Knowledge

Nucleic acid secondary structure

Source đź“ť

24: 37: 428: 323:. Purines are only complementary with pyrimidines: pyrimidine-pyrimidine pairings are energetically unfavorable because the molecules are too far apart for hydrogen bonding to be established; purine-purine pairings are energetically unfavorable because the molecules are too close, leading to overlap repulsion. The only other possible pairings are GT and AC; these pairings are mismatches because the pattern of hydrogen donors and acceptors do not correspond. The GU 185: 174: 733: 571: 507: 704:
process can still occur on certain genes in the absence of U2AF2. This may be because 10% of genes in zebrafish have alternating TG and AC base pairs at the 3' splice site (3'ss) and 5' splice site (5'ss) respectively on each intron, which alters the secondary structure of the RNA. This suggests that
485:
together. A single turn of the helix constitutes about ten nucleotides, and contains a major groove and minor groove, the major groove being wider than the minor groove. Given the difference in widths of the major groove and minor groove, many proteins which bind to DNA do so through the wider major
439:
Nucleic acid secondary structure is generally divided into helices (contiguous base pairs), and various kinds of loops (unpaired nucleotides surrounded by helices). Frequently these elements, or combinations of them, are further classified into additional categories including, for example,
610:, which uses a recursive scoring system to identify paired stems and consequently cannot detect non-nested base pairs with common algorithms. However, limited subclasses of pseudoknots can be predicted using modified dynamic programs. Newer structure prediction techniques such as 528:
structure (also often referred to as an "hairpin"), in which a base-paired helix ends in a short unpaired loop, is extremely common and is a building block for larger structural motifs such as cloverleaf structures, which are four-helix junctions such as those found in
299:
is the chemical mechanism that underlies the base-pairing rules described above. Appropriate geometrical correspondence of hydrogen bond donors and acceptors allows only the "right" pairs to form stably. DNA with high GC-content is more stable than DNA with low
621:
contains a pseudoknot that is critical for its activity. The hepatitis delta virus ribozyme is a well known example of a catalytic RNA with a pseudoknot in its active site. Though DNA can also form pseudoknots, they are generally not present in standard
397:, is simple providing the molecules have fewer than about 10,000 base pairs (10 kilobase pairs, or 10 kbp). The intertwining of the DNA strands makes long segments difficult to separate. The cell avoids this problem by allowing its DNA-melting enzymes ( 1298:
Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH (October 1998). "Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs".
533:. Internal loops (a short series of unpaired bases in a longer paired helix) and bulges (regions in which one strand of a helix has "extra" inserted bases with no counterparts in the opposite strand) are also frequent. 356:. Melting is the process by which the interactions between the strands of the double helix are broken, separating the two nucleic acid strands. These bonds are weak, easily separated by gentle heating, 617:
Pseudoknots can form a variety of structures with catalytic activity and several important biological processes rely on RNA molecules that form pseudoknots. For example, the RNA component of the human
602:
in pseudoknots is not well nested; that is, base pairs occur that "overlap" one another in sequence position. This makes the presence of general pseudoknots in nucleic acid sequences impossible to
658:, or other cases in which base pairs are not fully nested, as considering these structures becomes computationally very expensive for even small nucleic acid molecules. Other methods, such as 646:
Most methods for nucleic acid secondary structure prediction rely on a nearest neighbor thermodynamic model. A common method to determine the most probable structures given a sequence of
665:
For many RNA molecules, the secondary structure is highly important to the correct function of the RNA — often more so than the actual sequence. This fact aids in the analysis of
32: 31: 1454:
Lin, Chien-Ling; Taggart, Allison J.; Lim, Kian Huat; Cygan, Kamil J.; Ferraris, Luciana; Creton, Robert; Huang, Yen-Tsung; Fairbrother, William G. (13 November 2015).
474:
in nucleic acid molecules which is intimately connected with the molecule's secondary structure. A double helix is formed by regions of many consecutive base pairs.
27: 705:
secondary structure of RNA can influence splicing, potentially without the use of proteins like U2AF2 that have been thought to be required for splicing to occur.
128:
double helices, while biological RNA is single stranded and often forms complex and intricate base-pairing interactions due to its increased ability to form
28: 1615: 1204:
Doudna, Jennifer A.; Ferré-D'Amaré, Adrian R.; Zhou, Kaihong (October 1998). "Crystal structure of a hepatitis delta virus ribozyme".
