Knowledge

Solid lipid nanoparticle

Source đź“ť

810:, but during the 2010s, the earlier research into using LNPs for siRNA became a foundation for new research into using LNPs for mRNA. Lipids intended for short siRNA strands did not work well for much longer mRNA strands, which led to extensive research during the mid-2010s into the creation of novel ionizable cationic lipids appropriate for mRNA. As of late 2020, several mRNA vaccines for SARS-CoV-2 use LNPs as their drug delivery system, including both the Moderna COVID-19 vaccine and the Pfizer–BioNTech COVID-19 vaccines. 616:, as well as in other disciplines. Due to their unique size-dependent properties, lipid nanoparticles offer the possibility to develop new therapeutics. The ability to incorporate drugs into nanocarriers offers a new prototype in drug delivery that could hold great promise for attaining the bioavailability enhancement along with controlled and site-specific drug delivery. SLN's are also considered to well tolerated in general, due to their composition from physiologically similar lipids. 2281: 324: 41: 2256: 2293: 336: 1969: 2268: 649:
targeting, increased drug stability and no problems with respect to large scale production. Furthermore, various functions such as molecules for targeting, PEG chains for stealth properties or thiol groups for adhesion via disulfide bond formation can be immobilized on their surface. A recent study has demonstrated the use of solid lipid nanoparticles as a platform for oral delivery of the nutrient mineral
109: 61: 736:, protection of sensitive drug molecules from the outer environment water, light) and even controlled release characteristics were claimed by the incorporation of poorly water-soluble drugs in the solid lipid matrix. Moreover, SLN can carry both lipophilic and hydrophilic drugs and are more affordable compared to polymeric/surfactant-based carriers. 579:(for structure). Because of rapid clearance by the immune system of the positively charged lipid, neutral ionizable amino lipids were developed. A novel squaramide lipid (that is, partially aromatic four-membered rings, which can participate in pi–pi interactions) has been a favored part of the delivery system used, for example, by Moderna. 775:
developed ionizable cationic lipids which are "positively charged at an acidic pH but neutral in the blood." Cullis also led the development of a technique involving careful adjustments to pH during the process of mixing ingredients in order to create LNPs which could safely pass through the cell
619:
The conventional approaches such as use of permeation enhancers, surface modification, prodrug synthesis, complex formation and colloidal lipid carrier-based strategies have been developed for the delivery of drugs to intestinal lymphatics. In addition, polymeric nanoparticles, self-emulsifying
595:
The obtained LNP formulation can subsequently be filled into sterile containers and subjected to final quality control. However, various measures to monitor and evaluate product quality are integrated in every step of LNP manufacturing and include testing of polydispersity, particle size, drug
648:
drug delivery approaches. It has been proposed that SLNs combine numerous advantages over the other colloidal carriers i.e. incorporation of lipophilic and hydrophilic drugs feasible, no biotoxicity of the carrier, avoidance of organic solvents, possibility of controlled drug release and drug
700:
and yielded some promising results. SLNs have been looked at as a potential drug carrier system since the 1990s. SLNs do not show biotoxicity as they are prepared from physiological lipids. SLNs are especially useful in ocular drug delivery as they can enhance the
870:
cell monolayer could be alternative tissue for development of an in-vitro model to be used as a screening tool before animal studies are undertaken. The results obtained in this model suggested that the main absorption mechanism of carvedilol loaded solid lipid
681:
as a lipid and surfactant, respectively. Another example of drug delivery using SLN would be oral solid SLN suspended in distilled water, which was synthesized to trap drugs within the SLN structure. Upon indigestion, the SLNs are exposed to
523:
An SLN is generally spherical in shape and consists of a solid lipid core stabilized by a surfactant. The core lipids can be fatty acids, acylglycerols, waxes, and mixtures of these surfactants. Biological membrane lipids such as
1884:
Shah, Mansi K.; Madan, Parshotam; Lin, Senshang (June 2014). "Preparation, in vitro evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticles for lymphatic absorption via oral administration".
591:
is possible using ultrasonification at the cost of long sonication time. Solvent-emulsification is suitable in preparing small, homogeneously sized lipid nanoparticles dispersions with the advantage of avoiding heat.
67:
are ("hollow") lipid nanoparticles which have a phospholipid bilayer as coat, because the bulk of the interior of the particle is composed of aqueous substance. In various popular uses, the optional payload is e.g.
1443:
Shah, Mansi K.; Madan, Parshotam; Lin, Senshang (23 May 2013). "Preparation, evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticle for lymphatic absorption via oral administration".
1922:
Shah, Mansi K.; Madan, Parshotam; Lin, Senshang (3 October 2015). "Elucidation of intestinal absorption mechanism of carvedilol-loaded solid lipid nanoparticles using Caco-2 cell line as an in-vitro model".
1617:
Mukherjee, S et al. “Solid lipid nanoparticles: a modern formulation approach in drug delivery system.” Indian journal of pharmaceutical sciences vol. 71,4 (2009): 349-58. doi:10.4103/0250-474X.57282
1809:
Shah, Mansi K.; Madan, Parshotam; Lin, Senshang (29 July 2014). "Elucidation of intestinal absorption mechanism of carvedilol-loaded solid lipid nanoparticle using Caco-2 cell line as an model".
