Knowledge

Oxidative phosphorylation

Source 📝

22: 9530: 1948:". In this model, the various complexes exist as organized sets of interacting enzymes. These associations might allow channeling of substrates between the various enzyme complexes, increasing the rate and efficiency of electron transfer. Within such mammalian supercomplexes, some components would be present in higher amounts than others, with some data suggesting a ratio between complexes I/II/III/IV and the ATP synthase of approximately 1:1:3:7:4. However, the debate over this supercomplex hypothesis is not completely resolved, as some data do not appear to fit with this model. 484: 10763: 2571:, which can be shifted by altering the proton-motive force. In the absence of a proton-motive force, the ATP synthase reaction will run from right to left, hydrolyzing ATP and pumping protons out of the matrix across the membrane. However, when the proton-motive force is high, the reaction is forced to run in the opposite direction; it proceeds from left to right, allowing protons to flow down their concentration gradient and turning ADP into ATP. Indeed, in the closely related 10793: 10781: 1389: 10873: 10857: 10841: 10829: 10817: 10805: 649:; in other words, they will release a large amount of energy upon oxidation. However, the cell does not release this energy all at once, as this would be an uncontrollable reaction. Instead, the electrons are removed from NADH and passed to oxygen through a series of enzymes that each release a small amount of the energy. This set of enzymes, consisting of complexes I through IV, is called the electron transport chain and is found in the 1675: 1102: 886: 2379:, there are two different types of ubiquinol oxidase using oxygen as an electron acceptor. Under highly aerobic conditions, the cell uses an oxidase with a low affinity for oxygen that can transport two protons per electron. However, if levels of oxygen fall, they switch to an oxidase that transfers only one proton per electron, but has a high affinity for oxygen. 2330:
succinate/fumarate pair is unusual, as its midpoint potential is close to zero. Succinate can therefore be oxidized to fumarate if a strong oxidizing agent such as oxygen is available, or fumarate can be reduced to succinate using a strong reducing agent such as formate. These alternative reactions are catalyzed by
2983:
level can alter ATP production rates. Under anoxic conditions, ATP-synthase will commit 'cellular treason' and run in reverse, forcing protons from the matrix back into the inner membrane space, using up ATP in the process. The proton motive force and ATP production can be maintained by intracellular
2594:
portion contains six proteins of two different kinds (three α subunits and three β subunits), whereas the "stalk" consists of one protein: the γ subunit, with the tip of the stalk extending into the ball of α and β subunits. Both the α and β subunits bind nucleotides, but only the β subunits catalyze
1970:
possess a large variety of electron-transfer enzymes. These use an equally wide set of chemicals as substrates. In common with eukaryotes, prokaryotic electron transport uses the energy released from the oxidation of a substrate to pump ions across a membrane and generate an electrochemical gradient.
1655:
As coenzyme Q is reduced to ubiquinol on the inner side of the membrane and oxidized to ubiquinone on the other, a net transfer of protons across the membrane occurs, adding to the proton gradient. The rather complex two-step mechanism by which this occurs is important, as it increases the efficiency
503:
The electron transport chain carries both protons and electrons, passing electrons from donors to acceptors, and transporting protons across a membrane. These processes use both soluble and protein-bound transfer molecules. In mitochondria, electrons are transferred within the intermembrane space by
413:
ATP synthase releases this stored energy by completing the circuit and allowing protons to flow down the electrochemical gradient, back to the N-side of the membrane. The electrochemical gradient drives the rotation of part of the enzyme's structure and couples this motion to the synthesis of ATP.
1084:
in complex I that cause the protein to bind protons on the N-side of the membrane and release them on the P-side of the membrane. Finally, the electrons are transferred from the chain of iron–sulfur clusters to a ubiquinone molecule in the membrane. Reduction of ubiquinone also contributes to the
3009:
inhibits ATP synthase, protons cannot pass back into the mitochondrion. As a result, the proton pumps are unable to operate, as the gradient becomes too strong for them to overcome. NADH is then no longer oxidized and the citric acid cycle ceases to operate because the concentration of NAD falls
2931:
in complex III, as a highly reactive ubisemiquinone free radical is formed as an intermediate in the Q cycle. This unstable species can lead to electron "leakage" when electrons transfer directly to oxygen, forming superoxide. As the production of reactive oxygen species by these proton-pumping
2641:
and involves the active site of a β subunit cycling between three states. In the "open" state, ADP and phosphate enter the active site (shown in brown in the diagram). The protein then closes up around the molecules and binds them loosely – the "loose" state (shown in red). The enzyme then
680:
across the membrane. The energy stored in this potential is then used by ATP synthase to produce ATP. Oxidative phosphorylation in the eukaryotic mitochondrion is the best-understood example of this process. The mitochondrion is present in almost all eukaryotes, with the exception of anaerobic
2363:
Prokaryotes control their use of these electron donors and acceptors by varying which enzymes are produced, in response to environmental conditions. This flexibility is possible because different oxidases and reductases use the same ubiquinone pool. This allows many combinations of enzymes to
2329:
can grow with reducing agents such as formate, hydrogen, or lactate as electron donors, and nitrate, DMSO, or oxygen as acceptors. The larger the difference in midpoint potential between an oxidizing and reducing agent, the more energy is released when they react. Out of these compounds, the
1898:
have alternative NADH oxidases, which oxidize NADH in the cytosol rather than in the mitochondrial matrix, and pass these electrons to the ubiquinone pool. These enzymes do not transport protons, and, therefore, reduce ubiquinone without altering the electrochemical gradient across the inner