295:. Some DNA- or RNA-binding enzymes can recognize specific base pairing patterns that identify particular regulatory regions of genes. 641: 553: 319:; the smaller nucleobases, cytosine and thymine (and uracil), are members of a class of singly ringed chemical structures called 1346:"Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure" 304:, but contrary to popular belief, the hydrogen bonds do not stabilize the DNA significantly and stabilization is mainly due to 979: 594:
between the two halves of another stem. Pseudoknots fold into knot-shaped three-dimensional conformations but are not true
1713: 1608: 545: 456:
can be used to categorize and compare complex structures that arise from combining these elements in various arrangements.
112:
polymer or between two polymers. It can be represented as a list of bases which are paired in a nucleic acid molecule. The
1572: 346: 225: 536:
There are many secondary structure elements of functional importance to biological RNAs; some famous examples are the
432: 1718: 1708: 1660: 635: 603: 549: 16:
This article is about secondary structure in nucleic acid. For the article about secondary structure in protein, see
544:. Active research is on-going to determine the secondary structure of RNA molecules, with approaches including both 405:, which can chemically cleave the phosphate backbone of one of the strands so that it can swivel around the other. 113: 1703: 1601: 659: 611: 471: 272: 1092:
Rivas E, Eddy SR (1999). "A dynamic programming algorithm for RNA structure prediction including pseudoknots".
759:. The database is designed to collect and analyse thermodynamic, structural and other dinucleotide properties. 524:
The secondary structure of nucleic acid molecules can often be uniquely decomposed into stems and loops. The
30: 941: 1665: 1655: 1583: 591: 654:
algorithm that seeks to find structures with low free energy. Dynamic programming algorithms often forbid
1815: 1728: 1645: 340: 29: 17: 1650: 1784: 1640: 465: 394: 51: 1313: 486:
groove. Many double-helical forms are possible; for DNA the three biologically relevant forms are
422: 713:
RNA secondary structure can be determined from atomic coordinates (tertiary structure) obtained by
751: 623: 155:, since the pattern of basepairing ultimately determines the overall structure of the molecules. 1685: 1675: 1624: 1308: 787: 292: 47: 1693: 834:"Base-stacking and base-pairing contributions into thermal stability of the DNA double helix" 714: 537: 1412: 1357: 1213: 1046: 894: 305: 239:
are called a base pair (often abbreviated bp). In the canonical Watson-Crick base pairing,
1577: 390:
at the start of many genes to assist RNA polymerase in melting the DNA for transcription.
360:, or physical force. Melting occurs preferentially at certain points in the nucleic acid. 315:, adenine and guanine, are members of a class of doubly ringed chemical structures called 8: 1810: 1754: 1723: 651: 607: 268: 144: 1416: 1361: 1268: 1217: 1050: 1008: 898: 477:
The nucleic acid double helix is a spiral polymer, usually right-handed, containing two
1529: 1504: 1480: 1455: 1237: 1181: 1146: 1127: 1101: 1069: 1034: 858: 833: 746: 595: 148: 1552: 1380: 1345: 917: 882: 809: 782: 688:
in certain species. In humans and other tetrapods, it has been shown that without the
376:
rich regions. Particular base steps are also susceptible to DNA melting, particularly
1632: 1534: 1485: 1436: 1428: 1385: 1326: 1280: 1272: 1229: 1186: 1168: 1119: 1074: 1012: 975: 922: 863: 814: 718: 541: 217: 68: 384:
base steps. These mechanical features are reflected by the use of sequences such as
1779: 1524: 1516: 1475: 1467: 1420: 1375: 1365: 1318: 1264: 1255:
Lai, Michael M. C. (1995-06-01). "The Molecular Biology of Hepatitis Delta Virus".
1241: 1221: 1176: 1158: 1131: 1111: 1064: 1054: 1004: 912: 902: 853: 845: 804: 796: 453: 324: 271:, also occur—particularly in RNA—giving rise to complex and functional 264: 693: 1403:
Zuker, M. (1989-04-07). "On finding all suboptimal foldings of an RNA molecule".
1163: 409:
unwind the strands to facilitate the advance of sequence-reading enzymes such as
143:
In a non-biological context, secondary structure is a vital consideration in the
1749: 1670: 1587: 1505:"DSSR: an integrated software tool for dissecting the spatial structure of RNA" 1344:
Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (May 2004).