784:. The acidity inside the endosomes causes LNPs' ionizable cationic lipids to acquire a positive charge, and this is thought to allow LNPs to escape from endosomes and release their RNA payloads. 587:
Different formulation procedures include high shear homogenization and ultrasound, solvent emulsification/evaporation, or microemulsion. Obtaining size distributions in the range of 30-180 
720:
Advantages of SLNs include the use of physiological lipids (which decreases the danger of acute and chronic toxicity), the avoidance of organic solvents, a potential wide application spectrum (
1231:
Wolfgang Mehnert, Karsten Mäder, Solid lipid nanoparticles: Production, characterization and applications, Advanced Drug Delivery Reviews, Volume 64, 2012, Pages 83-101, ISSN 0169-409X,
468:(emulsifiers). The emulsifier used depends on administration routes and is more limited for parenteral administrations. The term lipid is used here in a broader sense and includes 1522:
Arana, Lide; Salado, Clarisa; Vega, Sandra; Aizpurua-Olaizola, Oier; Arada, Igor de la; Suarez, Tatiana; Usobiaga, Aresatz; Arrondo, José Luis R.; Alonso, Alicia (2015-11-01).
44:
Solid lipid nanoparticles (SLNs). There is only one phospholipid layer because the bulk of the interior of the particle is composed of lipophilic substance. Payloads such as
992:
Jenning, V; ThĂĽnemann, AF; Gohla, SH (2000). "Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids".
645: 516:(with respect to charge and molecular weight) have been used to stabilize the lipid dispersion. It has been found that the combination of emulsifiers might prevent 628:, micellar solutions and recently solid lipid nanoparticles (SLN) have been exploited as probable possibilities as carriers for oral intestinal lymphatic delivery. 756:
in the mid-1980s, Philip Felgner pioneered the use of artificially-created cationic lipids (positively-charged lipids) to bind lipids to nucleic acids in order to
1855:
Müller, Rainer H.; Mäder, Karsten; Gohla, Sven (3 July 2000). "Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art".
1791: 776:
membranes of living organisms. As of 2021, the current understanding of LNPs formulated with such ionizable cationic lipids is that they enter cells through
670: 608:
is one of the emerging fields of lipid nanotechnology (for a review on lipid nanotechnology, see ) with several potential applications in drug delivery,
687: 678: 548:
and the solid state of the lipid permit better controlled drug release due to increased mass transfer resistance. Shah et al. in their book
674: 145: 2012: 135: 366: 140: 2318: 1399: 1165: 976: 567:) are made of four types of lipids: an ionizable cationic lipid (whose positive charge binds to negatively charged mRNA), a 2042: 1033: 431: 1487:
Pandey, Rajesh; Sharma, Sadhna; Khuller, G.K. (2005). "Oral solid lipid nanoparticle-based antitubercular chemotherapy".
1288:
evaluation. Rawat MK, Jain A and Singh S, Journal of Pharmaceutical Sciences, 2011, volume 100, issue 6, pages 2366-2378
1193:"Discovery of a Novel Amino Lipid That Improves Lipid Nanoparticle Performance through Specific Interactions with mRNA" 183: 17: 806:
By that point in time, siRNA drug developers like Alnylam were already looking at other options for future drugs like
2132: 1716: 1689: 640:. SLNs combine the advantages of lipid emulsion and polymeric nanoparticle systems while overcoming the temporal and 1631: 2272: 2066: 772: 257: 2213: 2005: 777: 277: 125: 2089: 217: 150: 2185: 359: 85: 1658: 729: 399: 395: 56:, cell-targeting peptides, and/or other drug molecules can be bound to the exterior surface of the SLN. 2200: 2052: 2047: 2037: 2029: 232: 130: 2223: 2152: 2062: 1998: 846:
cell line as in vitro model was developed. Several researchers have shown the enhancement of oral
732:) and the high pressure homogenization as an established production method. Additionally, improved 564: 427: 310: 81: 1245: 2260: 2208: 2157: 2144: 807: 796: 252: 1978: 1400:"A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles" 1349:
Hock, N; Racaniello, GF; Aspinall, S; Denora, N; Khutoryanskiy, V; Bernkop-SchnĂĽrch, A (2022).
916: 352: 52:
or others can be embedded in the interior, as desired. Optionally, targeting-molecules such as
1706: 1677: 1523: 788: 721: 637: 485: 391: 267: 2084: 1351:"Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of our Body" 792: 305: 227: 188: 168: 8: 2231: 2120: 537: 272: 237: 178: 1974: 2162: 1948: 1910: 1834: 1767: 1740: 1600: 1551: 1469: 1375: 1350: 1326: 1299: 1214: 1086: 1061: 207: 1868: 1792:"COVID-19: Vancouver's Acuitas Therapeutics a key contributor to coronavirus solution" 1060:
Pardi, Norbert; Hogan, Michael J.; Porter, Frederick W.; Weissman, Drew (April 2018).
