory neurons 799:(6047): 1262–1266. 175:labelled-line model 442:10.1007/bf00235545 179:across-fiber model 1511: 1510: 1486: 1485: 1400:Gustatory nucleus 1341:Fungiform papilla 848:(2): 247–256.e4. 640:(15): 4126–4138. 584:(10): 1602–1608. 371:978-0-87893-742-4 284:978-0-8053-0094-9 243:Taste familiarity 187:population coding 183:topographical map 37:frontal operculum 1536: 1529:Gustatory system 1478:Gustatory cortex 1395:Solitary nucleus 1361: 1360: 1346:Filiform papilla 1297: 1290: 1283: 1274: 1273: 1267: 1266: 1248: 1239:(6): 3298–3308. 1228: 1222: 1221: 1211: 1194:(5): 1850–1857. 1179: 1173: 1172: 1162: 1130: 1121: 1120: 1110: 1093:(4): 1342–1356. 1078: 1072: 1071: 1061: 1029: 1023: 1022: 1012: 995:(5): 1042–1052. 980: 974: 973: 963: 931: 925: 924: 906: 897:(4): R130–R135. 882: 876: 875: 865: 833: 827: 826: 816: 784: 778: 777: 767: 735: 722: 721: 711: 679: 670: 669: 659: 649: 625: 612: 611: 593: 573: 567: 566: 538: 532: 531: 503: 497: 496: 479:(4): 1055–1066. 468: 462: 461: 425: 419: 418: 382: 376: 375: 357: 351: 350: 330: 324: 323: 295: 289: 288: 270: 250:neurotransmitter 57:olfactory system 21:gustatory cortex 1544: 1543: 1539: 1538: 1537: 1535: 1534: 1533: 1524:Cerebral cortex 1514: 1513: 1512: 1507: 1482: 1459: 1441: 1406: 1352: 1336:Foliate papilla 1331:Vallate papilla 1326:Lingual papilla 1307: 1301: 1271: 1270: 1246:10.1.1.325.1189 1229: 1225: 1180: 1176: 1131: 1124: 1079: 1075: 1030: 1026: 981: 977: 932: 928: 891:Current Biology 883: 879: 842:Current Biology 834: 830: 785: 781: 736: 725: 688:Chemical Senses 680: 673: 626: 615: 578:Cerebral Cortex 574: 570: 539: 535: 504: 500: 469: 465: 426: 422: 383: 379: 372: 358: 354: 331: 327: 296: 292: 285: 271: 267: 262: 245: 228: 211: 199:temporal coding 170: 161: 142:field potential 125: 53: 17: 12: 11: 5: 1542: 1532: 1531: 1526: 1509: 1508: 1506: 1505: 1500: 1494: 1492: 1488: 1487: 1484: 1483: 1481: 1480: 1475: 1469: 1467: 1461: 1460: 1458: 1457: 1451: 1449: 1443: 1442: 1440: 1439: 1438: 1437: 1432: 1422: 1416: 1414: 1408: 1407: 1405: 1404: 1403: 1402: 1392: 1391: 1390: 1385: 1380: 1373:Solitary tract 1369: 1367: 1358: 1354: 1353: 1351: 1350: 1349: 1348: 1343: 1338: 1333: 1323: 1317: 1315: 1309: 1308: 1300: 1299: 1292: 1285: 1277: 1269: 1268: 1223: 1174: 1122: 1073: 1044:(7): 326–334. 1024: 975: 926: 877: 828: 779: 723: 694:(4): 237–247. 671: 613: 591:10.1.1.165.177 568: 549:(4): 663–671. 533: 498: 463: 420: 393:(6): 447–459. 377: 370: 352: 341:(4): 244–260. 325: 306:(4): 663–671. 