738: 670: 666: 410: 832:
Yakovchuk, Peter; Protozanova, Ekaterina; Frank-Kamenetskii, Maxim D. (2006).
681:
have canonical long stem-loop structures interrupted by small internal loops.
1799: 1432: 1276: 1172: 402: 296: 280: 236: 201: 152: 129: 1424: 1370: 1059: 907: 1820: 1805: 1764: 1538: 1489: 1389: 1190: 1115: 1078: 867: 818: 780: 701: 685: 586:
A pseudoknot is a nucleic acid secondary structure containing at least two
530: 482: 353: 288: 109: 1471: 1440: 1330: 1284: 1233: 1123: 1016: 926: 781:
Dirks, Robert M.; Lin, Milo; Winfree, Erik & Pierce, Niles A. (2004).
1593: 1520: 1035:"Functional analysis of the pseudoknot structure in human telomerase RNA" 849: 800: 762: 498:, while RNA double helices have structures similar to the A form of DNA. 427: 55: 1106: 1759: 655: 647: 618: 579: 575: 565: 478: 445: 320: 312: 301: 221: 63: 59: 1322: 92: 88: 84: 80: 76: 72: 831: 599: 587: 525: 519: 511: 449: 441: 349: 284: 211: 184: 173: 125: 732: 697: 406: 398: 386: 252: 196:, an AT base pair demonstrating two intermolecular hydrogen bonds; 133: 105: 1225: 1744: 949: 756: 256: 248: 244: 240: 1297: 36: 674: 357: 316: 260: 137: 662:
can also be used to predict nucleic acid secondary structure.
689: 678: 570: 495: 491: 487: 276: 1343: 506: 124:
tend to be different: biological DNA mostly exists as fully
1584:
DNAlive: a web interface to compute DNA physical properties
1203: 880: 1774: 1769: 1586:. Also allows cross-linking of the results with the UCSC 328: 232: 228: 121: 117: 883:"Predicting DNA duplex stability from the base sequence" 692:
protein, the splicing process is inhibited. However, in
677:
for noncoding but functional forms of RNA. For example,
1456:"RNA structure replaces the need for U2AF2 in splicing" 673:
uses predicted RNA secondary structures in searching a
327:, with two hydrogen bonds, does occur fairly often in 263:(U). Alternate hydrogen bonding patterns, such as the 1503:
Lu, XJ; Bussemaker, HJ; Olson, WK (2 December 2015).
721:. Current methods include 3DNA/DSSR and MC-annotate. 50:(primary, secondary, tertiary, and quaternary) using 1147:"Pseudoknots: RNA Structures with Diverse Functions" 728: 708: 200:, a GC base pair demonstrating three intermolecular 1145:Staple, David W.; Butcher, Samuel E. (2005-06-14). 995:Pabo C, Sauer R (1984). "Protein-DNA recognition". 881:Breslauer KJ, Frank R, Blöcker H, Marky LA (1986). 578:structure. For example, the RNA component of human 1453: 275:. Importantly, pairing is the mechanism by which 1502: 783:"Paradigms for computational nucleic acid design" 669:sometimes termed "RNA genes". One application of 629: 1797: 942:"DNA melting temperature - How to calculate it?" 939: 393:Strand separation by gentle heating, as used in 26: 1609: 1144: 416: 334: 1580:— Commercial software for DNA modeling 874: 825: 1032: 368:rich sequences are more easily melted than 1623: 1616: 1602: 1528: 1479: 1379: 1369: 1312: 1180: 1162: 1105: 1091: 1068: 1058: 994: 916: 906: 857: 808: 642:List of RNA structure prediction software 614:are also unable to consider pseudoknots. 