Knowledge

Liquid phase exfoliation

Source đź“ť

164:
such as boron, silicon, germanium, iron disulfide, iron oxide, iron trifluoride, manganese telluride, have been converted to 2D nanoplatelets when sonicated in appropriate solvents. This raises many open questions on the mechanism of liquid-phase exfoliation process. For layered materials, the energy required to break inter-plane (perdominately van der Waals) bonds forces is small compared to that required to break in-plane ionic or covalent bonds. Then, the exfoliation procedure results in the formation of 2D-nanosheets. However, for non-layered 3D-strongly bonded materials, with minimal difference in bonding between different atomic planes, there is no "easily exfoliated" direction and sonication should yield quasi spherical particles. Nevertheless, near isotropic materials such as silicon have been exfoliated to give high-aspect ratio platelets. Therefore, developing an understanding of the mechanisms by which non-layered materials are exfoliated will be important, in particular because the application scope of such nonlayered 2D-nanoplatelets is broad, ranging from biomedical applications to energy storage to opto-electronics.
306:
Kivioja, Jani; Marinelli, Claudio; Ryhänen, Tapani; Morpurgo, Alberto; Coleman, Jonathan N.; Nicolosi, Valeria; Colombo, Luigi; Fert, Albert; Garcia-Hernandez, Mar; Bachtold, Adrian; Schneider, Grégory F.; Guinea, Francisco; Dekker, Cees; Barbone, Matteo; Sun, Zhipei; Galiotis, Costas; Grigorenko, Alexander N.; Konstantatos, Gerasimos; Kis, Andras; Katsnelson, Mikhail; Vandersypen, Lieven; Loiseau, Annick; Morandi, Vittorio; Neumaier, Daniel; Treossi, Emanuele; Pellegrini, Vittorio; Polini, Marco; Tredicucci, Alessandro; Williams, Gareth M.; Hee Hong, Byung; Ahn, Jong-Hyun; Min Kim, Jong; Zirath, Herbert; van Wees, Bart J.; van der Zant, Herre; Occhipinti, Luigi; Di Matteo, Andrea; Kinloch, Ian A.; Seyller, Thomas; Quesnel, Etienne; Feng, Xinliang; Teo, Ken; Rupesinghe, Nalin; Hakonen, Pertti; Neil, Simon R. T.; Tannock, Quentin; Löfwander, Tomas; Kinaret, Jari (2015).
120: 1382:
John J.; Wang, Jing Jing; Donegan, John F.; Grunlan, Jaime C.; Moriarty, Gregory; Shmeliov, Aleksey; Nicholls, Rebecca J.; Perkins, James M.; Grieveson, Eleanor M.; Theuwissen, Koenraad; McComb, David W.; Nellist, Peter D.; Nicolosi, Valeria (4 February 2011). "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials".
244:
John J.; Wang, Jing Jing; Donegan, John F.; Grunlan, Jaime C.; Moriarty, Gregory; Shmeliov, Aleksey; Nicholls, Rebecca J.; Perkins, James M.; Grieveson, Eleanor M.; Theuwissen, Koenraad; McComb, David W.; Nellist, Peter D.; Nicolosi, Valeria (4 February 2011). "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials".
1011:
Hernandez, Yenny; Nicolosi, Valeria; Lotya, Mustafa; Blighe, Fiona M.; Sun, Zhenyu; De, Sukanta; McGovern, I. T.; Holland, Brendan; Byrne, Michele; Gun'Ko, Yurii K.; Boland, John J.; Niraj, Peter; Duesberg, Georg; Krishnamurthy, Satheesh; Goodhue, Robbie; Hutchison, John; Scardaci, Vittorio; Ferrari,
842:
Hernandez, Yenny; Nicolosi, Valeria; Lotya, Mustafa; Blighe, Fiona M.; Sun, Zhenyu; De, Sukanta; McGovern, I. T.; Holland, Brendan; Byrne, Michele; Gun'Ko, Yurii K.; Boland, John J.; Niraj, Peter; Duesberg, Georg; Krishnamurthy, Satheesh; Goodhue, Robbie; Hutchison, John; Scardaci, Vittorio; Ferrari,
788:
Hernandez, Yenny; Nicolosi, Valeria; Lotya, Mustafa; Blighe, Fiona M.; Sun, Zhenyu; De, Sukanta; McGovern, I. T.; Holland, Brendan; Byrne, Michele; Gun'Ko, Yurii K.; Boland, John J.; Niraj, Peter; Duesberg, Georg; Krishnamurthy, Satheesh; Goodhue, Robbie; Hutchison, John; Scardaci, Vittorio; Ferrari,
181:
Hernandez, Yenny; Nicolosi, Valeria; Lotya, Mustafa; Blighe, Fiona M.; Sun, Zhenyu; De, Sukanta; McGovern, I. T.; Holland, Brendan; Byrne, Michele; Gun'Ko, Yurii K.; Boland, John J.; Niraj, Peter; Duesberg, Georg; Krishnamurthy, Satheesh; Goodhue, Robbie; Hutchison, John; Scardaci, Vittorio; Ferrari,
163:
Recent work has shown that liquid phase exfoliation can be used to produce 2D-nanoplatelets from non-layered 3D-strongly bonded bulk materials. This is intuitively unexpected as these 3D-solid bulk crystals consists of strong bonds in all the three-directions. Nevertheless, many non-layered materials
127:
