Knowledge

Lysocline

Source 📝

20: 23:
The graphic presents the present-day annual mean surface omega calcite: the normalised saturation state of calcite. Areas with a value less an 1 indicate a likeliness for dissolution (undersaturated) while a value over 1 indicates areas less likely for dissolution
117:
saturation state of seawater. The calcite saturation horizon is where Ω =1; dissolution proceeds slowly below this depth. The lysocline is the depth that this dissolution impacts is again notable, also known as the inflection point with sedimentary
59:, content values reaching 85–95%. This area is then spanned hundreds of meters by the transition zone, ending in the abyssal depths with 0% concentration. The lysocline is the upper bound of the transition zone, where amounts of CaCO 55:
content in sediment varies with different depths of the ocean, spanned by levels of separation known as the transition zone. In the mid-depth area of the ocean, sediments are rich in CaCO
48:
increases dramatically because of a pressure effect. While the lysocline is the upper bound of this transition zone of calcite saturation, the CCD is the lower bound of this zone.
157:
The depth of the CCD varies as a function of the chemical composition of the seawater and its temperature. Specifically, it is the deep waters that are undersaturated with
138:
content are values 2–10%. Hence, the lysocline and CCD are not equivalent. The lysocline and compensation depth occur at greater depths in the
416:
Volat, J. L.; Pastouret, L.; V. G., Colette (1980). "Dissolution and carbonate fluctuations in Pleistocene deep-sea cores: A review".
134:(CCD) occurs at the depth that the rate of calcite to the sediments is balanced with the dissolution flux, the depth at which the CaCO 94:, calcite solubility increases, causing supersaturated water above the saturation depth, allowing for preservation and burial of CaCO 255:
Shiraiwa, Y. (2003). "Physiological regulation of carbon fixation in the photosynthesis and calcification of coccolithophorids".
234: 183: 131: 37: 365:
Zeebe, R. E. (2012). "History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification".
98:
on the seafloor. However, this creates undersaturated seawater below the saturation depth, preventing CaCO
301:
Sigman, D. M.; Boyle, E. A. (2000). "Glacial/interglacial variations in atmospheric carbon dioxide".
214: 19: 169:
continues to increase, the CCD can be expected to decrease in depth, as the ocean's acidity rises.
90:) die, they tend to fall downwards without dissolving. As depth and pressure increases within the 151: 529: 524: 468: 425: 374: 310: 8: 480: 188: 472: 429: 386: 378: 314: 16:
Depth in the ocean below which the rate of dissolution of calcite increases dramatically
500: 398: 342: 268: 492: 484: 441: 437: 390: 334: 326: 280: 272: 230: 226: 158: 504: 402: 476: 433: 382: 346: 318: 264: 222: 257:
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
178: 161:
primarily because its solubility increases strongly with increasing pressure and
75: 459:
Broecker, W. S. (2009). "Wally's Quest to Understand the Ocean's CaCO3 Cycle".
166: 139: 63:
content begins to noticeably drop from the mid-depth 85–95% sediment. The CaCO
518: 488: 445: 394: 330: 276: 143: 68: 496: 338: 284: 91: 83: 213:
Broecker, W. S. (2003), Holland, Heinrich D.; Turekian, Karl K. (eds.),
322: 87: 41: 162: 147: 45: 165:
and decreasing temperature. As the atmospheric concentration of
103: 71:
at the lower bound, known as the calcite compensation depth.