554:List of RNA structure prediction software 1447: 590:structures in which half of one stem is 569: 505: 426: 423:Structural motif § In nucleic acids 40:The image above contains clickable links 22: 1573:MDDNA: Structural Bioinformatics of DNA 969: 501: 158: 1798: 1028: 1026: 963: 1597: 1402: 1269:10.1146/annurev.bi.64.070195.001355 1254: 1023: 1009:10.1146/annurev.bi.53.070184.001453 684:RNA secondary structure applies in 13: 1337: 1291: 35: 14: 1832: 1566: 972:The Molecular Biology of the Cell 709:Secondary structure determination 636:Nucleic acid structure prediction 470:The double helix is an important 731: 660:stochastic context-free grammars 612:stochastic context-free grammars 345:Hybridization is the process of 183: 172: 102:Nucleic acid secondary structure 1545: 1496: 1396: 1248: 1197: 940:Richard Owczarzy (2008-08-28). 459: 235:strands that are connected via 163: 147:of nucleic acid structures for 1138: 1085: 988: 948:. owczarzy.net. Archived from 946:High-throughput DNA biophysics 933: 774: 630:Secondary structure prediction 559: 1: 1257:Annual Review of Biochemistry 974:. New York: Garland Science. 970:Alberts; et al. (1994). 768: 108:interactions within a single 1164:10.1371/journal.pbio.0030213 1033:Chen JL, Greider CW (2005). 401:) to work concurrently with 283:molecules are recognized by 7: 724: 341:Nucleic acid thermodynamics 243:(A) forms a base pair with 18:Protein secondary structure 10: 1837: 639: 633: 606:by the standard method of 563: 538:Rho-independent terminator 517: 463: 420: 417:Secondary structure motifs 338: 335:Nucleic acid hybridization 209: 15: 1785:Nucleic acid double helix 1737: 1684: 1631: 1557:www-lbit.iro.umontreal.ca 717:, often deposited in the 466:Nucleic acid double helix 624:physiological conditions 132:stemming from the extra 1425:10.1126/science.2468181 1371:10.1073/pnas.0401799101 1060:10.1073/pnas.0502259102 908:10.1073/pnas.83.11.3746 752:Molecular models of DNA 1625:Biomolecular structure 1509:Nucleic Acids Research 1116:10.1006/jmbi.1998.2436 1039:Proc Natl Acad Sci USA 838:Nucleic Acids Research 788:Nucleic Acids Research 583: 552:methods (see also the 515: 454:Topological approaches 436: 431:The main nucleic acid 97: 54:and examples from the 48:nucleic acid structure 41: 1472:10.1101/gr.181008.114 715:X-ray crystallography 640:Further information: 573: 509: 430: 421:Further information: 39: 34: 502:Stem-loop structures 255:(C) in DNA. In RNA, 159:Fundamental concepts 114:secondary structures 1755:Protein engineering 1417:1989Sci...244...48Z 1362:2004PNAS..101.7287M 1218:1998Natur.395..567F 1051:2005PNAS..102.8080C 899:1986PNAS...83.3746B 652:dynamic programming 608:dynamic programming 540:stem-loops and the 514:secondary structure 435:(A-, B- and Z-form) 273:tertiary structures 269:Hoogsteen base pair 251:(G) forms one with 145:nucleic acid design 1816:Molecular geometry 1521:10.1093/nar/gkv716 850:10.1093/nar/gkj454 801:10.1093/nar/gkh291 747:DNA nanotechnology 584: 516: 472:tertiary structure 437: 352:binding to form a 149:DNA nanotechnology 98: 42: 1793: 1792: 1590:and DNA dynamics. 1323:10.1021/bi9809425 1212:(6702): 567–574. 981:978-0-8153-4105-5 893:(11): 3746–3750. 