Knowledge

Numerical cognition

Source đź“ť

498:
stimuli were presented with 20 deviant numerosities of a 2.0 ratio both larger and smaller. For example, out of the 232 trials, 16 dots were presented in varying size and distance but 10 of those trials had 8 dots, and 10 of those trials had 32 dots, making up the 20 deviant stimuli. The same applied to the blocks with 32 as the base numerosity. To ensure the adults and children were attending to the stimuli, they put 3 fixation points throughout the trial where the participant had to move a joystick to move forward. Their findings indicated that the adults in the experiment had significant activation of the IPS when viewing the deviant number stimuli, aligning with what was previously found in the aforementioned paragraph. In the 4 year olds, they found significant activation of the IPS to the deviant number stimuli, resembling the activation found in adults. There were some differences in the activations, with adults displaying more robust bilateral activation, where the 4 year olds primarily showed activation in their right IPS and activated 112 less voxels than the adults. This suggests that at age 4, children have an established mechanism of neurons in the IPS tuned for processing non-symbolic numerosities. Other studies have gone deeper into this mechanism in children and discovered that children do also represent approximate numbers on a
509:
were 4vs.12, 8vs.16, and 4vs.8. The auditory stimuli consisted of tones in different frequencies with a set number of tones, with some deviant trials where the tones were shorter but more numerous or longer and less numerous to account for duration and its potential confounds. After the auditory stimuli was presented with 2 minutes of familiarization, the visual stimuli was presented with a congruent or incongruent array of colorful dots with facial features. they remained on the screen until the infant looked away. They found that infants looked longer at the stimuli that matched the auditory tones, suggesting that the system for approximating non-symbolic number, even across modalities, is present in infancy. What is important to note across these three particular human studies on nonsymbolic numerosities is that it is present in infancy and develops over the lifetime. The honing of their approximation and number sense abilities as indicated by the improving Weber fractions across time, and usage of the left IPS to provide a wider berth for processing of computations and enumerations lend support for the claims that are made for a nonsymbolic number processing mechanism in human brains.
561:
anchoring effect, the precision effect, and the ease of computation effect respectively. The left-digit effect refers to the observation that people tend to incorrectly judge the difference between $ 4.00 and $ 2.99 to be larger than that between $ 4.01 and $ 3.00 because of anchoring on left-most digits. The precision effect reflects the influence of the representativeness of digit patterns on magnitude judgments. Larger magnitudes are usually rounded and therefore have many zeros, whereas smaller magnitudes are usually expressed as precise numbers; so relying on the representativeness of digit patterns can make people incorrectly judge a price of $ 391,534 to be more attractive than a price of $ 390,000. The ease of computation effect shows that magnitude judgments are based not only on the output of a mental computation, but also on its experienced ease or difficulty. Usually it is easier to compare two dissimilar magnitudes than two similar magnitudes; overuse of this heuristic can make people incorrectly judge the difference to be larger for pairs with easier computations, e.g. $ 5.00 minus $ 4.00, than for pairs with difficult computations, e.g. $ 4.97 minus $ 3.96.
460:
the display is taken away. Then, after a delay period of several seconds, a second display is presented. If the number on the second display match that from the first, the monkey has to release a lever. If it is different, the monkey has to hold the lever. Neural activity recorded during the delay period showed that neurons in the intraparietal sulcus and the frontal cortex had a "preferred numerosity", exactly as predicted by behavioral studies. That is, a certain number might fire strongly for four, but less strongly for three or five, and even less for two or six. Thus, we say that these neurons were "tuned" for specific quantities. Note that these neuronal responses followed
452:. Additionally, the inferotemporal cortex is implicated in processing the numerical shapes and symbols, necessary for calculations with Arabic digits. More current research has highlighted the networks involved with multiplication and subtraction tasks. Multiplication is often learned through rote memorization and verbal repetitions, and neuroimaging studies have shown that multiplication uses a left lateralized network of the inferior frontal cortex and the superior-middle temporal gyri in addition to the IPL and IPS. Subtraction is taught more with quantity manipulation and strategy use, more reliant upon the right IPS and the posterior parietal lobule. 468:
However, in the realm of number, they share many similarities. As identified in monkeys, neurons selectively tuned to number were identified in the bilateral intraparietal sulci and prefrontal cortex in humans. Piazza and colleagues investigated this using fMRI, presenting participants with sets of dots where they either had to make same-different judgments or larger-smaller judgments. The sets of dots consisted of base numbers 16 and 32 dots with ratios in 1.25, 1.5, and 2. Deviant numbers were included in some trials in larger or smaller amounts than the base numbers. Participants displayed similar activation patterns as Neider found in the monkeys. The
436:, Stanislas Dehaene and colleagues have suggested that these two parietal structures play complementary roles. The IPS is thought to house the circuitry that is fundamentally involved in numerical estimation, number comparison, and on-line calculation, or quantity processing (often tested with subtraction) while the IPL is thought to be involved in rote memorization, such as multiplication. Thus, a patient with a lesion to the IPL may be able to subtract, but not multiply, and vice versa for a patient with a lesion to the IPS. In addition to these parietal regions, regions of the 1003: 1015: 692: 521:. Such individuals report that numbers are mentally represented with a particular spatial layout; others experience numbers as perceivable objects that can be visually manipulated to facilitate calculation. Behavioral studies further reinforce the connection between numerical and spatial cognition. For instance, participants respond quicker to larger numbers if they are responding on the right side of space, and quicker to smaller numbers when on the left—the so-called "Spatial-Numerical Association of Response Codes" or 33: 369:
another. If, when the screen was lowered, infants were presented with only one Mickey (the "impossible event") they looked longer than if they were shown two Mickeys (the "possible" event). Further studies by Karen Wynn and Koleen McCrink found that although infants' ability to compute exact outcomes only holds over small numbers, infants can compute approximate outcomes of larger addition and subtraction events (e.g., "5+5" and "10-5" events).