Liquid phase exfoliation was first described in detail in a paper by a research team in Ireland in 2008, although a very short description of a similar process was published by the Manchester group around the same time. While other papers had previously described methods to exfoliate layered crystals
1132:
Del Rio Castillo, A. E.; Pellegrini, V.; Ansaldo, A.; Ricciardella, F.; Sun, H.; Marasco, L.; Buha, J.; Dang, Z.; Gagliani, L.; Lago, E.; Curreli, N.; Gentiluomo, S.; Palazon, F.; Prato, M.; Oropesa-Nuñez, R.; Toth, P. S.; Mantero, E.; Crugliano, M.; Gamucci, A.; Tomadin, A.; Polini, M.; Bonaccorso,
685:
Del Rio Castillo, A. E.; Pellegrini, V.; Ansaldo, A.; Ricciardella, F.; Sun, H.; Marasco, L.; Buha, J.; Dang, Z.; Gagliani, L.; Lago, E.; Curreli, N.; Gentiluomo, S.; Palazon, F.; Prato, M.; Oropesa-Nuñez, R.; Toth, P. S.; Mantero, E.; Crugliano, M.; Gamucci, A.; Tomadin, A.; Polini, M.; Bonaccorso,
1381:
Coleman, Jonathan N.; Lotya, Mustafa; O’Neill, Arlene; Bergin, Shane D.; King, Paul J.; Khan, Umar; Young, Karen; Gaucher, Alexandre; De, Sukanta; Smith, Ronan J.; Shvets, Igor V.; Arora, Sunil K.; Stanton, George; Kim, Hye-Young; Lee, Kangho; Kim, Gyu Tae; Duesberg, Georg S.; Hallam, Toby; Boland,
305:
Ferrari, Andrea C.; Bonaccorso, Francesco; Fal'ko, Vladimir; Novoselov, Konstantin S.; Roche, Stephan; Bøggild, Peter; Borini, Stefano; Koppens, Frank H. L.; Palermo, Vincenzo; Pugno, Nicola; Garrido, José A.; Sordan, Roman; Bianco, Alberto; Ballerini, Laura; Prato, Maurizio; Lidorikis, Elefterios;
243:
Coleman, Jonathan N.; Lotya, Mustafa; O’Neill, Arlene; Bergin, Shane D.; King, Paul J.; Khan, Umar; Young, Karen; Gaucher, Alexandre; De, Sukanta; Smith, Ronan J.; Shvets, Igor V.; Arora, Sunil K.; Stanton, George; Kim, Hye-Young; Lee, Kangho; Kim, Gyu Tae; Duesberg, Georg S.; Hallam, Toby; Boland,
154:
A very wide range of 2D materials have been produced by LPE. The first material to be exfoliated was graphene in 2008. This was followed in 2011 by the exfoliation of BN, MoS2 and WS2. Since, the a wide range of 2D materials have been exfoliated including molybdenum diselenide, tungsten diselenide,
145:
The simplest stabilizing liquids are solvents with surface energy close to the layered crystal being exfoliated. In practice, liquids with surface tensions close to 70 mJ/m are used. In addition aqueous surfactant solutions are often used. Less common, but useful for certain applications, is using
43:
is often commonly used. The addition of energy causes a combination of fragmentation and exfoliation resulting in the removal of small nanosheets from the layered crystals. In this way graphite can be converted into large quantities of graphene nanosheets. In general, these nanosheets tend to be a
136:
LPE involves inserting layered crystals into appropriate stabilizing liquids and then adding energy to remove nanosheets from the layered crystals. A number of different methods have been used to supply energy to the liquid. The earliest and most common is ultrasonication. In order to scaleup the
48:
thick and of lateral sizes ranging from tens of nanometers to many microns. These dispersed nanosheets form quasi stable suspensions so long as solvents used have surface energies similar to that of the nanosheets. Dispersed concentrations of order 1 gram per litre can be achieved. In addition to
1073:
Paton, Keith R.; Varrla, Eswaraiah; Backes, Claudia; Smith, Ronan J.; Khan, Umar; O’Neill, Arlene; Boland, Conor; Lotya, Mustafa; Istrate, Oana M.; King, Paul; Higgins, Tom; Barwich, Sebastian; May, Peter; Puczkarski, Pawel; Ahmed, Iftikhar; Moebius, Matthias; Pettersson, Henrik; Long, Edmund;
383:
Paton, Keith R.; Varrla, Eswaraiah; Backes, Claudia; Smith, Ronan J.; Khan, Umar; O’Neill, Arlene; Boland, Conor; Lotya, Mustafa; Istrate, Oana M.; King, Paul; Higgins, Tom; Barwich, Sebastian; May, Peter; Puczkarski, Pawel; Ahmed, Iftikhar; Moebius, Matthias; Pettersson, Henrik; Long, Edmund;
1646:
Backes, Claudia; Campi, Davide; Szydlowska, Beata M.; Synnatschke, Kevin; Ojala, Ezgi; Rashvand, Farnia; Harvey, Andrew; Griffin, Aideen; Sofer, Zdenek; Marzari, Nicola; Coleman, Jonathan N.; O’Regan, David D. (25 June 2019). "Equipartition of Energy Defines the Size–Thickness Relationship in
1592:
Li, Zheling; Young, Robert J.; Backes, Claudia; Zhao, Wen; Zhang, Xun; Zhukov, Alexander A.; Tillotson, Evan; Conlan, Aidan P.; Ding, Feng; Haigh, Sarah J.; Novoselov, Kostya S.; Coleman, Jonathan N. (22 September 2020). "Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene".