1005: 2297: 1940: 1902: 1872: 1826: 1772: 1712: 1685: 1592: 1543: 1504: 1461: 1422: 1380: 1331: 1266: 1218: 1091: 1009: 972: 787:
From 2005 into the early 2010s, LNPs were investigated as a drug delivery system for
609: 340: 247: 1952: 1914: 1838: 1604: 1555: 1473: 544:(cholesterol) are utilized as stabilizers. Biological lipids having minimum carrier 2241: 1932: 1894: 1864: 1818: 1762: 1752: 1582: 1539: 1535: 1496: 1453: 1414: 1370: 1362: 1321: 1311: 1204: 1081: 1073: 1001: 964: 859: 839: 411: 1418: 2323: 2190: 2177: 2115: 1936: 1898: 1822: 1587: 1570: 1457: 855: 847: 749: 733: 654: 509: 116: 69: 1757: 1298:
Fam, SY; Chee, CF; Yong, CY; Ho, KL; Mariatulqabtiah, AR; Tan, WS (April 2020).
968: 2285: 2079: 2021: 1500: 1280:
Studies on binary lipid matrix-based solid lipid nanoparticles of repaglinide:
1038: 328: 242: 2312: 2099: 1232: 765: 710: 697: 625: 529: 481: 458: 295: 286: 222: 173: 100: 717:
sterilization, a necessary step towards formulation of ocular preparations.
636:
Solid lipid nanoparticles can function as the basis for oral and parenteral
2236: 2127: 2074: 1944: 1906: 1876: 1830: 1776: 1596: 1547: 1508: 1465: 1426: 1384: 1366: 1335: 1269:; Mashaghi, A. Lipid Nanotechnology. Int. J. Mol. Sci. 2013, 14, 4242-4282. 1209: 1192: 1095: 1013: 892: 872: 863: 851: 764:
experiments that this use of cationic lipids had undesired side effects on
757: 745: 662: 605: 572: 545: 525: 493: 469: 383: 198: 73: 1270: 1166:"Without these lipid shells, there would be no mRNA vaccines for COVID-19" 1524:"Solid lipid nanoparticles for delivery of Calendula officinalis extract" 1316: 1077: 880: 876: 799:'s siRNA drugs. In 2018, the FDA approved Alnylam's siRNA drug Onpattro ( 795:
to commercialize his LNP research; Acuitas worked on developing LNPs for
706: 576: 556: 513: 501: 489: 477: 415: 212: 49: 40: 35: 31: 666: 568: 560: 533: 473: 465: 455: 423: 402:. LNPs as a drug delivery vehicle were first approved in 2018 for the 53: 2280: 323: 2107: 1191:
Cornebise, Mark; Narayanan, Elisabeth; Xia, Yan (November 12, 2021).
921: 800: 760:
the latter into cells. However, by the late 1990s, it was known from
714: 588: 461: 447: 159: 77: 1246:"Lipid nanoparticle (LNP) manufacturing: Challenges & Solutions" 713:
drugs. Solid lipid nanoparticles have another advantage of allowing
935: 931: 910: 904: 827: 823: 781: 752:—meaning they do not easily mix with each other. While working at 705:
absorption of drugs and improve the ocular bioavailability of both
621: 613: 517: 497: 407: 300: 64: 2292: 862:
delivery. To elucidate the absorption mechanism, from solid lipid
748:
is that in nature, lipids and nucleic acids both carry a negative
426:
lipid nanoparticles as their delivery vehicle (including both the
335: 1990: 925: 898: 811: 683: 541: 1521: 959:
Saupe, Anne; Rades, Thomas (2006). "Solid Lipid Nanoparticles".
939: 867: 850:
of poorly water-soluble drugs when encapsulated in solid lipid
843: 819: 815: 753: 744:
A significant obstacle to using LNPs as a delivery vehicle for
725: 702: 694: 550:
Lipid Nanoparticles: Production, Characterization and Stability
443: 45: 1682:
Pharmaceutical Perspectives of Nucleic Acid-Based Therapeutics
690:
that dissolve the SLNs and release the drugs into the system.