476:, also implicated in number, communicate in approximating number and it was found in both species that the parietal neurons of the IPS had short firing latencies, whereas the frontal neurons had longer firing latencies. This supports the notion that number is first processed in the IPS and, if needed, is then transferred to the associated frontal neurons in the 529:. Moreover, neuroimaging studies reveal that the association between number and space also shows up in brain activity. Regions of the parietal cortex, for instance, show shared activation for both spatial and numerical processing. These various lines of research suggest a strong, but flexible, connection between numerical and spatial cognition. 459:
in monkeys has also found neurons in the frontal cortex and in the intraparietal sulcus that respond to numbers. Andreas Nieder trained monkeys to perform a "delayed match-to-sample" task. For example, a monkey might be presented with a field of four dots, and is required to keep that in memory after
352:
Developmental psychology studies have shown that human infants, like non-human animals, have an approximate sense of number. For example, in one study, infants were repeatedly presented with arrays of (in one block) 16 dots. Careful controls were in place to eliminate information from "non-numerical"
480:
for further numerations and applications. Humans displayed Gaussian curves in the tuning curves of approximate magnitude. This aligned with monkeys, displaying a similarly structured mechanism in both species with classic Gaussian curves relative to the increasingly deviant numbers with 16 and 32 as
508:
investigated abstract number representations in infants using a different paradigm than the previous researchers because of the nature and developmental stage of the infants. For infants, they examined abstract number with both auditory and visual stimuli with a looking-time paradigm. The sets used
492:
With an established mechanism for approximating non-symbolic number in both humans and primates, a necessary further investigation is needed to determine if this mechanism is innate and present in children, which would suggest an inborn ability to process numerical stimuli much like humans are born
467:
It is important to note that while primates have remarkably similar brains to humans, there are differences in function, ability, and sophistication. They make for good preliminary test subjects, but do not show small differences that are the result of different evolutionary tracks and environment.
343:
Similarly, researchers have set up hidden speakers in the African savannah to test natural (untrained) behavior in lions. These speakers can play a number of lion calls, from 1 to 5. If a single lioness hears, for example, three calls from unknown lions, she will leave, while if she is with four of
560:
reviewed several studies showing that the three heuristics that manifest in many everyday judgments and decisions – anchoring, representativeness, and availability – also influence numerical cognition. They identify the manifestations of these heuristics in numerical cognition as: the left-digit
497:
set out to investigate this in 4 year old healthy, normally developing children in parallel with adults. A similar task to Piazza's was used in this experiment, without the judgment tasks. Dot arrays of varying size and number were used, with 16 and 32 as the base numerosities. in each block, 232
368:
showed that infants as young as five months are able to do very simple additions (e.g., 1 + 1 = 2) and subtractions (3 - 1 = 2). To demonstrate this, Wynn used a "violation of expectation" paradigm, in which infants were shown (for example) one Mickey Mouse doll going behind a screen, followed by
585:
in the field. He concluded that they have no need for counting in their everyday lives. Their hunters keep track of individual arrows with the same mental faculties that they use to recognize their family members. There are no known hunter-gatherer cultures that have a counting system in their
360:
Because of the numerous controls that were in place to rule out non-numerical factors, the experimenters infer that six-month-old infants are sensitive to differences between 8 and 16. Subsequent experiments, using similar methodologies showed that 6-month-old infants can discriminate numbers
331:
or Normal distribution with peak around 8 or 16 bar presses. When rats are more hungry, their bar-pressing behavior is more rapid, so by showing that the peak number of bar presses is the same for either well-fed or hungry rats, it is possible to disentangle time and number of bar presses. In
525:. This effect varies across culture and context, however, and some research has even begun to question whether the SNARC reflects an inherent number-space association, instead invoking strategic problem solving or a more general cognitive mechanism like 344:
her sisters, they will go and explore. This suggests that not only can lions tell when they are "outnumbered" but that they can do this on the basis of signals from different sensory modalities, suggesting that numerosity is a multisensory concept.
361:
differing by a 2:1 ratio (8 vs. 16 or 16 vs. 32) but not by a 3:2 ratio (8 vs. 12 or 16 vs. 24). However, 10-month-old infants succeed both at the 2:1 and the 3:2 ratio, suggesting an increased sensitivity to numerosity differences with age.
517:
There is evidence that numerical cognition is intimately related to other aspects of thought – particularly spatial cognition. One line of evidence comes from studies performed on number-form
485:, with accuracy decreasing as the ratio between numbers became smaller. This supports the findings made by Neider in macaque monkeys and shows definitive evidence for an 577:
who only have number words up to five. PirahĂŁ adults are unable to mark an exact number of tallies for a pile of nuts containing fewer than ten items. Anthropologist
464:, as has been demonstrated for other sensory dimensions, and consistent with the ratio dependence observed for non-human animals' and infants' numerical behavior. 353:
parameters such as total surface area, luminance, circumference, and so on. After the infants had been presented with many displays containing 16 items, they
586:
language. The mental and lingual capabilities for numeracy are tied to the development of agriculture and with it large numbers of indistinguishable items.
357:, or stopped looking as long at the display. Infants were then presented with a display containing 8 items, and they looked longer at the novel display. 1544:
Fischer, M. H.; Mills, R. A.; Shaki, S. (April 2010). "How to cook a SNARC: Number placement in text rapidly changes spatial–numerical associations".
392:, where language-based natural numbers can be exact. Without language, only numbers 1 to 4 are believed to have an exact representation, through the 522: 380:
suggested that a child innately has the concept of natural number, and only has to map this onto the words used in her language. Carey (
569:
The numeracy of indigenous peoples is studied to identify universal aspects of numerical cognition in humans. Notable examples include the
327:"). For example, when a rat is trained to press a bar 8 or 16 times to receive a food reward, the number of bar presses will approximate a 2055:
Núñez, R.; Doan, D.; Nikoulina, A. (August 2011). "Squeezing, striking, and vocalizing: Is number representation fundamentally spatial?".