290: 283: 264: 263: 261: 258: 244: 241: 227: 224: 210: 207: 169: 166: 160: 157: 140:elicit evoked 134:chorda tympani 124: 121: 93:solitary tract 52: 49: 15: 9: 6: 4: 3: 2: 1541: 1530: 1527: 1525: 1522: 1521: 1519: 1504: 1501: 1499: 1496: 1495: 1493: 1489: 1479: 1476: 1474: 1471: 1470: 1468: 1466: 1462: 1456: 1453: 1452: 1450: 1448: 1444: 1436: 1433: 1431: 1428: 1427: 1426: 1423: 1421: 1418: 1417: 1415: 1413: 1409: 1401: 1398: 1397: 1396: 1393: 1389: 1386: 1384: 1381: 1379: 1376: 1375: 1374: 1371: 1370: 1368: 1366: 1362: 1359: 1355: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1328: 1327: 1324: 1322: 1319: 1318: 1316: 1314: 1310: 1306: 1298: 1293: 1291: 1286: 1284: 1279: 1278: 1275: 1264: 1260: 1256: 1252: 1247: 1242: 1238: 1234: 1227: 1219: 1215: 1210: 1205: 1201: 1197: 1193: 1189: 1185: 1178: 1170: 1166: 1161: 1156: 1152: 1148: 1144: 1140: 1136: 1129: 1127: 1118: 1114: 1109: 1104: 1100: 1096: 1092: 1088: 1084: 1077: 1069: 1065: 1060: 1055: 1051: 1047: 1043: 1039: 1035: 1028: 1020: 1016: 1011: 1006: 1002: 998: 994: 990: 986: 979: 971: 967: 962: 957: 953: 949: 945: 941: 937: 930: 922: 918: 914: 910: 905: 900: 896: 892: 888: 881: 873: 869: 864: 859: 855: 851: 847: 843: 839: 832: 824: 820: 815: 810: 806: 802: 798: 794: 790: 783: 775: 771: 766: 761: 757: 753: 749: 745: 741: 734: 732: 730: 728: 719: 715: 710: 705: 701: 697: 693: 689: 685: 678: 676: 667: 663: 658: 653: 648: 643: 639: 635: 631: 624: 622: 620: 618: 609: 605: 601: 597: 592: 587: 583: 579: 572: 564: 560: 556: 552: 548: 544: 537: 529: 525: 521: 517: 513: 509: 502: 494: 490: 486: 482: 478: 474: 467: 459: 455: 451: 447: 443: 439: 436:(1): 93–115. 435: 431: 424: 416: 412: 408: 404: 400: 396: 392: 388: 381: 373: 367: 363: 356: 348: 344: 340: 336: 329: 321: 317: 313: 309: 305: 301: 294: 286: 280: 276: 269: 265: 257: 255: 251: 240: 236: 234: 223: 220: 216: 206: 202: 200: 196: 192: 188: 184: 180: 176: 165: 156: 153: 148: 143: 139: 135: 131: 130:lingual nerve 120: 118: 114: 110: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 48: 46: 42: 38: 34: 30: 26: 22: 1498:Basic tastes 1477: 1430:Hypothalamus 1236: 1232: 1226: 1191: 1187: 1177: 1142: 1138: 1090: 1086: 1076: 1041: 1037: 1027: 992: 988: 978: 943: 939: 929: 894: 890: 880: 845: 841: 831: 796: 792: 782: 747: 743: 691: 687: 637: 633: 581: 577: 571: 546: 542: 536: 511: 507: 501: 476: 472: 466: 433: 429: 423: 390: 386: 380: 362:Neuroscience 361: 355: 338: 334: 328: 303: 299: 293: 274: 268: 246: 237: 229: 212: 203: 178: 174: 171: 168:Taste coding 162: 126: 69:facial nerve 54: 45:frontal lobe 33:insular lobe 24: 20: 19:The primary 18: 1303:Anatomy of 946:(1): 1048. 514:: 141–164. 87:project to 77:vagus nerve 1518:Categories 260:References 81:epiglottis 55:Like the 1321:Taste bud 1241:CiteSeerX 1145:: 52–56. 921:257222230 750:: 23–28. 