537:
Backes, Claudia; Campi, Davide; Szydlowska, Beata M.; Synnatschke, Kevin; Ojala, Ezgi; Rashvand, Farnia; Harvey, Andrew; Griffin, Aideen; Sofer, Zdenek; Marzari, Nicola; Coleman, Jonathan N.; O’Regan, David D. (25 June 2019). "Equipartition of Energy Defines the Size–Thickness Relationship in
442:
Li, Zheling; Young, Robert J.; Backes, Claudia; Zhao, Wen; Zhang, Xun; Zhukov, Alexander A.; Tillotson, Evan; Conlan, Aidan P.; Ding, Feng; Haigh, Sarah J.; Novoselov, Kostya S.; Coleman, Jonathan N. (22 September 2020). "Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene".
1214:
Lotya, Mustafa; Hernandez, Yenny; King, Paul J.; Smith, Ronan J.; Nicolosi, Valeria; Karlsson, Lisa S.; Blighe, Fiona M.; De, Sukanta; Wang, Zhiming; McGovern, I. T.; Duesberg, Georg S.; Coleman, Jonathan N. (18 March 2009). "Liquid Phase Production of Graphene by Exfoliation of Graphite in
27:
in large quantities. It is currently one of the pillar methods for producing 2D nanosheets. According to IDTechEx, the family of exfoliation techniques which are directly or indirectly descended from LPE now make up over 60% of global graphene production capacity.
904:
Blake, Peter; Brimicombe, Paul D.; Nair, Rahul R.; Booth, Tim J.; Jiang, Da; Schedin, Fred; Ponomarenko, Leonid A.; Morozov, Sergey V.; Gleeson, Helen F.; Hill, Ernie W.; Geim, Andre K.; Novoselov, Kostya S. (1 June 2008). "Graphene-Based Liquid Crystal Device".
137:
process, high shear mixing was introduced in 2014. This method proved extremely useful and inspired a number of other methods of generating shear in the suspension, including wet ball milling, homogenization, microfluidization and wet jet milling.
49:
solvents, it is also possible to use molecular stabilizers, for example surfactants or polymers to coat the nanosheets and stabilise them against regaggregation. This has the advantage that it allows nanosheets to be suspended in water.
1353:
May, Peter; Khan, Umar; Hughes, J. Marguerite; Coleman, Jonathan N. (24 May 2012). "Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers".
1074:
Coelho, João; O’Brien, Sean E.; McGuire, Eva K.; Sanchez, Beatriz Mendoza; Duesberg, Georg S.; McEvoy, Niall; Pennycook, Timothy J.; Downing, Clive; Crossley, Alison; Nicolosi, Valeria; Coleman, Jonathan N. (June 2014).
384:
Coelho, João; O’Brien, Sean E.; McGuire, Eva K.; Sanchez, Beatriz Mendoza; Duesberg, Georg S.; McEvoy, Niall; Pennycook, Timothy J.; Downing, Clive; Crossley, Alison; Nicolosi, Valeria; Coleman, Jonathan N. (June 2014).
634:
Torrisi, Felice; Hasan, Tawfique; Wu, Weiping; Sun, Zhipei; Lombardo, Antonio; Kulmala, Tero S.; Hsieh, Gen-Wen; Jung, Sungjune; Bonaccorso, Francesco; Paul, Philip J.; Chu, Daping; Ferrari, Andrea C. (24 April 2012).
80:. The liquid suspensions produced by liquid phase exfoliation can be used to create a range of functional structures. For example, they can be printed into thin films and networks using standard techniques such as 1178:
Hernandez, Yenny; Lotya, Mustafa; Rickard, David; Bergin, Shane D.; Coleman, Jonathan N. (2 March 2010). "Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery".
107:, because it is much less destructive, leaving minimal defects in the basal planes of the nanosheets. It has recently emerged that LPE can also be used to convert non-layered crystals into quasi-2D 1075: 385: 52:
Although this method was first applied to exfoliate graphite to yield graphene nanosheets, it has since been used to produce a wide range of 2D materials including
966:
Nicolosi, Valeria; Chhowalla, Manish; Kanatzidis, Mercouri G.; Strano, Michael S.; Coleman, Jonathan N. (21 June 2013). "Liquid Exfoliation of Layered Materials".