396:. One promising approach is to see if cultures that lack number words can deal with natural numbers. The results so far are mixed (e.g., 1875:
Nieder, A.; Freedman, D. J.; Miller, E. K. (2002). "Representation of the quantity of visual items in the primate prefrontal cortex".
295:
What metaphorical capacities and processes allow us to extend our numerical understanding into complex domains such as the concept of
2370:
Thomas, Manoj; Morwitz, Vicki (2009). "Heuristics in Numerical Cognition: Implications for Pricing". In Rao, Vithala R. (ed.).
598:
is an open-access, free-to-publish, online-only Journal outlet specifically for research in the domain of numerical cognition.
2462: 1472: 319:
A variety of research has demonstrated that non-human animals, including rats, lions and various species of primates have an
1646:
Hubbard, E. M.; Piazza, M.; Pinel, P.; Dehaene, S. (June 2005). "Interactions between number and space in parietal cortex".
1164:; Reeve, R. (2008). "Verbal Counting and Spatial Strategies in Numerical Tasks : Evidence From Indigenous Australia". 372:
There is debate about how much these infant systems actually contain in terms of number concepts, harkening to the classic
2242:; Riviere, D.; Le Bihan, D. (2001). "Modulation of parietal activation by semantic distance in a number comparison task". 217: 1805:
McComb, K.; Packer, C.; Pusey, A. (1994). "Roaring and numerical assessment in contests between groups of female lions,
643: â€“ ability to count objects in order and to understand the greater than and less than relationships between numbers 2354: 2501: 2379: 1636: 652: â€“ non-symbolic cognitive system that supports the representation of numerical values from zero to three or four 556:
Several consumer psychologists have also studied the heuristics that people use in numerical cognition. For example,
440:
are also active in calculation tasks. These activations overlap with regions involved in language processing such as
1482:
Dehaene, S.; Bossini, S.; Giraux, P. (September 1993). "The mental representation of parity and number magnitude".
2295:"Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments" 1124:
Berteletti, I.; Lucangeli, D.; Piazza, M.; Dehaene, S.; Zorzi, M. (2010). "Numerical estimation in preschoolers".
245:. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in 2491: 664: 2486: 2496: 1922:"Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex" 649: 393: 333: 191: 1746:"Effects of Non-Symbolic Approximate Number Practice on Symbolic Numerical Abilities in Pakistani Children" 640: 634: 181: 2397:
Walsh, V. (November 2003). "A theory of magnitude: common cortical metrics of time, space and quantity".
545: 2092:
Piazza, M.; Eger, E. (2016). "Neural foundations and functional specificity of number representations".
2340: 616: 486: 389: 320: 262: 186: 54: 2030: 676: â€“ Assessing the quantity of objects in a visual scene without individually counting each item 425: 250: 2256: 541: 324: 277: 210: 2251: 2025: 533: 428:(IPL) are activated when subjects are asked to perform calculation tasks. Based on both human 373: 328: 258: 2446: 2202: 2105: 1976: 1884: 1757: 1696: 1594: 1209: 1051: 469: 421: 246: 24: 8: 526: 304: 64: 2206: 1980: 1888: 1761: 1700: 1598: 1250: 1213: 1198:"Numerical thought with and without words: Evidence from indigenous Australian children" 1055: 2481: 2422: 2324: 2277: 2226: 2174: 2127: 2080: 2043: 1951: 1908: 1863: 1826: 1788: 1745: 1727: 1684: 1671: 1612: 1569: 1532: 1461: 1444: 1402: 1377: 1364: 1324: 1289: 1285: 1232: 1197: 1181: 1149: 1074: 1039: 203: 94: 2311: 2294: 1999: 1964: 1938: 1921: 2506: 2458: 2451: 2414: 2385: 2375: 2350: 2316: 2290: 2269: 2239: 2218: 2166: 2140: 2119: 2072: 2004: 1943: 1900: 1855: 1793: 1775: 1744:
Khanum, S.; Hanif, R.; Spelke, E. S.; Berteletti, I.; Hyde, D. C. (20 October 2016).
1732: 1714: 1663: 1632: 1561: 1524: 1504: 1468: 1456: 1436: 1432: 1407: 1342: 1329: 1311: 1273: 1237: 1193: 1161: 1141: 1112: 1079: 499: 477: 473: 461: 234: 49: 2281: 2230: 2131: 2084: 2068: 1912: 1867: 1838:
Nieder, A. (2005). "Counting on neurons: The neurobiology of numerical competence".
1830: 1573: 1536: 1448: 1368: 2426: 2406: 2328: 2306: 2261: 2210: 2178: 2156: 2109: 2101: 2064: 2047: 2035: 1994: 1984: 1955: 1933: 1892: 1847: 1818: 1783: 1765: 1722: 1704: 1675: 1655: 1616: 1602: 1553: 1516: 1491: 1428: 1397: 1389: 1354: 1319: 1301: 1265: 1227: 1217: 1185: 1173: 1153: 1133: 1104: 1069: 1059: 658: 578: 574: 104: 89: 570: 2161: 2144: 1770: 1306: 1064: 456: 441: 433: 163: 158: 59: 2190: 1557: 1495: 1269: 2410: 1520: 1359: 1108: 1092: 482: 445: 292:
What are the neural bases of these abilities, both in humans and in non-humans?
1177: 32: 2475: 2442: 2389: 2346: 2336: 2039: 2016:
Núñez, R. (2009). "Numbers and Arithmetic: Neither Hardwired Nor Out There".
1779: 1718: 1624: 1315: 417: 300: 289:
How do these capacities underlie our ability to perform complex calculations?
113: 2214: 2145:"Tuning curves for approximate numerosity in the human intraparietal sulcus" 1989: 1896: 1709: 1393: 1222: 883: 283:
How do infants acquire an understanding of numbers (and how much is inborn)?