505: 451: 403: 387: 1568: 1348: 907:, lipid bilayer shell, an earlier form with some limitations 791:(siRNA) drugs. In 2009, Cullis co-founded a company called 1300:"Stealth Coating of Nanoparticles in Drug-Delivery Systems" 803:), the first drug to use LNPs as the drug delivery system. 650: 644:
stability issues that troubles the conventional as well as
419: 108: 60: 1632:"The first Covid-19 vaccines have changed biotech forever" 842:
absorption mechanism from solid lipid nanoparticles using
814:
uses its own proprietary ionizable cationic lipid called
1741:"Lipid Nanoparticle Systems for Enabling Gene Therapies" 1059: 1857:
European Journal of Pharmaceutics and Biopharmaceutics
1034:"How nanotechnology helps mRNA Covid-19 vaccines work" 771:
During the late 1990s and 2000s, Pieter Cullis of the
669:-loaded solid lipid nanoparticles were prepared using 410:. LNPs became more widely known in late 2020, as some 1190: 991: 1571:"Solid lipid nanoparticles for ocular drug delivery" 693:
Many nano-structured systems have been employed for
1739:Cullis, Pieter R.; Hope, Michael J. (5 July 2017). 1486: 1684:. London: Taylor & Francis. pp. 273–303. 1663:UC San Diego Library: San Diego Technology Archive 833: 2310: 1854: 913:, a complex of plasmid or linear DNA and lipids 1698: 1569:Seyfoddin, Ali; J. Shaw; R. Al-Kassas (2010). 2006: 1297: 1111: 1109: 1107: 1105: 446:with an average diameter between 10 and 1000 360: 1921: 1883: 1808: 1442: 826:licensed an ionizable cationic lipid called 653:, by incorporating the hydrophilic molecule 450:. Solid lipid nanoparticles possess a solid 1732: 1680:. In Mahato, Ram I.; Kim, Sung Wan (eds.). 1630:Foley, Katherine Ellen (22 December 2020). 2013: 1999: 1738: 1665:. Regents of the University of California. 1233:https://doi.org/10.1016/j.addr.2012.09.021 1102: 1062:"mRNA vaccines — a new era in vaccinology" 958: 879:and, more specifically, clathrin-mediated 367: 353: 1925:Pharmaceutical Development and Technology 1887:Pharmaceutical Development and Technology 1811:Pharmaceutical Development and Technology 1766: 1756: 1586: 1446:Pharmaceutical Development and Technology 1374: 1325: 1315: 1274: 1243: 1208: 1085: 596:loading efficiency and endotoxin levels. 1659:"Phil Felgner Interview – July 22, 1997" 1625: 1623: 1397: 1184: 59: 39: 1159: 1157: 1155: 1153: 1151: 1149: 1147: 1145: 1143: 1027: 1025: 1023: 14: 2311: 1711:. Boca Raton: CRC Press. p. 191. 1528:Colloids and Surfaces B: Biointerfaces 1031: 994:International Journal of Pharmaceutics 1994: 1789: 1783: 1704: 1656: 1650: 1629: 1620: 1438: 1436: 1163: 1032:Cooney, Elizabeth (1 December 2020). 2267: 1678:"Cationic lipid-based gene delivery" 1140: 1020: 1675: 1669: 392:pharmaceutical drug delivery system 24: 2020: 1848: 1790:Shore, Randy (November 17, 2020). 1433: 1237: 673:technique for oral delivery using 464:. The lipid core is stabilized by 442:A lipid nanoparticle is typically 437: 25: 2335: 1960: 1244:Marciniak, Mike (June 21, 2023). 432:Pfizer–BioNTech COVID-19 vaccines 2291: 2279: 2266: 2255: 2254: 1967: 739: 661:) in a lipid matrix composed of 631: 520:agglomeration more efficiently. 334: 322: 107: 1802: 1611: 1562: 1515: 1480: 1391: 1342: 1291: 1259: 1225: 1170:Chemical & Engineering News 599: 95:Part of a series of articles on 1540:10.1016/j.colsurfb.2015.07.020 1398:Zariwala, MG (November 2013). 1131: 1122: 1053: 985: 952: 834:Lymphatic absorption mechanism 773:University of British Columbia 13: 1: 2214:Scanning tunneling microscope 1869:10.1016/S0939-6411(00)00087-4 1419:10.1016/j.ijpharm.2013.08.070 1197:Advanced Functional Materials 1164:Cross, Ryan (March 6, 2021). 