719:Protein Data Bank 596:topological knots 218:molecular biology 44:Interactive image 1828: 1780:Structural motif 1618: 1611: 1604: 1595: 1594: 1561: 1560: 1549: 1543: 1542: 1532: 1500: 1494: 1493: 1483: 1451: 1445: 1444: 1400: 1394: 1393: 1383: 1373: 1341: 1335: 1334: 1316: 1307:(42): 14719–35. 1295: 1289: 1288: 1252: 1246: 1245: 1201: 1195: 1194: 1184: 1166: 1142: 1136: 1135: 1109: 1100:(5): 2053–2068. 1089: 1083: 1082: 1072: 1062: 1030: 1021: 1020: 997:Annu Rev Biochem 992: 986: 985: 967: 961: 960: 958: 957: 937: 931: 930: 920: 910: 878: 872: 871: 861: 829: 823: 822: 812: 795:(4): 1392–1403. 778: 741: 736: 735: 433:helix structures 325:wobble base pair 297:Hydrogen bonding 265:wobble base pair 187: 176: 95: 38: 25: 1836: 1835: 1831: 1830: 1829: 1827: 1826: 1825: 1796: 1795: 1794: 1789: 1733: 1680: 1627: 1622: 1569: 1564: 1551: 1550: 1546: 1501: 1497: 1460:Genome Research 1452: 1448: 1411:(4900): 48–52. 1401: 1397: 1356:(19): 7287–92. 1342: 1338: 1314:10.1.1.579.6653 1296: 1292: 1253: 1249: 1202: 1198: 1143: 1139: 1107:physics/9807048 1090: 1086: 1031: 1024: 993: 989: 982: 968: 964: 955: 953: 938: 934: 879: 875: 830: 826: 779: 775: 771: 737: 730: 727: 711: 650:makes use of a 644: 638: 632: 568: 562: 542:tRNA cloverleaf 522: 504: 468: 462: 425: 419: 343: 337: 291:during protein 259:is replaced by 214: 208: 207: 206: 205: 190: 189: 188: 179: 178: 177: 166: 161: 100: 67: 33: 23: 21: 12: 11: 5: 1834: 1824: 1823: 1818: 1813: 1808: 1791: 1790: 1788: 1787: 1782: 1777: 1772: 1767: 1762: 1757: 1752: 1750:Protein domain 1747: 1741: 1739: 1735: 1734: 1732: 1731: 1729:Thermodynamics 1726: 1721: 1716: 1711: 1706: 1701: 1696: 1690: 1688: 1682: 1681: 1679: 1678: 1676:Thermodynamics 1673: 1668: 1663: 1658: 1653: 1648: 1643: 1637: 1635: 1629: 1628: 1621: 1620: 1613: 1606: 1598: 1592: 1591: 1588:Genome browser 1581: 1575: 1568: 1567:External links 1565: 1563: 1562: 1544: 1495: 1446: 1395: 1336: 1290: 1263:(1): 259–286. 1247: 1196: 1137: 1084: 1045:(23): 8080–5. 1022: 987: 980: 962: 932: 873: 844:(2): 564–574. 824: 772: 770: 767: 766: 765: 760: 754: 749: 743: 742: 739:Biology portal 726: 723: 710: 707: 671:bioinformatics 667:non-coding RNA 634:Main article: 631: 628: 564:Main article: 561: 558: 518:Main article: 503: 500: 481:strands which 464:Main article: 461: 458: 418: 415: 411:DNA polymerase 403:topoisomerases 339:Main article: 336: 333: 308:interactions. 237:hydrogen bonds 210:Main article: 202:hydrogen bonds 192: 191: 182: 181: 180: 171: 170: 169: 168: 167: 165: 162: 160: 157: 130:hydrogen bonds 116:of biological 9: 6: 4: 3: 2: 1833: 1822: 1819: 1817: 1814: 1812: 1809: 1807: 1804: 1803: 1801: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1742: 1740: 1736: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1714:Determination 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1691: 1689: 1687: 1683: 1677: 1674: 1672: 1669: 1667: 1664: 1662: 1661:Determination 1659: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1638: 1636: 1634: 1630: 1626: 1619: 1614: 1612: 1607: 1605: 1600: 1599: 1596: 1589: 1585: 1582: 1579: 1576: 1574: 1571: 1570: 1558: 1554: 1553:"MC-Annotate" 1548: 1540: 1536: 1531: 1526: 1522: 1518: 1514: 1510: 1506: 1499: 1491: 1487: 1482: 1477: 1473: 1469: 1465: 1461: 1457: 1450: 1442: 1438: 1434: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1399: 