2418: 2320: 2273: 2265: 2222: 2170: 2123: 2076: 2008: 1947: 1904: 1859: 1822: 1797: 1736: 1667: 1565: 1528: 1411: 1333: 1290:"Functional Imaging of Numerical Processing in Adults and 4-y-Old Children" 1277: 1241: 1145: 1116: 1083: 1040:"Evidence for Two Numerical Systems That Are Similar in Humans and Guppies" 518: 437: 429: 388:) disagreed, saying that these systems can only encode large numbers in an 254: 127: 1965:"A parieto-frontal network for visual numerical information in the monkey" 1440: 619: â€“ Innate ability to detect differences in magnitude without counting 2186: 679: 537: 512: 354: 242: 2114: 1192: 405: 1284: 895: 673: 628: 494: 365: 40: 757: 747: 745: 743: 1607: 1137: 907: 817: 769: 449: 286:
How do humans associate linguistic symbols with numerical quantities?
266: 143: 73: 1851: 1659: 1582: 340:
which successfully discriminated between 1 and 4 other individuals.
740: 622: 610: 582: 296: 120: 99: 1288:; Brannon, E. M.; Carter, E. J.; Pelphrey, K. A. (11 April 2006). 261:. This discipline, although it may interact with questions in the 728: 416:
Human neuroimaging studies have demonstrated that regions of the
148: 134: 2191:"Exact an Approximate Arithmetic in an Amazonian Indigene Group" 1682: 1123: 931: 889: 841: 505: 1683:
Izard, V.; Sann, C.; Spelke, E. S.; Streri, A. (23 June 2009).
1419:
Dehaene, Stanislas (1992). "Varieties of numerical abilities".
238: 153: 80: 955: 411: 272:
Topics included in the domain of numerical cognition include:
237:
that studies the cognitive, developmental and neural bases of
943: 337: 2342:
The Stuff of Thought: Language as a Window Into Human Nature
716: 2237: 1743: 901: 873: 871: 858: 856: 763: 2288: 775: 599: 1645: 1090: 913: 823: 2138: 868: 853: 751: 1093:"Strategies in subtraction problem solving in children" 805: 669:
Pages displaying short descriptions of redirect targets
544:, missing in the usual decimal system, is expressed by 1502: 734: 625: â€“ Finding the number of elements of a finite set 513:
Relations between number and other cognitive processes
2185: 793: 502:, aligning with the claims made by Piazza in adults. 397: 1874: 1481: 937: 847: 654:
Pages displaying wikidata descriptions as a fallback
645:
Pages displaying wikidata descriptions as a fallback
551: 991: 682: â€“ One of the four basic arithmetic operations 2450: 2054: 1463:The number sense: How the mind creates mathematics 1460: 1091:Barrouillet, P.; Mignon, M.; Thevenot, C. (2008). 961: 919: 829: 781: 704: 1804: 1543: 979: 967: 949: 722: 2473: 2139:Piazza, M.; Izard, V.; Pinel, P.; Le Bihan, D.; 1160: 401: 1969:Proceedings of the National Academy of Sciences 1689:Proceedings of the National Academy of Sciences 1623: 1507:; Spelke, E. (2004). "Core systems of number". 1202:Proceedings of the National Academy of Sciences 573:who have no words for specific numbers and the 406:Butterworth, Reeve, Reynolds & Lloyd (2008) 377: 495:Cantlon, Brannon, Carter & Pelphrey (2006) 2369: 1196:; Reeve, R.; Reynolds, F.; Lloyd, D. (2008). 1009: 557: 211: 16:Study of numerical and mathematical abilities 2189:; Lemer, C.; Izard, V.; Dehaene, S. (2004). 1962: 1919: 1631:. Cambridge Mass: Harvard University Press. 877: 862: 2441: 1685:"Newborn infants perceive abstract numbers" 1343:"Bootstrapping and the origins of Concepts" 1258:Journal of Experimental Psychology: General 1248: 811: 631: â€“ Process of finding an approximation 564: 412:Neuroimaging and neurophysiological studies 336:has been shown, for example in the case of 2091: 799: 481:well as habituation. The results followed 218: 204: 2372:Handbook of Pricing Research in Marketing 2310: 2255: 2160: 2113: 2029: 1998: 1988: 1937: 1787: 1769: 1726: 1708: 1606: 1401: 1358: 1323: 1305: 1231: 1221: 1073: 1063: 824:Barrouillet, Mignon & Thevenot (2008) 637: â€“ Phenomenon in numerical cognition 1097:Journal of Experimental Child Psychology 347: 1455: 1418: 1037: 997: 787: 710: 698: 667: â€“ Type of epistemological problem 506:Izard, Sann, Spelke & Streri (2009) 2474: 2335: 2106:10.1016/j.neuropsychologia.2015.09.025 1837: 1580: 1251:"Cognitive Arithmetic Across Cultures" 1021: 925: 835: 735:Feigenson, Dehaene & Spelke (2004) 314: 2396: 2289:Pinel, P.; Piazza, M.; Le Bihan, D.; 2015: 1467:. New York: Oxford University Press. 