1066:Nature Reviews Drug Discovery 1006:10.1016/S0378-5173(00)00378-1 946: 778:receptor-mediated endocytosis 2319:Nanoparticles by composition 1937:10.3109/10837450.2014.938857 1899:10.3109/10837450.2013.795169 1823:10.3109/10837450.2014.938857 1657:Jones, Mark (22 July 1997). 1588:10.3109/10717544.2010.483257 1458:10.3109/10837450.2013.795169 582: 418:technology coat the fragile 7: 2186:Molecular scale electronics 1758:10.1016/j.ymthe.2017.03.013 1172:. American Chemical Society 969:10.1007/978-1-4020-5041-1_3 886: 604:Development of solid lipid 10: 2340: 1708:Liposomes in Gene Delivery 1501:10.1016/j.tube.2005.08.009 1265:Mashaghi, S.; Jadidi, T.; 838:Elucidation of intestinal 808:chemical conjugate systems 480:(e.g. glycerol bahenate), 400:pharmaceutical formulation 396:nanoparticle drug delivery 29: 27:Novel drug delivery system 2250: 2222: 2201:Scanning probe microscopy 2199: 2176: 2143: 2098: 2061: 2028: 1980:solid lipid nanoparticle 1705:Lasic, Danilo D. (1997). 571:lipid (for stability), a 552:discuss these in detail. 2224:Molecular nanotechnology 2168:Solid lipid nanoparticle 2153:Self-assembled monolayer 961:Nanocarrier Technologies 311:Nanocrystalline material 287:Nanostructured materials 2209:Atomic force microscope 2158:Supramolecular assembly 2145:Molecular self-assembly 797:Alnylam Pharmaceuticals 646:polymeric nanoparticles 563:(the virus that causes 1367:10.1002/advs.202102451 1210:10.1002/adfm.202106727 1137:Manzunath et al., 2005 917:Targeted drug delivery 89: 57: 2298:Technology portal 1676:Byk, Gerardo (2002). 1203:(8). Wiley: 2106727. 789:small interfering RNA 638:drug delivery systems 575:(for structure), and 486:glycerol monostearate 454:core matrix that can 341:Technology portal 136:Mechanical properties 63: 43: 2085:Green nanotechnology 1317:10.3390/nano10040787 1078:10.1038/nrd.2017.243 793:Acuitas Therapeutics 390:. They are a novel 306:Nanoporous materials 169:Buckminsterfullerene 2232:Molecular assembler 895:, the general field 538:sodium taurocholate 380:Lipid nanoparticles 208:Carbon quantum dots 2286:Science portal 2163:DNA nanotechnology 1977:has a profile for 963:. pp. 41–50. 780:and end up inside 671:hot-homogenization 620:delivery systems, 512:). All classes of 329:Science portal 141:Optical properties 90: 58: 18:Lipid nanoparticle 2306: 2305: 1983: 1745:Molecular Therapy 978:978-1-4020-5040-4 610:clinical medicine 412:COVID-19 vaccines 377: 376: 189:Carbon allotropes 16:(Redirected from 2331: 2296: 2295: 2284: 2283: 2270: 2269: 2258: 2257: 2242:Mechanosynthesis 2133:characterization 2015: 2008: 2001: 1992: 1991: 1981: 1971: 1970: 1956: 1918: 1880: 1843: 1842: 1806: 1800: 1799: 1787: 1781: 1780: 1770: 1760: 1751:(7): 1467–1475. 1736: 1730: 1729: 1727: 1725: 1702: 1696: 1695: 1673: 1667: 1666: 1654: 1648: 1647: 1645: 1643: 1627: 1618: 1615: 1609: 1608: 1590: 1566: 1560: 1559: 1519: 1513: 1512: 1495:(5–6): 415–420. 1484: 1478: 1477: 1440: 1431: 1430: 1404: 1395: 1389: 1388: 1378: 1346: 1340: 1339: 1329: 1319: 1295: 1289: 1278: 1272: 1263: 1257: 1256: 1254: 1252: 1241: 1235: 1229: 1223: 1222: 1212: 1188: 1182: 1181: 1179: 1177: 1161: 1138: 1135: 1129: 1126: 1120: 1113: 1100: 1099: 1089: 1057: 1051: 1050: 1048: 1046: 1029: 1018: 1017: 989: 983: 982: 956: 866:, human excised 858:is achieved via 854:. This enhanced 688:intestinal acids 369: 362: 355: 339: 338: 327: 326: 278:Titanium dioxide 117:Carbon nanotubes 111: 92: 91: 88:and many others. 