586:CiteSeerX 147:olfactory 113:operculum 109:neocortex 65:esophagus 35:and the 1465:cerebrum 1447:thalamus 1435:Amygdala 1263:15212421 1218:11880514 1169:33681544 1117:31339800 1068:20493563 1019:31836661 970:30837463 913:36854267 872:33186554 823:21885776 774:33521413 718:30788507 666:16611830 608:15703257 563:10495075 458:12600073 320:10495075 115:and the 101:thalamus 1365:medulla 1209:6758892 1160:7932132 1108:6843090 1059:2902637 1010:6989007 961:6401093 887:"Taste" 863:7855361 814:3523322 793:Science 765:7839947 709:6462759 657:6673900 528:2689559 493:2258734 450:6861938 415:4252387 407:4047521 219:sucrose 152:rostral 97:medulla 95:in the 89:rostral 85:ganglia 61:pharynx 43:of the 39:on the 1313:Tongue 1261:  1243:  1216:  1206:  1167:  1157:  1115:  1105:  1066:  1056:  1017:  1007:  968:  958:  919:  911:  870:  860:  821:  811:  772:  762:  716:  706:  664:  654:  606:  588:  561:  526:  491:  456:  448:  413:  405:  368:  318:  281:  117:insula 1491:Other 1305:taste 917:S2CID 454:S2CID 411:S2CID 29:taste 1412:pons 1357:Path 1259:PMID 1214:PMID 1165:PMID 1113:PMID 1064:PMID 1015:PMID 966:PMID 909:PMID 868:PMID 819:PMID 770:PMID 714:PMID 662:PMID 604:PMID 559:PMID 524:PMID 489:PMID 446:PMID 403:PMID 366:ISBN 316:PMID 279:ISBN 233:NaCl 195:fMRI 1378:VII 1251:doi 1204:PMC 1196:doi 1155:PMC 1147:doi 1103:PMC 1095:doi 1091:122 1054:PMC 1046:doi 1005:PMC 997:doi 956:PMC 948:doi 899:doi 858:PMC 850:doi 809:PMC 801:doi 797:333 760:PMC 752:doi 704:PMC 696:doi 652:PMC 642:doi 596:doi 551:doi 547:113 516:doi 512:146 481:doi 438:doi 395:doi 343:doi 308:doi 304:113 1520:: 1383:IX 1257:. 1249:. 1237:92 1235:. 1212:. 1202:. 1192:22 1190:. 1186:. 1163:. 1153:. 1143:20 1141:. 1137:. 1125:^ 1111:. 1101:. 1089:. 1085:. 1062:. 1052:. 1042:33 1040:. 1036:. 1013:. 1003:. 993:40 991:. 987:. 964:. 954:. 944:10 942:. 938:. 915:. 907:. 895:33 893:. 889:. 866:. 856:. 846:31 844:. 840:. 817:. 807:. 795:. 791:. 768:. 758:. 748:20 746:. 742:. 726:^ 712:. 702:. 692:44 690:. 686:. 674:^ 660:. 650:. 638:26 636:. 632:. 616:^ 602:. 594:. 582:15 580:. 557:. 545:. 522:. 510:. 487:. 477:64 475:. 452:. 444:. 434:49 432:. 409:. 401:. 389:. 339:48 337:. 314:. 302:. 132:, 25:GC 1388:X 1296:e 1289:t 1282:v 1265:. 1253:: 1220:. 1198:: 1171:. 1149:: 1119:. 1097:: 1070:. 1048:: 1021:. 999:: 972:. 950:: 923:. 901:: 874:. 852:: 825:. 803:: 776:. 754:: 720:. 698:: 668:. 644:: 610:. 598:: 565:. 553:: 530:. 518:: 495:. 483:: 460:. 440:: 417:. 397:: 391:2 374:. 349:. 345:: 322:. 310:: 287:. 23:(

Index

taste
insular lobe
frontal operculum
inferior frontal gyrus
frontal lobe
olfactory system
pharynx
esophagus
facial nerve
glossopharyngeal nerve
vagus nerve
epiglottis
ganglia
rostral
solitary tract
medulla
thalamus
ventral posterior medial nucleus
neocortex
operculum
insula
lingual nerve
chorda tympani
glossopharyngeal nerve
field potential
olfactory
rostral
topographical map
population coding
two-photon calcium imaging

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.