123:
One of the earliest transmission electron microscope images of a graphene nanosheet produced by liquid phase exfoliation (exfoliated by the Dublin group in 2007).
1443:
Hu, Chen-Xia; Shin, Yuyoung; Read, Oliver; Casiraghi, Cinzia (2021). "Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene".
591:
Hu, Chen-Xia; Shin, Yuyoung; Read, Oliver; Casiraghi, Cinzia (2021). "Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene".
108: 1804:
Kaur, Harneet; Coleman, Jonathan N. (September 2022). "Liquid-Phase Exfoliation of Nonlayered Non-Van-Der-Waals Crystals into Nanoplatelets".
1700:
Kaur, Harneet; Coleman, Jonathan N. (September 2022). "Liquid-Phase Exfoliation of Nonlayered Non-Van-Der-Waals Crystals into Nanoplatelets".
1539:
Kaur, Harneet; Coleman, Jonathan N. (September 2022). "Liquid-Phase Exfoliation of Nonlayered Non-Van-Der-Waals Crystals into Nanoplatelets".
1486:
Kaur, Harneet; Coleman, Jonathan N. (September 2022). "Liquid-Phase Exfoliation of Nonlayered Non-Van-Der-Waals Crystals into Nanoplatelets".
128:
in liquids, these papers were the first to describe exfoliation in liquids without any previous ion intercalation or chemical treatment.
365: 1012:
Andrea C.; Coleman, Jonathan N. (September 2008). "High-yield production of graphene by liquid-phase exfoliation of graphite".
843:
Andrea C.; Coleman, Jonathan N. (September 2008). "High-yield production of graphene by liquid-phase exfoliation of graphite".
789:
Andrea C.; Coleman, Jonathan N. (September 2008). "High-yield production of graphene by liquid-phase exfoliation of graphite".
182:
Andrea C.; Coleman, Jonathan N. (September 2008). "High-yield production of graphene by liquid-phase exfoliation of graphite".
636: 155:
gallium sulphide, molybdemum trioxide, nickel(II) hydroxide, germanium monosulfide, SnP3, black phosphorus etc.
87:
Printed structures have been used in a range of applications in areas included printed electronics, sensors and
1868: 103:. Liquid phase exfoliation is different from other liquid exfoliation methods, for example the production of 1076:"Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids" 386:"Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids" 1269: 1270:"Supramolecular Approaches to Graphene: From Self-Assembly to Molecule-Assisted Liquid-Phase Exfoliation" 498:"Revisión sobre la síntesis de grafeno por exfoliación en fase líquida: Mecanismos, factores y técnicas" 1863: 23:(LPE) is a solution-processing method which is used to convert layered crystals into two-dimensional 1318:
Ciesielski, Artur; Samorì, Paolo (2014). "Grapheneviasonication assisted liquid-phase exfoliation".
308:"Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems" 31:
This method involves adding powdered layered crystals, for example of graphite, to appropriate
732: 69: 1391: 1090: 1031: 924: 862: 400: 319: 253: 201: 65: 53: 8: 119: 57: 1395: 1094: 1035: 928: 866: 404: 323: 257: 205: 1839: 1781: 1755:"Liquid-Phase Exfoliated Silicon Nanosheets: Saturable Absorber for Solid-State Lasers" 1754: 1735: 1682: 1656: 1628: 1574: 1521: 1468: 1425: 1300: 1250: 1224: 1160: 1142: 1114: 1055: 1021: 993: 948: 914: 886: 852: 824: 798: 770: 713: 695: 667: 616: 573: 547: 519: 496:
Galindo-Uribe, Carlos Daniel; Calaminici, Patrizia; Solorza-Feria, Omar (1 June 2022).
478: 424: 287: 225: 191: 733:"Liquid-Phase Exfoliation of Nonlayered Non-Van-Der-Waals Crystals into Nanoplatelets" 1843: 1831: 1786: 1739: 1727: 1686: 1674: 1632: 1620: 1578: 1566: 1525: 1513: 1472: 1460: 1417: 1335: 1304: 1292: 1242: 1196: 1106: 1059: 1047: 997: 940: 890: 878: 828: 816: 774: 762: 659: 620: 608: 577: 565: 523: 482: 470: 416: 347: 279: 229: 217: 1429: 1254: 1164: 1118: 952: 717: 428: 291: 1821: 1813: 1776: 1766: 1717: 1709: 1666: 1610: 1602: 1556: 1548: 1503: 1495: 1452: 1407: 1399: 1363: 1327: 1284: 1234: 1188: 1152: 1098: 1039: 983: 975: 932: 870: 808: 752: 744: 705: 671: 651: 600: 557: 509: 460: 452: 408: 337: 327: 269: 261: 209: 77: 40: 81: 36: 104: 1857: 1131: 684: 88: 61: 1753:
Wang, Mengxia; Zhang, Fang; Wang, Zhengping; Xu, Xinguang (9 January 2019).