1378:"Where our number concepts come from" 1375: 1340: 985: 973: 385: 381: 938:Dehaene, Bossini & Giraux (1993) 848:Nieder, Freedman & Miller (2002) 487:approximate number logarithmic scale 278:non-human animals process numerosity 1629:The Child's Understanding of Number 581:spent several decades studying the 13: 2435: 1963:Nieder, A.; Miller, E. K. (2004). 1920:Nieder, A.; Miller, E. K. (2003). 1484:Journal of Experimental Psychology 1249:Campbell, J.I.D.; Xue, Q. (2001). 962:Núñez, Doan & Nikoulina (2011) 589: 14: 2518: 1581:Galton, Francis (25 March 1880). 950:Fischer, Mills & Shaki (2010) 723:McComb, Packer & Pusey (1994) 552:Heuristics in numerical cognition 310:Heuristics in numerical cognition 1627:; Gallistel, Charles R. (1978). 31: 2374:. Edward Elgar. pp. 132–. 2069:10.1016/j.cognition.2011.05.001 665:The problem of the speckled hen 661: â€“ Form of plant cognition 332:addition, in a few species the 596:Journal of Numerical Cognition 402:Butterworth & Reeve (2008) 364:In another series of studies, 265:, is primarily concerned with 1: 2312:10.1016/s0896-6273(04)00107-2 1939:10.1016/s0896-6273(02)01144-3 1030: 650:Parallel individuation system 394:parallel individuation system 378:Gelman & Gallistel (1978) 334:parallel individuation system 192:Parallel individuation system 2453:Where mathematics comes from 2399:Trends in Cognitive Sciences 2162:10.1016/j.neuron.2004.10.014 1771:10.1371/journal.pone.0164436 1509:Trends in Cognitive Sciences 1433:10.1016/0010-0277(92)90049-N 1307:10.1371/journal.pbio.0040125 1065:10.1371/journal.pone.0031923 641:Ordinal numerical competence 635:Numerosity adaptation effect 613: â€“ Arithmetic operation 182:Numerosity adaptation effect 7: 1840:Nature Reviews Neuroscience 1648:Nature Reviews Neuroscience 1558:10.1016/j.bandc.2009.10.010 1496:10.1037/0096-3445.122.3.371 1270:10.1037/0096-3445.130.2.299 1010:Thomas & Morwitz (2009) 604: 558:Thomas & Morwitz (2009) 546:signed-digit representation 493:ready to process language. 321:approximate sense of number 10: 2523: 2411:10.1016/j.tics.2003.09.002 1521:10.1016/j.tics.2004.05.002 1360:10.1162/001152604772746701 1109:10.1016/j.jecp.2007.12.001 878:Nieder & Miller (2003) 863:Nieder & Miller (2004) 532:Modification of the usual 2457:. New York: Basic Books. 1178:10.1080/09515080802284597 812:Campbell & Xue (2001) 617:Approximate number system 263:philosophy of mathematics 187:Approximate number system 2502:Developmental psychology 2040:10.1162/biot.2009.4.1.68 1166:Philosophical Psychology 1126:Developmental Psychology 890:Berteletti et al. (2010) 800:Piazza & Eger (2016) 686: 565:Ethnolinguistic variance 444:and regions involved in 426:inferior parietal lobule 251:developmental psychology 2215:10.1126/science.1102085 1990:10.1073/pnas.0402239101 1897:10.1126/science.1072493 1710:10.1073/pnas.0812142106 1394:10.5840/jphil2009106418 1223:10.1073/pnas.0806045105 2492:Cognitive neuroscience 2266:10.1006/nimg.2001.0913 1823:10.1006/anbe.1994.1052 534:decimal representation 303:or the concept of the 233:is a subdiscipline of 2487:Cognitive linguistics 1583:"Visualised Numerals" 1382:Journal of Philosophy 914:Hubbard et al. (2005) 374:nature versus nurture 348:Developmental studies 259:cognitive linguistics 2497:Cognitive psychology 1038:Agrillo, C. (2012). 902:Khanum et al. (2016) 752:Piazza et al. (2004) 470:intraparietal sulcus 422:intraparietal sulcus 247:cognitive psychology 25:Cognitive psychology 2207:2004Sci...306..499P 1981:2004PNAS..101.7457N 1889:2002Sci...297.1708N 1883:(5587): 1708–1711. 1762:2016PLoSO..1164436K 1701:2009PNAS..10610382I 1695:(25): 10382–10385. 1599:1880Natur..21..494G 1546:Brain and Cognition 1214:2008PNAS..10513179B 1208:(35): 13179–13184. 1056:2012PLoSO...731923A 776:Pinel et al. (2004) 764:Pinel et al. (2001) 527:conceptual metaphor 315:Comparative studies 231:Numerical cognition 173:Numerical cognition 65:Pattern recognition 1457:Dehaene, Stanislas 1376:Carey, S. (2009). 1341:Carey, S. (2004). 398:Pica et al. (2004) 55:Object recognition 2464:978-0-465-03770-4 2201:(5695): 499–503. 2018:Biological Theory 1975:(19): 7457–7462. 1474:978-0-19-513240-3 536:was advocated by 500:logarithmic scale 478:prefrontal cortex 474:prefrontal cortex 323:(referred to as " 235:cognitive science 228: 227: 2514: 2468: 2456: 2447:Nuñez, Rafael E. 2430: 2393: 2366: 2364: 2363: 2332: 2314: 2285: 2259: 2250:(5): 1013–1026. 