21: 2339: 2338: 2334: 2333: 2332: 2330: 2329: 2328: 2309: 2308: 2307: 2302: 2290: 2278: 2246: 2218: 2195: 2191:Nanolithography 2178:Nanoelectronics 2172: 2139: 2094: 2057: 2048:Popular culture 2024: 2019: 1989: 1988: 1987: 1972: 1968: 1963: 1851: 1849:Further reading 1846: 1807: 1803: 1788: 1784: 1737: 1733: 1723: 1721: 1719: 1703: 1699: 1692: 1674: 1670: 1655: 1651: 1641: 1639: 1628: 1621: 1616: 1612: 1567: 1563: 1520: 1516: 1485: 1481: 1441: 1434: 1402: 1396: 1392: 1355:Adv Sci (Weinh) 1347: 1343: 1296: 1292: 1279: 1275: 1264: 1260: 1250: 1248: 1242: 1238: 1230: 1226: 1189: 1185: 1175: 1173: 1162: 1141: 1136: 1132: 1127: 1123: 1114: 1103: 1058: 1054: 1044: 1042: 1030: 1021: 990: 986: 979: 957: 953: 949: 889: 856:bioavailibility 848:bioavailibility 836: 750:electric charge 742: 734:bioavailability 660: 655:ferrous sulfate 634: 602: 585: 510:cetyl palmitate 440: 438:Characteristics 398:), and a novel 373: 333: 321: 218:Aluminium oxide 38: 28: 23: 22: 15: 12: 11: 5: 2337: 2327: 2326: 2321: 2304: 2303: 2301: 2300: 2288: 2276: 2264: 2251: 2248: 2247: 2245: 2244: 2239: 2234: 2228: 2226: 2220: 2219: 2217: 2216: 2211: 2205: 2203: 2197: 2196: 2194: 2193: 2188: 2182: 2180: 2174: 2173: 2171: 2170: 2165: 2160: 2155: 2149: 2147: 2141: 2140: 2138: 2137: 2136: 2135: 2125: 2124: 2123: 2118: 2110: 2104: 2102: 2096: 2095: 2093: 2092: 2087: 2082: 2080:Nanotoxicology 2077: 2071: 2069: 2059: 2058: 2056: 2055: 2050: 2045: 2040: 2034: 2032: 2026: 2025: 2022:Nanotechnology 2018: 2017: 2010: 2003: 1995: 1973: 1966: 1965: 1964: 1962: 1961:External links 1959: 1958: 1957: 1931:(7): 877–885. 1919: 1893:(4): 475–485. 1881: 1863:(1): 161–177. 1850: 1847: 1845: 1844: 1817:(7): 877–885. 1801: 1782: 1731: 1717: 1697: 1690: 1668: 1649: 1638:. Quartz Media 1619: 1610: 1581:(7): 467–489. 1561: 1514: 1479: 1452:(4): 475–485. 1432: 1390: 1361:(1): 2102451. 1341: 1290: 1273: 1267:Koenderink, G. 1258: 1236: 1224: 1183: 1139: 1130: 1121: 1101: 1072:(4): 261–279. 1052: 1019: 984: 977: 950: 948: 945: 944: 943: 929: 919: 914: 908: 902: 896: 888: 885: 835: 832: 830:from Acuitas. 766:cell membranes 741: 738: 658: 633: 630: 626:microemulsions 601: 598: 584: 581: 530:sphingomyelins 482:monoglycerides 439: 436: 375: 374: 372: 371: 364: 357: 349: 346: 345: 344: 343: 331: 316: 315: 314: 313: 308: 303: 298: 290: 289: 283: 282: 281: 280: 275: 270: 265: 260: 255: 250: 245: 240: 235: 230: 225: 220: 215: 210: 202: 201: 194: 193: 192: 191: 186: 181: 176: 171: 163: 162: 156: 155: 154: 153: 148: 143: 138: 133: 128: 120: 119: 113: 112: 104: 103: 97: 96: 26: 9: 6: 4: 3: 2: 2336: 2325: 2322: 2320: 2317: 2316: 2314: 2299: 2294: 2289: 2287: 2282: 2277: 2275: 2274: 2265: 2263: 2262: 2253: 2252: 2249: 2243: 2240: 2238: 2235: 2233: 2230: 2229: 2227: 2225: 2221: 2215: 2212: 2210: 2207: 2206: 2204: 2202: 2198: 2192: 2189: 2187: 2184: 2183: 2181: 2179: 2175: 2169: 2166: 2164: 2161: 2159: 2156: 2154: 2151: 2150: 2148: 2146: 2142: 2134: 2131: 2130: 2129: 2128:Nanoparticles 2126: 2122: 2119: 2117: 2114: 2113: 2111: 2109: 2106: 2105: 2103: 2101: 2100:Nanomaterials 2097: 2091: 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2072: 2070: 2068: 2064: 2060: 2054: 2051: 2049: 2046: 2044: 2043:Organizations 2041: 2039: 2036: 2035: 2033: 2031: 2027: 2023: 2016: 2011: 2009: 2004: 2002: 1997: 1996: 1993: 1985: 1984: 1976: 1954: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1853: 1852: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1805: 1797: 1796:Vancouver Sun 1793: 1786: 1778: 1774: 1769: 1764: 1759: 1754: 1750: 1746: 1742: 1735: 1720: 1718:9780849331091 1714: 1710: 1709: 1701: 1693: 1691:9780203300961 1687: 1683: 1679: 1672: 1664: 1660: 1653: 1637: 1633: 1626: 1624: 1614: 1606: 1602: 1598: 1594: 1589: 1584: 1580: 1576: 1575:Drug Delivery 1572: 1565: 1557: 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1518: 1510: 1506: 1502: 1498: 1494: 1490: 1483: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1439: 1437: 1428: 1424: 1420: 1416: 1412: 1408: 1401: 1394: 1386: 1382: 1377: 1372: 1368: 1364: 1360: 1356: 1352: 1345: 1337: 1333: 1328: 1323: 1318: 1313: 1309: 1305: 1304:Nanomaterials 1301: 1294: 1287: 1283: 1277: 1271: 1268: 1262: 1247: 1240: 1234: 1228: 1220: 1216: 1211: 1206: 1202: 1198: 1194: 1187: 1171: 1167: 1160: 1158: 1156: 1154: 1152: 1150: 1148: 1146: 1144: 1134: 1125: 1118: 1112: 1110: 1108: 1106: 1097: 1093: 1088: 1083: 1079: 1075: 1071: 1067: 1063: 1056: 1041: 1040: 1035: 1028: 1026: 1024: 1015: 1011: 1007: 1003: 1000:(2): 167–77. 