1670: 1606: 1403: 979: 561: 456: 265: 1835: 1817: 1790: 1731: 1713: 1678: 1624: 1570: 1552: 1517: 1499: 1464: 1421: 1339: 1296: 1288: 1246: 1200: 1110: 1051: 1043: 944: 882: 874: 820: 812: 766: 748: 663: 612: 569: 474: 420: 351: 283: 221: 213: 146:
molecular or polymeric additives to stabilise the exfoliated nanosheets.
514: 497: 1826: 1771: 1722: 1561: 1508: 1456: 1331: 1156: 757: 709: 604: 332: 307: 96: 1615: 1412: 1367: 1238: 1192: 1133:
F. (2018). "High-yield production of 2D crystals by wet-jet milling".
988: 936: 686:
F. (2018). "High-yield production of 2D crystals by wet-jet milling".
655: 465: 342: 274: 1102: 412: 92: 45: 24: 495: 304: 1661: 1147: 700: 552: 100: 1229: 1026: 919: 857: 803: 196: 965: 32: 1645: 536: 1010: 841: 787: 180: 1177: 731:
Kaur, Harneet; Coleman, Jonathan N. (September 29, 2022).
1380: 242: 903: 1213: 1072: 382: 149: 1352: 1442: 590: 1591: 633: 441: 1855: 1317: 1268:Ciesielski, Artur; Samorì, Paolo (August 2016). 1267: 1752: 158: 366:"China to dominate graphene commercialization" 91:. Related methods include exfoliation by wet 1803: 1699: 1538: 1485: 730: 1825: 1780: 1770: 1721: 1660: 1614: 1560: 1507: 1411: 1228: 1146: 1025: 987: 918: 856: 802: 756: 699: 551: 513: 464: 341: 331: 273: 195: 1217:Journal of the American Chemical Society 118: 1856: 131: 637:"Inkjet-Printed Graphene Electronics" 1356:The Journal of Physical Chemistry C 150:LPE of 2D materials beyond graphene 13: 14: 1880: 1797: 1746: 1693: 1647:Liquid-Exfoliated Nanosheets". 1639: 1585: 1532: 1479: 1436: 1374: 1346: 1311: 1261: 1207: 1171: 1125: 1066: 1004: 959: 897: 835: 781: 724: 678: 627: 538:Liquid-Exfoliated Nanosheets". 35:and inserting energy, often by 584: 530: 489: 435: 376: 358: 298: 236: 174: 140: 1: 1215:Surfactant/Water Solutions". 167: 159:LPE of non-layered materials 19:First demonstrated in 2008, 7: 10: 1885: 114: 16:Solution-processing method 21:liquid-phase exfoliation 1671:10.1021/acsnano.9b02234 1607:10.1021/acsnano.0c03916 1404:10.1126/science.1194975 980:10.1126/science.1226419 562:10.1021/acsnano.9b02234 457:10.1021/acsnano.0c03916 266:10.1126/science.1194975 1818:10.1002/adma.202202164 1714:10.1002/adma.202202164 1553:10.1002/adma.202202164 1500:10.1002/adma.202202164 1289:10.1002/adma.201505371 1044:10.1038/nnano.2008.215 875:10.1038/nnano.2008.215 813:10.1038/nnano.2008.215 749:10.1002/adma.202202164 214:10.1038/nnano.2008.215 124: 1869:Laboratory techniques 1014:Nature Nanotechnology 845:Nature Nanotechnology 791:Nature Nanotechnology 184:Nature Nanotechnology 122: 70:germanium monosulfide 66:nickel(II) hydroxide 54:molybdenum disulfide 1396:2011Sci...331..568C 1362:(20): 11393–11400. 1095:2014NatMa..13..624P 1036:2008NatNa...3..563H 929:2008NanoL...8.1704B 867:2008NatNa...3..563H 515:10.15359/ru.36-1.35 405:2014NatMa..13..624P 324:2015Nanos...7.4598F 258:2011Sci...331..568C 206:2008NatNa...3..563H 132:Exfoliation methods 58:tungsten diselenide 1806:Advanced Materials 1772:10.3390/ma12020201 1702:Advanced Materials 1601:(9): 10976–10985. 1541:Advanced Materials 1488:Advanced Materials 1457:10.1039/d0nr05514j 1332:10.1039/c3cs60217f 1277:Advanced Materials 1157:10.1039/c8mh00487k 1135:Materials Horizons 737:Advanced Materials 710:10.1039/c8mh00487k 688:Materials Horizons 605:10.1039/d0nr05514j 451:(9): 10976–10985. 372:. 18 January 2018. 333:10.1039/C4NR01600A 125: 95:, homogenization, 1390:(6017): 568–571. 1368:10.1021/jp302365w 1283:(29): 6030–6051. 