33: 86:(which often have shells made of calcite or its polymorph, 40:(CCD), usually around 5 km, below which the rate of 415: 516: 367:Annual Review of Earth and Planetary Sciences 125: 300: 458: 254: 212: 146:(4000–5000 m), and at greater depths in 18: 517: 364: 208: 206: 204: 481:10.1146/annurev.marine.010908.163936 360: 358: 356: 296: 294: 74:Shallow marine waters are generally 387:10.1146/annurev-earth-042711-105521 13: 201: 14: 541: 353: 291: 106:as the shells start to dissolve. 215:"6.19 – The Oceanic CaCO3 Cycle" 461:Annual Review of Marine Science 452: 409: 248: 227:10.1016/b0-08-043751-6/06119-3 221:, Pergamon, pp. 529–549, 1: 269:10.1016/S1096-4959(03)00221-5 194: 122:versus various water depths. 438:10.1016/0025-3227(80)90138-3 184:Carbonate compensation depth 38:carbonate compensation depth 7: 172: 10: 546: 142:(5000–6000 m) than in the 132:calcite compensation depth 126:Calcite compensation depth 219:Treatise on Geochemistry 109:The equation Ω = X /K' 25: 22: 67:content drops to 0% 32:is the depth in the 473:2009ARMS....1....1B 430:1980MGeol..34....1V 379:2012AREPS..40..141Z 315:2000Natur.407..859S 189:Ocean acidification 36:dependent upon the 148:equatorial regions 113:expresses the CaCO 26: 309:(6806): 859–869. 159:calcium carbonate 24:(oversaturation). 537: 509: 508: 456: 450: 449: 413: 407: 406: 362: 351: 350: 323:10.1038/35038000 298: 289: 288: 252: 246: 245: 244: 243: 210: 84:marine organisms 78:in calcite, CaCO 545: 544: 540: 539: 538: 536: 535: 534: 515: 514: 513: 512: 457: 453: 414: 410: 363: 354: 299: 292: 253: 249: 241: 239: 237: 211: 202: 197: 179:Biological pump 175: 137: 128: 121: 116: 112: 101: 97: 81: 66: 62: 58: 54: 17: 12: 11: 5: 543: 533: 532: 527: 511: 510: 451: 418:Marine Geology 408: 373:(1): 141–165. 352: 290: 263:(4): 775–783. 247: 235: 199: 198: 196: 193: 192: 191: 186: 181: 174: 171: 167:carbon dioxide 135: 127: 124: 119: 114: 110: 102:burial on the 99: 95: 79: 76:supersaturated 64: 60: 56: 52: 15: 9: 6: 4: 3: 2: 542: 531: 528: 526: 523: 522: 520: 506: 502: 498: 494: 490: 486: 482: 478: 474: 470: 466: 462: 455: 447: 443: 439: 435: 431: 427: 423: 419: 412: 404: 400: 396: 392: 388: 384: 380: 376: 372: 368: 361: 359: 357: 348: 344: 340: 336: 332: 328: 324: 320: 316: 312: 308: 304: 297: 295: 286: 282: 278: 274: 270: 266: 262: 258: 251: 238: 236:9780080437514 232: 228: 224: 220: 216: 209: 207: 205: 200: 190: 187: 185: 182: 180: 177: 176: 170: 168: 164: 160: 155: 153: 152:polar regions 149: 145: 141: 133: 123: 107: 105: 93: 89: 85: 82:, because as 77: 72: 70: 69:concentration 49: 47: 43: 39: 35: 31: 21: 530:Oceanography 525:Geochemistry 464: 460: 454: 421: 417: 411: 370: 366: 306: 302: 260: 256: 250: 240:, retrieved 218: 156: 129: 108: 92:water column 73: 50: 29: 27: 467:(1): 1–18. 424:(1): 1–28. 42:dissolution 519:Categories 242:2019-10-17 195:References 489:1941-1405 446:0025-3227 395:0084-6597 331:1476-4687 277:1096-4959 104:sea floor 88:aragonite 30:lysocline 505:45348785 497:21141027 403:18682623 339:11057657 285:14662302 173:See also 163:salinity 150:than in 140:Atlantic 469:Bibcode 426:Bibcode 375:Bibcode 347:7136822 311:Bibcode 144:Pacific 46:calcite 503:  495:  487:  444:  401:  393:  345:  337:  329:  303:Nature 283:  275:  233:  501:S2CID 399:S2CID 343:S2CID 34:ocean 493:PMID 485:ISSN 442:ISSN 391:ISSN 335:PMID 327:ISSN 281:PMID 273:ISSN 231:ISBN 130:The 118:CaCO 51:CaCO 28:The 477:doi 434:doi 383:doi 319:doi 307:407 265:doi 261:136 223:doi 44:of 521:: 499:. 491:. 483:. 475:. 463:. 440:. 432:. 422:34 420:. 397:. 389:. 381:. 371:40 369:. 355:^ 341:. 333:. 325:. 317:. 305:. 293:^ 279:. 271:. 259:. 229:, 217:, 203:^ 154:. 111:sp 507:. 479:: 471:: 465:1 448:. 436:: 428:: 405:. 385:: 377:: 349:. 321:: 313:: 287:. 267:: 225:: 136:3 120:3 115:3 100:3 96:3 80:3 65:3 61:3 57:3 53:3

Index


ocean
carbonate compensation depth
dissolution
calcite
concentration
supersaturated
marine organisms
aragonite
water column
sea floor
calcite compensation depth
Atlantic
Pacific
equatorial regions
polar regions
calcium carbonate
salinity
carbon dioxide
Biological pump
Carbonate compensation depth
Ocean acidification



"6.19 – The Oceanic CaCO3 Cycle"
doi
10.1016/b0-08-043751-6/06119-3
ISBN
9780080437514

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.