999: 995: 988: 980: 974: 970: 966: 962: 955: 951: 941: 937: 933: 930: 927: 923: 920: 918: 915: 912: 909: 906: 903: 901:, lipid cored 900: 897: 894: 891: 890: 884: 882: 878: 874: 869: 865: 861: 857: 853: 849: 845: 841: 831: 829: 825: 821: 817: 813: 809: 804: 802: 798: 794: 790: 785: 783: 779: 774: 769: 767: 763: 759: 755: 751: 747: 746:nucleic acids 740:Nucleic acids 737: 735: 731: 727: 723: 718: 716: 712: 708: 704: 699: 698:drug delivery 696: 691: 689: 685: 680: 679:poloxamer 188 676: 672: 668: 664: 656: 652: 647: 643: 639: 632:Drug delivery 629: 627: 623: 617: 615: 611: 607: 606:nanoparticles 597: 593: 590: 580: 578: 574: 570: 566: 562: 558: 557:mRNA vaccines 555:LNPs used in 553: 551: 547: 543: 539: 535: 531: 527: 526:phospholipids 521: 519: 515: 511: 507: 503: 499: 495: 491: 487: 483: 479: 475: 471: 470:triglycerides 467: 463: 460: 457: 453: 449: 445: 435: 433: 429: 425: 422:strands with 421: 417: 413: 409: 405: 401: 397: 394:(and part of 393: 389: 385: 384:nanoparticles 381: 370: 365: 363: 358: 356: 351: 350: 348: 347: 342: 337: 332: 330: 325: 320: 319: 318: 317: 312: 309: 307: 304: 302: 299: 297: 296:Nanocomposite 294: 293: 292: 291: 288: 285: 284: 279: 276: 274: 271: 269: 266: 264: 261: 259: 258:Iron–platinum 256: 254: 251: 249: 246: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 214: 211: 209: 206: 205: 204: 203: 200: 199:nanoparticles 196: 195: 190: 187: 185: 184:Health impact 182: 180: 177: 175: 174:C70 fullerene 172: 170: 167: 166: 165: 164: 161: 158: 157: 152: 149: 147: 144: 142: 139: 137: 134: 132: 129: 127: 124: 123: 122: 121: 118: 115: 114: 110: 106: 105: 102: 101:Nanomaterials 99: 98: 94: 93: 87: 83: 79: 75: 71: 66: 62: 55: 51: 47: 42: 37: 33: 19: 2271: 2259: 2237:Nanorobotics 2167: 2075:Nanomedicine 2067:applications 1979: 1928: 1924: 1890: 1886: 1860: 1856: 1814: 1810: 1804: 1795: 1785: 1748: 1744: 1734: 1722:. Retrieved 1707: 1700: 1681: 1671: 1662: 1652: 1640:. Retrieved 1635: 1613: 1578: 1574: 1564: 1531: 1527: 1517: 1492: 1489:Tuberculosis 1488: 1482: 1449: 1445: 1413:(2): 400–7. 1410: 1406: 1393: 1358: 1354: 1344: 1307: 1303: 1293: 1285: 1281: 1276: 1261: 1249:. Retrieved 1239: 1227: 1200: 1196: 1186: 1174:. Retrieved 1169: 1133: 1124: 1116: 1069: 1065: 1055: 1043:. Retrieved 1037: 997: 993: 987: 960: 954: 893:Nanomedicine 873:nanoparticle 864:nanoparticle 852:nanoparticle 837: 805: 786: 770: 761: 743: 719: 692: 663:stearic acid 641: 635: 618: 603: 600:Applications 594: 586: 573:phospholipid 554: 549: 546:cytotoxicity 522: 494:stearic acid 478:diglycerides 441: 386:composed of 379: 378: 262: 233:Cobalt oxide 213:Quantum dots 146:Applications 74:Gene therapy 70:DNA vaccines 1407:Int J Pharm 1128:Small, 1986 942:, uses LNPs 928:, uses LNPs 881:endocytosis 877:endocytosis 730:intravenous 707:hydrophilic 577:cholesterol 514:emulsifiers 502:cholesterol 490:fatty acids 466:surfactants 416:RNA vaccine 382:(LNPs) are 82:antibiotics 50:RNA vaccine 36:DNA vaccine 32:RNA vaccine 2313:Categories 2121:Non-carbon 2112:Nanotubes 2108:Fullerenes 2090:Regulation 1982:(Q7557912) 1724:11 January 1642:11 January 1310:(4): 787. 1045:3 December 947:References 711:lipophilic 667:Carvedilol 561:SARS-CoV-2 534:bile salts 474:tristearin 459:lipophilic 456:solubilize 448:nanometers 253:Iron oxide 160:Fullerenes 54:antibodies 30:See also: 1534:: 18–26. 