1391: 1387: 1382: 1377: 1372: 1367: 1363: 1359: 1355: 1351: 1347: 1340: 1332: 1328: 1324: 1320: 1315: 1310: 1306: 1302: 1294: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1251: 1243: 1239: 1235: 1231: 1227: 1226:10.1038/26912 1223: 1219: 1215: 1211: 1207: 1200: 1192: 1188: 1183: 1178: 1174: 1170: 1165: 1160: 1156: 1152: 1148: 1141: 1133: 1129: 1125: 1121: 1117: 1113: 1108: 1103: 1099: 1095: 1088: 1080: 1076: 1071: 1066: 1061: 1056: 1052: 1048: 1044: 1040: 1036: 1029: 1027: 1018: 1014: 1010: 1006: 1002: 998: 991: 983: 977: 973: 966: 952:on 2015-04-30 951: 947: 943: 936: 928: 924: 919: 914: 909: 904: 900: 896: 892: 888: 884: 877: 869: 865: 860: 855: 851: 847: 843: 839: 835: 828: 820: 816: 811: 806: 802: 798: 794: 790: 789: 784: 777: 773: 764: 761: 758: 755: 753: 750: 748: 745: 744: 740: 734: 729: 722: 720: 716: 706: 703: 699: 695: 691: 687: 682: 680: 676: 672: 668: 663: 661: 657: 653: 649: 643: 637: 627: 625: 620: 615: 613: 609: 605: 601: 597: 593: 589: 581: 577: 572: 567: 557: 555: 551: 550:computational 547: 543: 539: 534: 532: 527: 521: 513: 508: 499: 497: 493: 489: 484: 480: 475: 473: 467: 457: 455: 451: 447: 443: 434: 429: 424: 414: 412: 408: 404: 400: 396: 391: 389: 388: 383: 379: 375: 371: 367: 363: 359: 355: 351: 348: 347:complementary 342: 332: 330: 326: 322: 318: 314: 309: 307: 303: 298: 294: 290: 286: 282: 281:messenger RNA 278: 274: 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 227: 226:complementary 223: 219: 213: 203: 199: 195: 186: 175: 156: 154: 153:DNA computing 150: 146: 141: 139: 136:group in the 135: 131: 127: 123: 119: 115: 111: 107: 103: 94: 90: 86: 82: 78: 74: 70: 65: 61: 57: 53: 49: 45: 19: 1765:Nucleic acid 1698: 1686:Nucleic acid 1556: 1547: 1515:(21): e142. 1512: 1508: 1498: 1466:(1): 12–23. 1463: 1459: 1449: 1408: 1404: 1398: 1353: 1349: 1339: 1304: 1301:Biochemistry 1300: 1293: 1260: 1256: 1250: 1209: 1205: 1199: 1154: 1150: 1140: 1097: 1093: 1087: 1042: 1038: 1000: 996: 990: 971: 965: 954:. Retrieved 950:the original 945: 935: 890: 886: 876: 841: 837: 827: 792: 786: 776: 712: 702:RNA splicing 686:RNA splicing 683: 664: 645: 616: 600:base pairing 592:intercalated 585: 546:experimental 535: 531:transfer RNA 523: 476: 469: 460:Double helix 438: 392: 385: 381: 377: 373: 369: 365: 361: 354:double helix 344: 310: 289:transfer RNA 224:on opposite 215: 197: 193: 164:Base pairing 142: 110:nucleic acid 101: 99: 43: 1157:(6): e213. 1003:: 293–321. 763:RNA CoSSMos 656:pseudoknots 648:nucleotides 560:Pseudoknots 446:pseudoknots 321:pyrimidines 313:nucleobases 311:The larger 293:translation 222:nucleotides 126:base paired 106:basepairing 56:VS ribozyme 52:DNA helices 1811:Biophysics 1800:Categories 1760:Proteasome 1719:Prediction 1709:Quaternary 1666:Prediction 1656:Quaternary 1094:J Mol Biol 956:2008-10-02 769:References 696:and other 619:telomerase 580:telomerase 576:pseudoknot 566:Pseudoknot 479:nucleotide 450:stem-loops 442:tetraloops 350:base pairs 302:GC-content 285:anticodons 64:nucleosome 60:telomerase 1699:Secondary 1646:Secondary 1433:0036-8075 1309:CiteSeerX 1277:0066-4154 1173:1545-7885 1151:PLOS Biol 694:zebrafish 679:microRNAs 588:stem-loop 526:stem-loop 