2234: 2182: 2164: 2135: 2117: 2094:Neuropsychologia 2088: 2051: 2033: 2012: 2002: 1992: 1959: 1941: 1916: 1871: 1834: 1811:Animal Behaviour 1801: 1791: 1773: 1756:(10): e0164436. 1740: 1730: 1712: 1679: 1654:(1–2): 435–448. 1642: 1620: 1610: 1608:10.1038/021494e0 1593:(543): 494–495. 1577: 1540: 1499: 1478: 1466: 1452: 1415: 1405: 1372: 1362: 1337: 1327: 1309: 1281: 1255: 1245: 1235: 1225: 1189: 1157: 1138:10.1037/a0017887 1120: 1087: 1077: 1067: 1025: 1019: 1013: 1007: 1001: 995: 989: 983: 977: 971: 965: 959: 953: 947: 941: 935: 929: 923: 917: 911: 905: 899: 893: 887: 881: 875: 866: 860: 851: 845: 839: 833: 827: 821: 815: 809: 803: 797: 791: 785: 779: 773: 767: 761: 755: 749: 738: 732: 726: 720: 714: 708: 702: 696: 670: 659:Plant arithmetic 655: 646: 579:Napoleon Chagnon 575:Munduruku people 420:, including the 220: 213: 206: 60:Face recognition 35: 21: 20: 2522: 2521: 2517: 2516: 2515: 2513: 2512: 2511: 2472: 2471: 2465: 2438: 2436:Further reading 2433: 2405:(11): 483–488. 2382: 2361: 2359: 2357: 2031:10.1.1.610.6016 1852:10.1038/nrn1626 1660:10.1038/nrn1684 1639: 1503:Feigenson, L.; 1475: 1253: 1194:Butterworth, B. 1172:(21): 443–457. 1162:Butterworth, B. 1033: 1028: 1020: 1016: 1008: 1004: 996: 992: 984: 980: 972: 968: 960: 956: 948: 944: 936: 932: 924: 920: 912: 908: 900: 896: 888: 884: 876: 869: 861: 854: 846: 842: 834: 830: 822: 818: 810: 806: 798: 794: 786: 782: 774: 770: 762: 758: 750: 741: 733: 729: 721: 717: 709: 705: 697: 693: 689: 668: 653: 644: 607: 592: 590:Research outlet 567: 554: 542:complementation 540:. The sense of 515: 457:neurophysiology 434:neuropsychology 414: 390:approximate way 350: 317: 224: 164:Problem solving 159:Decision making 17: 12: 11: 5: 2520: 2510: 2509: 2504: 2499: 2494: 2489: 2484: 2470: 2469: 2463: 2443:Lakoff, George 2437: 2434: 2432: 2431: 2394: 2380: 2367: 2356:978-0143114246 2355: 2337:Pinker, Steven 2333: 2305:(6): 983–993. 2286: 2235: 2183: 2155:(3): 547–555. 2136: 2089: 2063:(2): 225–235. 2052: 2013: 1960: 1932:(1): 149–157. 1917: 1872: 1846:(3): 177–190. 1835: 1817:(2): 379–387. 1802: 1741: 1680: 1643: 1637: 1625:Gelman, Rochel 1621: 1578: 1552:(3): 333–336. 1541: 1515:(7): 307–314. 1500: 1490:(3): 371–396. 1479: 1473: 1453: 1416: 1388:(4): 220–254. 1373: 1338: 1286:Cantlon, J. F. 1282: 1264:(2): 299–315. 1246: 1190: 1158: 1132:(2): 545–551. 1121: 1103:(4): 233–251. 1088: 1034: 1032: 1029: 1027: 1026: 1014: 1002: 998:Dehaene (1992) 990: 978: 966: 954: 942: 930: 918: 906: 894: 882: 867: 852: 840: 828: 816: 804: 792: 788:Dehaene (1997) 780: 768: 756: 739: 727: 715: 711:Agrillo (2012) 703: 699:Dehaene (1997) 690: 688: 685: 684: 683: 677: 671: 662: 656: 647: 638: 632: 626: 620: 614: 606: 603: 591: 588: 566: 563: 553: 550: 514: 511: 446:working memory 424:(IPS) and the 413: 410: 349: 346: 316: 313: 312: 311: 308: 293: 290: 287: 284: 281: 226: 225: 223: 222: 215: 208: 200: 197: 196: 195: 194: 189: 184: 176: 175: 169: 168: 167: 166: 161: 156: 151: 146: 138: 137: 131: 130: 124: 123: 117: 116: 110: 109: 108: 107: 102: 97: 92: 84: 83: 77: 76: 70: 69: 68: 67: 62: 57: 52: 44: 43: 37: 36: 28: 27: 15: 9: 6: 4: 3: 2: 2519: 2508: 2505: 2503: 2500: 2498: 2495: 2493: 2490: 2488: 2485: 2483: 2480: 2479: 2477: 2466: 2460: 2455: 2454: 2448: 2444: 2440: 2439: 2428: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2395: 2391: 2387: 2383: 2381:9781847202406 2377: 2373: 2368: 2358: 2352: 2348: 2347:Penguin Books 2344: 2343: 2338: 2334: 2330: 2326: 2322: 2318: 2313: 2308: 2304: 2300: 2296: 2292: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2258: 2257:10.1.1.5.6247 2253: 2249: 2245: 2241: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2163: 2158: 2154: 2150: 2146: 2142: 2137: 2133: 2129: 2125: 2121: 2116: 2111: 2107: 2103: 2099: 2095: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2053: 2049: 2045: 2041: 2037: 2032: 2027: 2023: 2019: 2014: 2010: 2006: 2001: 1996: 1991: 1986: 1982: 1978: 1974: 1970: 1966: 1961: 1957: 1953: 1949: 1945: 1940: 1935: 1931: 1927: 1923: 1918: 1914: 1910: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1841: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1808: 1803: 1799: 1795: 1790: 1785: 1781: 1777: 1772: 1767: 1763: 1759: 1755: 1751: 1747: 1742: 1738: 1734: 1729: 1724: 1720: 1716: 1711: 1706: 1702: 1698: 1694: 1690: 1686: 1681: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1644: 1640: 1638:9780674116368 1634: 1630: 1626: 1622: 1618: 1614: 1609: 1604: 1600: 1596: 1592: 1588: 1584: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1501: 1497: 1493: 1489: 1485: 1480: 1476: 1470: 1465: 1464: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1427:(1–2): 1–42. 