1219:244085785 922:mRNA-1273 875:could be 860:lymphatic 840:lymphatic 801:patisiran 782:endosomes 758:transfect 715:autoclave 675:compritol 622:liposomes 583:Synthesis 569:PEGylated 462:molecules 444:spherical 424:PEGylated 414:that use 223:Cellulose 179:Chemistry 131:Chemistry 126:Synthesis 86:cosmetics 65:Liposomes 2261:Category 2030:Overview 1953:40506806 1945:25069593 1915:42174732 1907:23697916 1877:10840199 1839:40506806 1831:25069593 1777:28412170 1605:25357639 1597:20491540 1556:41621205 1548:26231862 1509:16256437 1474:42174732 1466:23697916 1427:24012860 1385:34773391 1336:32325941 1282:in vitro 1176:March 6, 1115:Mehnert 1096:29326426 1014:10802410 936:BioNTech 932:BNT162b2 911:Lipoplex 905:Liposome 887:See also 828:ALC-0315 824:BioNTech 818:, while 762:in vitro 614:research 565:COVID-19 518:particle 498:steroids 430:and the 408:Onpattro 301:Nanofoam 268:Platinum 151:Timeline 78:vitamins 2273:Commons 2053:Outline 2038:History 1975:Scholia 1768:5498813 1376:8728822 1327:7221919 1286:in vivo 1251:July 5, 1087:5906799 934:, from 926:Moderna 924:, from 899:Micelle 812:Moderna 703:corneal 684:gastric 642:in vivo 542:sterols 540:), and 504:), and 428:Moderna 228:Ceramic 2324:Lipids 2116:Carbon 2063:Impact 1951:  1943:  1913:  1905:  1875:  1837:  1829:  1775:  1765:  1715:  1688:  1636:Quartz 1603:  1595:  1554:  1546:  1507:  1472:  1464:  1425:  1383:  1373:  1334:  1324:  1217:  1119:, 2001 1117:et al. 1094:  1084:  1012:  975:  940:Pfizer 868:Caco-2 844:Caco-2 820:Pfizer 816:SM-102 754:Syntex 726:per os 722:dermal 695:ocular 508:(e.g. 500:(e.g. 492:(e.g. 484:(e.g. 472:(e.g. 388:lipids 273:Silver 238:Copper 197:Other 46:modRNA 1949:S2CID 1911:S2CID 1835:S2CID 1601:S2CID 1552:S2CID 1470:S2CID 1403:(PDF) 1215:S2CID 657:(FeSO 506:waxes 452:lipid 406:drug 404:siRNA 263:Lipid 2065:and 1941:PMID 1903:PMID 1873:PMID 1827:PMID 1773:PMID 1726:2021 1713:ISBN 1686:ISBN 1644:2021 1593:PMID 1544:PMID 1505:PMID 1462:PMID 1423:PMID 1381:PMID 1332:PMID 1284:and 1253:2023 1178:2021 1092:PMID 1047:2020 1039:Stat 1010:PMID 973:ISBN 822:and 709:and 686:and 677:and 651:iron 612:and 559:for 420:mRNA 248:Iron 243:Gold 34:and 1933:doi 1895:doi 1865:doi 1819:doi 1763:PMC 1753:doi 1583:doi 1536:doi 1532:135 1497:doi 1454:doi 1415:doi 1411:456 1371:PMC 1363:doi 1322:PMC 1312:doi 1205:doi 1082:PMC 1074:doi 1002:doi 998:199 965:doi 496:), 488:), 476:), 434:). 2315:: 1947:. 1939:. 1929:20 1927:. 1909:. 1901:. 1891:19 1889:. 1871:. 1861:50 1859:. 1833:. 1825:. 1815:20 1813:. 1794:. 1771:. 1761:. 1749:25 1747:. 1743:. 1661:. 1634:. 1622:^ 1599:. 1591:. 1579:17 1577:. 1573:. 1550:. 1542:. 1530:. 1526:. 1503:. 1493:85 1491:. 1468:. 1460:. 1450:19 1448:. 1435:^ 1421:. 1409:. 1405:. 1379:. 1369:. 1357:. 1353:. 1330:. 1320:. 1308:10 1306:. 1302:. 1213:. 1201:32 1199:. 1195:. 1168:. 1142:^ 1104:^ 1090:. 1080:. 1070:17 1068:. 1064:. 1036:. 1022:^ 1008:. 996:. 971:. 883:. 768:. 728:, 724:, 665:. 624:, 589:nm 532:, 528:, 84:, 80:, 76:, 72:, 48:, 2014:e 2007:t 2000:v 1986:. 1955:. 1935:: 1917:. 1897:: 1879:. 1867:: 1841:. 1821:: 1798:. 1779:. 1755:: 1728:. 1694:. 1646:. 1607:. 1585:: 1558:. 1538:: 1511:. 1499:: 1476:. 1456:: 1429:. 1417:: 1387:. 1365:: 1359:9 1338:. 1314:: 1255:. 1221:. 1207:: 1180:. 1098:. 1076:: 1049:. 1016:. 1004:: 981:. 967:: 938:/ 659:4 536:( 368:e 361:t 354:v 20:)

Index

Lipid nanoparticle
RNA vaccine
DNA vaccine

modRNA
RNA vaccine
antibodies

Liposomes
DNA vaccines
Gene therapy
vitamins
antibiotics
cosmetics
Nanomaterials

Carbon nanotubes
Synthesis
Chemistry
Mechanical properties
Optical properties
Applications
Timeline
Fullerenes
Buckminsterfullerene
C70 fullerene
Chemistry
Health impact
Carbon allotropes
nanoparticles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