1239:10.1021/ja807449u 1223:(10): 3611–3620. 1193:10.1021/la903188a 974:(6139): 1226419. 937:10.1021/nl080649i 656:10.1021/nn2044609 318:(11): 4598–4810. 252:(6017): 568–571. 97:microfluidization 41:high-shear mixing 1876: 1864:Chemical physics 1848: 1847: 1829: 1801: 1795: 1794: 1784: 1774: 1750: 1744: 1743: 1725: 1697: 1691: 1690: 1664: 1655:(6): 7050–7061. 1643: 1637: 1636: 1618: 1589: 1583: 1582: 1564: 1536: 1530: 1529: 1511: 1483: 1477: 1476: 1440: 1434: 1433: 1415: 1378: 1372: 1371: 1350: 1344: 1343: 1315: 1309: 1308: 1274: 1265: 1259: 1258: 1232: 1211: 1205: 1204: 1187:(5): 3208–3213. 1175: 1169: 1168: 1150: 1129: 1123: 1122: 1103:10.1038/nmat3944 1083:Nature Materials 1080: 1070: 1064: 1063: 1029: 1008: 1002: 1001: 991: 963: 957: 956: 922: 913:(6): 1704–1708. 901: 895: 894: 860: 839: 833: 832: 806: 785: 779: 778: 760: 728: 722: 721: 703: 682: 676: 675: 650:(4): 2992–3006. 641: 631: 625: 624: 588: 582: 581: 555: 546:(6): 7050–7061. 534: 528: 527: 517: 493: 487: 486: 468: 439: 433: 432: 413:10.1038/NMAT3944 393:Nature Materials 390: 380: 374: 373: 362: 356: 355: 345: 335: 302: 296: 295: 277: 240: 234: 233: 199: 178: 78:black phosphorus 1884: 1883: 1879: 1878: 1877: 1875: 1874: 1873: 1854: 1853: 1852: 1851: 1812:(35): 2202164. 1802: 1798: 1751: 1747: 1708:(35): 2202164. 1698: 1694: 1644: 1640: 1590: 1586: 1547:(35): 2202164. 1537: 1533: 1494:(35): 2202164. 1484: 1480: 1441: 1437: 1379: 1375: 1351: 1347: 1316: 1312: 1272: 1266: 1262: 1212: 1208: 1176: 1172: 1130: 1126: 1078: 1071: 1067: 1009: 1005: 964: 960: 902: 898: 840: 836: 786: 782: 743:(35): 2202164. 729: 725: 683: 679: 639: 632: 628: 589: 585: 535: 531: 494: 490: 440: 436: 388: 381: 377: 364: 363: 359: 303: 299: 241: 237: 179: 175: 170: 161: 152: 143: 134: 117: 82:inkjet printing 75: 37:ultrasonication 17: 12: 11: 5: 1882: 1872: 1871: 1866: 1850: 1849: 1796: 1745: 1692: 1638: 1584: 1531: 1478: 1451:(2): 460–484. 1435: 1373: 1345: 1326:(1): 381–398. 1320:Chem. Soc. Rev 1310: 1260: 1206: 1170: 1141:(5): 890–904. 1124: 1089:(6): 624–630. 1065: 1020:(9): 563–568. 1003: 958: 896: 851:(9): 563–568. 834: 797:(9): 563–568. 780: 723: 694:(5): 890–904. 677: 626: 599:(2): 460–484. 583: 529: 488: 434: 399:(6): 624–630. 375: 357: 297: 235: 190:(9): 563–568. 172: 171: 169: 166: 160: 157: 151: 148: 142: 139: 133: 130: 116: 113: 105:graphene oxide 89:nanocomposites 73: 15: 9: 6: 4: 3: 2: 1881: 1870: 1867: 1865: 1862: 1861: 1859: 1845: 1841: 1837: 1833: 1828: 1823: 1819: 1815: 1811: 1807: 1800: 1792: 1788: 1783: 1778: 1773: 1768: 1764: 1760: 1756: 1749: 1741: 1737: 1733: 1729: 1724: 1719: 1715: 1711: 1707: 1703: 1696: 1688: 1684: 1680: 1676: 1672: 1668: 1663: 1658: 1654: 1650: 1642: 1634: 1630: 1626: 1622: 1617: 1612: 1608: 1604: 1600: 1596: 1588: 1580: 1576: 1572: 1568: 1563: 1558: 1554: 1550: 1546: 1542: 1535: 1527: 1523: 1519: 1515: 1510: 1505: 1501: 1497: 1493: 1489: 1482: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1446: 1439: 1431: 1427: 1423: 1419: 1414: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1377: 1369: 1365: 1361: 1357: 1349: 1341: 1337: 1333: 1329: 1325: 1321: 1314: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1271: 1264: 1256: 1252: 1248: 1244: 1240: 1236: 1231: 1226: 1222: 1218: 1210: 1202: 1198: 1194: 1190: 1186: 1182: 1174: 1166: 1162: 1158: 1154: 1149: 1144: 1140: 1136: 1128: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1084: 1077: 1069: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1028: 