520:Stem-loop 512:stem-loop 483:base pair 407:Helicases 399:helicases 212:Base pair 1738:See also 1704:Tertiary 1651:Tertiary 1539:26184874 1490:26566657 1390:15123812 1191:15941360 1079:15849264 868:16449200 819:14990744 725:See also 698:teleosts 306:stacking 253:cytosine 247:(T) and 134:hydroxyl 1745:Protein 1694:Primary 1641:Primary 1633:Protein 1578:Abalone 1530:4666379 1481:4691745 1441:2468181 1413:Bibcode 1405:Science 1358:Bibcode 1331:9778347 1285:7574482 1242:4359811 1234:9783582 1214:Bibcode 1182:1149493 1132:2228845 1124:9925784 1070:1149427 1047:Bibcode 1017:6236744 927:3459152 895:Bibcode 859:1360284 757:DiProDB 604:predict 598:. The 574:An RNA 510:An RNA 358:enzymes 317:purines 257:thymine 249:guanine 245:thymine 241:adenine 140:sugar. 104:is the 1724:Design 1671:Design 1537:  1527:  1488:  1478:  1439:  1431:  1388:  1381:409911 1378:  1329:  1311:  1283:  1275:  1240:  1232:  1206:Nature 1189:  1179:  1171:  1130:  1122:  1077:  1067:  1015:  978:  925:  918:323600 915:  866:  856:  817:  810:390280 807:  675:genome 494:, and 448:, and 277:codons 261:uracil 220:, two 198:bottom 138:ribose 1238:S2CID 1128:S2CID 1102:arXiv 690:U2AF2 496:Z-DNA 492:B-DNA 488:A-DNA 387:TATAA 1535:PMID 1486:PMID 1437:PMID 1429:ISSN 1386:PMID 1350:PNAS 1327:PMID 1281:PMID 1273:ISSN 1230:PMID 1187:PMID 1169:ISSN 1120:PMID 1075:PMID 1013:PMID 976:ISBN 923:PMID 887:PNAS 864:PMID 815:PMID 700:the 548:and 380:and 372:and 364:and 267:and 151:and 122:RNAs 120:and 118:DNAs 93:1EQZ 89:1YMO 85:4R4V 81:4OCB 77:1BNA 73:ADNA 62:and 58:and 1821:RNA 1806:DNA 1775:RNA 1770:DNA 1525:PMC 1517:doi 1476:PMC 1468:doi 1421:doi 1409:244 1376:PMC 1366:doi 1354:101 1319:doi 1265:doi 1222:doi 1210:395 1177:PMC 1159:doi 1112:doi 1098:285 1065:PMC 1055:doi 1043:102 1005:doi 913:PMC 903:doi 854:PMC 846:doi 805:PMC 797:doi 556:). 395:PCR 382:T G 378:T A 329:RNA 287:on 279:on 233:RNA 231:or 229:DNA 216:In 194:Top 69:PDB 66:. ( 46:of 1802:: 1555:. 1533:. 1523:. 1513:43 1511:. 1507:. 1484:. 1474:. 1464:26 1462:. 1458:. 1435:. 1427:. 1419:. 1407:. 1384:. 1374:. 1364:. 1352:. 1348:. 1325:. 1317:. 1305:37 1303:. 1279:. 1271:. 1261:64 1259:. 1236:. 1228:. 1220:. 1208:. 1185:. 1175:. 1167:. 1153:. 1149:. 1126:. 1118:. 1110:. 1096:. 1073:. 1063:. 1053:. 1041:. 1037:. 1025:^ 1011:. 1001:53 999:. 944:. 921:. 911:. 901:. 891:83 889:. 885:. 862:. 852:. 842:34 840:. 836:. 813:. 803:. 793:32 791:. 785:. 626:. 490:, 452:. 444:, 413:. 331:. 96:​) 91:, 87:, 83:, 79:, 75:, 71:: 1617:e 1610:t 1603:v 1559:. 1541:. 1519:: 1492:. 1470:: 1443:. 1423:: 1415:: 1392:. 1368:: 1360:: 1333:. 1321:: 1287:. 1267:: 1244:. 1224:: 1216:: 1193:. 1161:: 1155:3 1134:. 1114:: 1104:: 1081:. 1057:: 1049:: 1019:. 1007:: 984:. 959:. 929:. 905:: 897:: 870:. 848:: 821:. 799:: 582:. 374:G 370:C 366:A 362:T 204:. 20:.

Index

Protein secondary structure
nucleic acid structure
DNA helices
VS ribozyme
telomerase
nucleosome
PDB
ADNA
1BNA
4OCB
4R4V
1YMO
1EQZ
basepairing
nucleic acid
secondary structures
DNAs
RNAs
base paired
hydrogen bonds
hydroxyl
ribose
nucleic acid design
DNA nanotechnology
DNA computing


hydrogen bonds
Base pair
molecular biology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