1426: 1422: 1417: 1413: 1409: 1404: 1399: 1395: 1391: 1387: 1383: 1379: 1374: 1370: 1366: 1361: 1356: 1352: 1348: 1344: 1339: 1335: 1331: 1326: 1321: 1317: 1313: 1308: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1252: 1247: 1243: 1239: 1234: 1229: 1224: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1089: 1085: 1081: 1076: 1071: 1066: 1061: 1057: 1053: 1050:(2). e31923. 1049: 1045: 1041: 1036: 1035: 1023: 1022:Pinker (2008) 1018: 1011: 1006: 999: 994: 987: 982: 975: 970: 963: 958: 951: 946: 939: 934: 927: 926:Galton (1880) 922: 915: 910: 903: 898: 891: 886: 879: 874: 872: 864: 859: 857: 849: 844: 837: 836:Nieder (2005) 832: 825: 820: 813: 808: 801: 796: 789: 784: 777: 772: 765: 760: 753: 748: 746: 744: 736: 731: 724: 719: 712: 707: 700: 695: 691: 681: 678: 675: 672: 666: 663: 660: 657: 651: 648: 642: 639: 636: 633: 630: 627: 624: 621: 618: 615: 612: 609: 608: 602: 601: 597: 587: 584: 580: 576: 572: 571:PirahĂŁ people 562: 559: 549: 547: 543: 539: 535: 530: 528: 524: 520: 510: 507: 503: 501: 496: 490: 488: 484: 479: 475: 471: 465: 463: 458: 453: 451: 447: 443: 439: 435: 431: 427: 423: 419: 418:parietal lobe 409: 407: 403: 399: 395: 391: 387: 383: 379: 375: 370: 367: 362: 358: 356: 345: 341: 339: 335: 330: 326: 322: 309: 306: 302: 301:infinitesimal 298: 294: 291: 288: 285: 282: 279: 275: 274: 273: 270: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 221: 216: 214: 209: 207: 202: 201: 199: 198: 193: 190: 188: 185: 183: 180: 179: 178: 177: 174: 171: 170: 165: 162: 160: 157: 155: 152: 150: 147: 145: 142: 141: 140: 139: 136: 133: 132: 129: 126: 125: 122: 119: 118: 115: 114:Metacognition 112: 111: 106: 103: 101: 98: 96: 93: 91: 88: 87: 86: 85: 82: 79: 78: 75: 72: 71: 66: 63: 61: 58: 56: 53: 51: 48: 47: 46: 45: 42: 39: 38: 34: 30: 29: 26: 23: 22: 19: 2452: 2402: 2398: 2371: 2360:. Retrieved 2341: 2302: 2298: 2247: 2243: 2198: 2194: 2152: 2148: 2115:11572/114302 2097: 2093: 2060: 2056: 2024:(1): 68–83. 2021: 2017: 1972: 1968: 1929: 1925: 1880: 1876: 1843: 1839: 1814: 1810: 1807:Panthera leo 1806: 1753: 1749: 1692: 1688: 1651: 1647: 1628: 1590: 1586: 1549: 1545: 1512: 1508: 1487: 1483: 1462: 1424: 1420: 1385: 1381: 1350: 1346: 1297: 1294:PLOS Biology 1293: 1261: 1257: 1205: 1201: 1169: 1165: 1129: 1125: 1100: 1096: 1047: 1043: 1017: 1005: 993: 986:Núñez (2009) 981: 974:Walsh (2003) 969: 957: 945: 933: 921: 909: 897: 885: 843: 831: 819: 807: 795: 783: 771: 759: 730: 718: 706: 694: 600:Journal link 595: 593: 568: 555: 531: 523:SNARC effect 519:synaesthetes 516: 504: 491: 466: 455:Single-unit 454: 442:Broca's area 438:frontal lobe 430:neuroimaging 415: 371: 363: 359: 351: 342: 318: 307:in calculus? 271: 255:neuroscience 230: 229: 172: 128:Metalanguage 18: 2291:Dehaene, S. 2240:Dehaene, S. 2238:Pinel, P.; 2141:Dehaene, S. 2100:: 257–273. 1505:Dehaene, S. 1300:(5). e125. 1024:, p. . 1012:, p. . 701:, p. . 680:Subtraction 538:John Colson 489:in humans. 483:Weber's Law 462:Weber's law 269:questions. 243:mathematics 2476:Categories 2362:2012-11-08 2244:NeuroImage 1031:References 674:Subitizing 629:Estimation 366:Karen Wynn 355:habituated 325:numerosity 41:Perception 2482:Cognition 2390:807401627 2252:CiteSeerX 2057:Cognition 2026:CiteSeerX 1780:1932-6203 1719:0027-8424 1421:Cognition 1353:: 59–68. 1316:1545-7885 450:attention 267:empirical 154:Reasoning 144:Cognition 105:Long-term 95:Emotional 74:Attention 2507:Quantity 2449:(2000). 2419:14585444 2339:(2008). 2321:15046729 2293:(2004). 2282:17633857 2274:11697933 2231:10653745 2223:15486303 2187:Pica, P. 2171:15504333 2143:(2004). 2132:22957569 2124:26403660 2085:16362508 2077:21640338 2009:15123797 1948:12526780 1913:20871267 1905:12215649 1868:14578049 1860:15711599 1831:53183852 1798:27764117 1750:PLOS ONE 1737:19520833 1668:15928716 1574:19626981 1566:19917517 1537:17313189 1529:15242690 1459:(1997). 1449:24382907 1412:23136450 1369:54493789 1347:Daedalus 1334:16594732 1278:11409105 1242:18757729 1146:20210512 1117:18241880 1084:22355405 1044:PLOS ONE 623:Counting 611:Addition 605:See also 583:Yanomami 472:and the 376:debate. 