1023: 1019: 1015: 1007: 999: 995: 990: 985: 981: 977: 973: 969: 962: 954: 950: 946: 942: 938: 934: 930: 926: 921: 916: 912: 908: 900: 892: 888: 884: 880: 876: 872: 868: 864: 859: 854: 850: 846: 838: 830: 826: 822: 818: 814: 810: 805: 800: 796: 792: 784: 776: 772: 768: 764: 759: 754: 750: 746: 742: 738: 734: 727: 719: 715: 711: 707: 702: 697: 693: 689: 681: 673: 669: 665: 661: 657: 653: 649: 645: 638: 630: 622: 618: 614: 610: 606: 602: 598: 594: 587: 579: 575: 571: 567: 563: 559: 554: 549: 545: 541: 533: 525: 521: 516: 511: 507: 503: 499: 492: 484: 480: 476: 472: 467: 462: 458: 454: 450: 446: 438: 430: 426: 422: 418: 414: 410: 406: 402: 398: 394: 387: 379: 371: 367: 361: 353: 349: 344: 339: 334: 329: 325: 321: 317: 313: 309: 301: 293: 289: 285: 281: 276: 271: 267: 263: 259: 255: 251: 247: 239: 231: 227: 223: 219: 215: 211: 207: 203: 198: 193: 189: 185: 177: 173: 165: 156: 147: 138: 129: 121: 112: 110: 109:nanoplatelets 106: 102: 98: 94: 90: 85: 83: 79: 71: 67: 63: 62:boron nitride 59: 55: 50: 47: 42: 38: 34: 29: 26: 22: 1809: 1805: 1799: 1762: 1758: 1748: 1705: 1701: 1695: 1652: 1648: 1641: 1598: 1594: 1587: 1544: 1540: 1534: 1491: 1487: 1481: 1448: 1444: 1438: 1387: 1383: 1376: 1359: 1355: 1348: 1323: 1319: 1313: 1280: 1276: 1263: 1220: 1216: 1209: 1184: 1180: 1173: 1138: 1134: 1127: 1086: 1082: 1068: 1017: 1013: 1006: 971: 967: 961: 910: 907:Nano Letters 906: 899: 848: 844: 837: 794: 790: 783: 740: 736: 726: 691: 687: 680: 647: 643: 629: 596: 592: 586: 543: 539: 532: 505: 501: 491: 448: 444: 437: 396: 392: 378: 369: 360: 315: 311: 300: 249: 245: 238: 187: 183: 176: 162: 153: 144: 135: 126: 93:ball milling 86: 51: 30: 20: 18: 1827:2262/101345 1723:2262/101345 1562:2262/101345 1509:2262/101345 758:2262/101345 508:(1): 1–14. 141:Stabilisers 101:jet milling 39:, although 1858:Categories 1765:(2): 201. 1662:2006.14909 1616:2262/93628 1413:2262/66458 1148:1804.10688 989:2262/69769 701:1804.10688 553:2006.14909 502:Uniciencia 466:2262/93628 343:2117/27112 275:2262/66458 168:References 46:monolayers 25:nanosheets 1844:248390135 1759:Materials 1740:248390135 1687:189813507 1633:220269811 1579:248390135 1526:248390135 1473:230784148 1445:Nanoscale 1305:205266229 1230:0809.2690 1060:205443620 1027:0805.2850 998:177513486 920:0803.3031 891:205443620 858:0805.2850 829:205443620 804:0805.2850 775:248390135 621:230784148 593:Nanoscale 578:189813507 524:249696830 483:220269811 312:Nanoscale 230:205443620 197:0805.2850 1836:35470487 1791:30634424 1732:35470487 1679:31199123 1649:ACS Nano 1625:32598132 1595:ACS Nano 1571:35470487 1518:35470487 1465:33404043 1430:23576676 1422:21292974 1340:24002478 1297:26928750 1255:16624132 1247:19227978 1201:19883090 1181:Langmuir 1165:96459022 1119:43256835 1111:24747780 1052:18772919 953:14620203 945:18444691 883:18772919 821:18772919 767:35470487 718:96459022 664:22449258 644:ACS Nano 613:33404043 570:31199123 540:ACS Nano 475:32598132 445:ACS Nano 429:43256835 421:24747780 370:IDTechEx 352:25707682 292:23576676 284:21292974 222:18772919 99:and wet 33:solvents 1782:6356386 1392:Bibcode 1384:Science 1091:Bibcode 1032:Bibcode 968:Science 925:Bibcode 863:Bibcode 672:8624837 401:Bibcode 320:Bibcode 254:Bibcode 246:Science 202:Bibcode 115:Origins 1842:  1834:  1789:  1779:  1738:  1730:  1685:  1677:  1631:  1623:  1577:  1569:  1524:  1516:  1471:  1463:  1428:  1420:  1338:  1303:  1295:  1253:  1245:  1199:  1163:  1117:  1109:  1058:  1050:  996:  951:  943:  889:  881:  827:  819:  773:  765:  716:  670:  662:  619:  611:  576:  568:  522:  481:  473:  427:  419:  350:  290:  282:  228:  220:  76:, and 1840:S2CID 1736:S2CID 1683:S2CID 1657:arXiv 1629:S2CID 1575:S2CID 1522:S2CID 1469:S2CID 1426:S2CID 1301:S2CID 1273:(PDF) 1251:S2CID 1225:arXiv 1161:S2CID 1143:arXiv 1115:S2CID 1079:(PDF) 1056:S2CID 1022:arXiv 994:S2CID 949:S2CID 915:arXiv 887:S2CID 853:arXiv 825:S2CID 799:arXiv 771:S2CID 714:S2CID 696:arXiv 668:S2CID 640:(PDF) 617:S2CID 574:S2CID 548:arXiv 520:S2CID 479:S2CID 425:S2CID 389:(PDF) 288:S2CID 226:S2CID 192:arXiv 72:, SnP 1832:PMID 1787:PMID 1728:PMID 1675:PMID 1621:PMID 1567:PMID 1514:PMID 1461:PMID 1418:PMID 1336:PMID 1293:PMID 1243:PMID 1197:PMID 1107:PMID 1048:PMID 941:PMID 879:PMID 817:PMID 763:PMID 660:PMID 609:PMID 566:PMID 471:PMID 417:PMID 348:PMID 280:PMID 218:PMID 44:few 1822:hdl 1814:doi 1777:PMC 1767:doi 1718:hdl 1710:doi 1667:doi 1611:hdl 1603:doi 1557:hdl 1549:doi 1504:hdl 1496:doi 1453:doi 1408:hdl 1400:doi 1388:331 1364:doi 1360:116 1328:doi 1285:doi 1235:doi 1221:131 1189:doi 1153:doi 1099:doi 1040:doi 984:hdl 976:doi 972:340 933:doi 871:doi 809:doi 753:hdl 745:doi 706:doi 652:doi 601:doi 558:doi 510:doi 461:hdl 453:doi 409:doi 338:hdl 328:doi 270:hdl 262:doi 250:331 210:doi 1860:: 1838:. 1830:. 1820:. 1810:34 1808:. 1785:. 1775:. 1763:12 1761:. 1757:. 1734:. 1726:. 1716:. 1706:34 1704:. 1681:. 1673:. 1665:. 1653:13 1651:. 1627:. 1619:. 1609:. 1599:14 1597:. 1573:. 1565:. 1555:. 1545:34 1543:. 1520:. 1512:. 1502:. 1492:34 1490:. 1467:. 1459:. 1449:13 1447:. 1424:. 1416:. 1406:. 1398:. 1386:. 1358:. 1334:. 1324:43 1322:. 1299:. 1291:. 1281:28 1279:. 1275:. 1249:. 1241:. 1233:. 1219:. 1195:. 1185:26 1183:. 1159:. 1151:. 1137:. 1113:. 1105:. 1097:. 1087:13 1085:. 1081:. 1054:. 1046:. 1038:. 1030:. 1016:. 992:. 982:. 970:. 947:. 939:. 931:. 923:. 909:. 885:. 877:. 869:. 861:. 847:. 823:. 815:. 807:. 793:. 769:. 761:. 751:. 741:34 739:. 735:. 712:. 704:. 690:. 666:. 658:. 646:. 642:. 615:. 607:. 597:13 595:. 572:. 564:. 556:. 544:13 542:. 518:. 506:36 504:. 500:. 477:. 469:. 459:. 449:14 447:. 423:. 415:. 407:. 397:13 395:. 391:. 368:. 346:. 336:. 326:. 314:. 310:. 286:. 278:. 268:. 260:. 248:. 224:. 216:. 208:. 200:. 186:. 111:. 84:. 68:, 64:, 60:, 56:, 1846:. 1824:: 1816:: 1793:. 1769:: 1742:. 1720:: 1712:: 1689:. 1669:: 1659:: 1635:. 1613:: 1605:: 1581:. 1559:: 1551:: 1528:. 1506:: 1498:: 1475:. 1455:: 1432:. 1410:: 1402:: 1394:: 1370:. 1366:: 1342:. 1330:: 1307:. 1287:: 1257:. 1237:: 1227:: 1203:. 1191:: 1167:. 1155:: 1145:: 1139:5 1121:. 1101:: 1093:: 1062:. 1042:: 1034:: 1024:: 1018:3 1000:. 986:: 978:: 955:. 935:: 927:: 917:: 911:8 893:. 873:: 865:: 855:: 849:3 831:. 811:: 801:: 795:3 777:. 755:: 747:: 720:. 708:: 698:: 692:5 674:. 654:: 648:6 623:. 603:: 580:. 560:: 550:: 526:. 512:: 485:. 463:: 455:: 431:. 411:: 403:: 354:. 340:: 330:: 322:: 316:7 294:. 272:: 264:: 256:: 232:. 212:: 204:: 194:: 188:3 74:3

Index

nanosheets
solvents
ultrasonication
high-shear mixing
monolayers
molybdenum disulfide
tungsten diselenide
boron nitride
nickel(II) hydroxide
germanium monosulfide
black phosphorus
inkjet printing
nanocomposites
ball milling
microfluidization
jet milling
graphene oxide
nanoplatelets

arXiv
0805.2850
Bibcode
2008NatNa...3..563H
doi
10.1038/nnano.2008.215
PMID
18772919
S2CID
205443620
Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