329:Gaussian 297:infinity 135:Thinking 121:Language 100:Learning 2427:1761795 2329:9372570 2203:Bibcode 2195:Science 2179:6288232 2048:1707771 1977:Bibcode 1956:5704850 1885:Bibcode 1877:Science 1789:5072670 1758:Bibcode 1728:2700913 1697:Bibcode 1676:1465072 1617:4074444 1595:Bibcode 1441:1511583 1403:3489488 1325:1431577 1233:2527348 1210:Bibcode 1186:2662436 1154:8496112 1075:3280231 1052:Bibcode 338:guppies 276:How do 239:numbers 149:Concept 2461:  2425:  2417:  2388:  2378:  2353:  2327:  2319:  2299:Neuron 2280:  2272:  2254:  2229:  2221:  2177:  2169:  2149:Neuron 2130:  2122:  2083:  2075:  2046:  2028:  2007:  2000:409940 1997:  1954:  1946:  1926:Neuron 1911:  1903:  1866:  1858:  1829:  1796:  1786:  1778:  1735:  1725:  1717:  1674:  1666:  1635:  1615:  1587:Nature 1572:  1564:  1535:  1527:  1471:  1447:  1439:  1410:  1400:  1367:  1332:  1322:  1314:  1276:  1240:  1230:  1184:  1152:  1144:  1115:  1082:  1072:  299:, the 81:Memory 50:Visual 2423:S2CID 2325:S2CID 2278:S2CID 2227:S2CID 2175:S2CID 2128:S2CID 2081:S2CID 2044:S2CID 1952:S2CID 1909:S2CID 1864:S2CID 1827:S2CID 1672:S2CID 1613:S2CID 1570:S2CID 1533:S2CID 1445:S2CID 1365:S2CID 1254:(PDF) 1182:S2CID 1150:S2CID 687:Notes 305:limit 90:Aging 2459:ISBN 2415:PMID 2386:OCLC 2376:ISBN 2351:ISBN 2317:PMID 2270:PMID 2219:PMID 2167:PMID 2120:PMID 2073:PMID 2005:PMID 1944:PMID 1901:PMID 1856:PMID 1794:PMID 1776:ISSN 1733:PMID 1715:ISSN 1664:PMID 1633:ISBN 1562:PMID 1525:PMID 1469:ISBN 1437:PMID 1408:PMID 1330:PMID 1312:ISSN 1274:PMID 1238:PMID 1142:PMID 1113:PMID 1080:PMID 594:The 448:and 432:and 386:2009 382:2004 257:and 241:and 2407:doi 2307:doi 2262:doi 2211:doi 2199:306 2157:doi 2110:hdl 2102:doi 2065:doi 2061:120 2036:doi 1995:PMC 1985:doi 1973:101 1934:doi 1893:doi 1881:297 1848:doi 1819:doi 1809:". 1784:PMC 1766:doi 1723:PMC 1705:doi 1693:106 1656:doi 1603:doi 1554:doi 1517:doi 1492:doi 1488:122 1429:doi 1398:PMC 1390:doi 1386:106 1355:doi 1351:133 1320:PMC 1302:doi 1266:doi 1262:130 1228:PMC 1218:doi 1206:105 1174:doi 1134:doi 1105:doi 1070:PMC 1060:doi 408:). 400:); 2478:: 2445:; 2421:. 2413:. 2401:. 2384:. 2349:. 2345:. 2323:. 2315:. 2303:41 2301:. 2297:. 2276:. 2268:. 2260:. 2248:14 2246:. 2225:. 2217:. 2209:. 2197:. 2193:. 2173:. 2165:. 2153:44 2151:. 2147:. 2126:. 2118:. 2108:. 2098:83 2096:. 2079:. 2071:. 2059:. 2042:. 2034:. 2020:. 2003:. 1993:. 1983:. 1971:. 1967:. 1950:. 1942:. 1930:37 1928:. 1924:. 1907:. 1899:. 1891:. 1879:. 1862:. 1854:. 1842:. 1825:. 1815:47 1813:. 1792:. 1782:. 1774:. 1764:. 1754:11 1752:. 1748:. 1731:. 1721:. 1713:. 1703:. 1691:. 1687:. 1670:. 1662:. 1650:. 1611:. 1601:. 1591:21 1589:. 1585:. 1568:. 1560:. 1550:72 1548:. 1531:. 1523:. 1511:. 1486:. 1443:. 1435:. 1425:44 1423:. 1406:. 1396:. 1384:. 1380:. 1363:. 1349:. 1345:. 1328:. 1318:. 1310:. 1296:. 1292:. 1272:. 1260:. 1256:. 1236:. 1226:. 1216:. 1204:. 1200:. 1180:. 1168:. 1148:. 1140:. 1130:46 1128:. 1111:. 1101:99 1099:. 1095:. 1078:. 1068:. 1058:. 1046:. 1042:. 870:^ 855:^ 742:^ 548:. 404:, 384:, 253:, 249:, 2467:. 2429:. 2409:: 2403:7 2392:. 2365:. 2331:. 2309:: 2284:. 2264:: 2233:. 2213:: 2205:: 2181:. 2159:: 2134:. 2112:: 2104:: 2087:. 2067:: 2050:. 2038:: 2022:4 2011:. 1987:: 1979:: 1958:. 1936:: 1915:. 1895:: 1887:: 1870:. 1850:: 1844:6 1833:. 1821:: 1800:. 1768:: 1760:: 1739:. 1707:: 1699:: 1678:. 1658:: 1652:6 1641:. 1619:. 1605:: 1597:: 1576:. 1556:: 1539:. 1519:: 1513:8 1498:. 1494:: 1477:. 1451:. 1431:: 1414:. 1392:: 1371:. 1357:: 1336:. 1304:: 1298:4 1280:. 1268:: 1244:. 1220:: 1212:: 1188:. 1176:: 1170:4 1156:. 1136:: 1119:. 1107:: 1086:. 1062:: 1054:: 1048:7 1000:. 988:. 976:. 964:. 952:. 940:. 928:. 916:. 904:. 892:. 880:. 865:. 850:. 838:. 826:. 814:. 802:. 790:. 778:. 766:. 754:. 737:. 725:. 713:. 280:? 219:e 212:t 205:v

Index

Cognitive psychology

Perception
Visual
Object recognition
Face recognition
Pattern recognition
Attention
Memory
Aging
Emotional
Learning
Long-term
Metacognition
Language
Metalanguage
Thinking
Cognition
Concept
Reasoning
Decision making
Problem solving
Numerical cognition
Numerosity adaptation effect
Approximate number system
Parallel individuation system
v
t
e
cognitive science

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