596:. Metal ion cofactors undergo redox reactions without binding or releasing protons, so in the electron transport chain they serve solely to transport electrons through proteins. Electrons move quite long distances through proteins by hopping along chains of these cofactors. This occurs by 2397:, is the final enzyme in the oxidative phosphorylation pathway. This enzyme is found in all forms of life and functions in the same way in both prokaryotes and eukaryotes. The enzyme uses the energy stored in a proton gradient across a membrane to drive the synthesis of ATP from ADP and 2926:
The cytochrome c oxidase complex is highly efficient at reducing oxygen to water, and it releases very few partly reduced intermediates; however small amounts of superoxide anion and peroxide are produced by the electron transport chain. Particularly important is the reduction of
3013:
Many site-specific inhibitors of the electron transport chain have contributed to the present knowledge of mitochondrial respiration. Synthesis of ATP is also dependent on the electron transport chain, so all site-specific inhibitors also inhibit ATP formation. The fish poison
387:
process, which requires an input of energy. Both the electron transport chain and the ATP synthase are embedded in a membrane, and energy is transferred from the electron transport chain to the ATP synthase by movements of protons across this membrane, in a process called
2626: 3280: 2932:
complexes is greatest at high membrane potentials, it has been proposed that mitochondria regulate their activity to maintain the membrane potential within a narrow range that balances ATP production against oxidant generation. For instance, oxidants can activate
2881: 1712:
oxygen is reduced to water in this step. Both the direct pumping of protons and the consumption of matrix protons in the reduction of oxygen contribute to the proton gradient. The reaction catalyzed is the oxidation of cytochrome c and the reduction of oxygen:
1943:
The original model for how the respiratory chain complexes are organized was that they diffuse freely and independently in the mitochondrial membrane. However, recent data suggest that the complexes might form higher-order structures called supercomplexes or
1980:
The main difference between eukaryotic and prokaryotic oxidative phosphorylation is that bacteria and archaea use many different substances to donate or accept electrons. This allows prokaryotes to grow under a wide variety of environmental conditions. In
2740:
because it is a strong oxidizing agent. The reduction of oxygen does involve potentially harmful intermediates. Although the transfer of four electrons and four protons reduces oxygen to water, which is harmless, transfer of one or two electrons produces
916:(kDa). The structure is known in detail only from a bacterium; in most organisms the complex resembles a boot with a large "ball" poking out from the membrane into the mitochondrion. The genes that encode the individual proteins are contained in both the 1595: 1871: 1124:, is a second entry point to the electron transport chain. It is unusual because it is the only enzyme that is part of both the citric acid cycle and the electron transport chain. Complex II consists of four protein subunits and contains a bound 2717:
So we can conclude that when NADH is oxidized, about 42% of energy is conserved in the form of three ATPs and the remaining (58%) energy is lost as heat (unless the chemical energy of ATP under physiological conditions was underestimated).
3288:
For another twenty years, the mechanism by which ATP is generated remained mysterious, with scientists searching for an elusive "high-energy intermediate" that would link oxidation and phosphorylation reactions. This puzzle was solved by
1693:, is the final protein complex in the electron transport chain. The mammalian enzyme has an extremely complicated structure and contains 13 subunits, two heme groups, as well as multiple metal ion cofactors – in all, three atoms of 2545: 1224:, an enzyme similar to complex II, fumarate reductase (menaquinol:fumarate oxidoreductase, or QFR), operates in reverse to oxidize ubiquinol and reduce fumarate. This allows the worm to survive in the anaerobic environment of the 1047: 7461:
Tsubaki M (January 1993). "Fourier-transform infrared study of cyanide binding to the Fea3-CuB binuclear site of bovine heart cytochrome c oxidase: implication of the redox-linked conformational change at the binuclear site".
3029:
Carbon monoxide, cyanide, hydrogen sulphide and azide effectively inhibit cytochrome oxidase. Carbon monoxide reacts with the reduced form of the cytochrome while cyanide and azide react with the oxidised form. An antibiotic,
3004:
that inhibit oxidative phosphorylation. Although any one of these toxins inhibits only one enzyme in the electron transport chain, inhibition of any step in this process will halt the rest of the process. For example, if
2351:
oxidize nitrite to nitrate, donating the electrons to oxygen. The small amount of energy released in this reaction is enough to pump protons and generate ATP, but not enough to produce NADH or NADPH directly for use in
6777:"Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model" 2622:. This movement of the tip of the γ subunit within the ball of α and β subunits provides the energy for the active sites in the β subunits to undergo a cycle of movements that produces and then releases ATP. 1342: 1197: 2663:
synthase, a form of the enzyme that contains additional proteins with little similarity in sequence to other bacterial and eukaryotic ATP synthase subunits. It is possible that, in some species, the A
394:. A current of protons is driven from the negative N-side of the membrane to the positive P-side through the proton-pumping enzymes of the electron transport chain. The movement of protons creates an 1931:, and infection by pathogens, as well as other factors that inhibit the full electron transport chain. Alternative pathways might, therefore, enhance an organism's resistance to injury, by reducing 1140:
and reduces ubiquinone. As this reaction releases less energy than the oxidation of NADH, complex II does not transport protons across the membrane and does not contribute to the proton gradient.
7390:
Joshi S, Huang YG (August 1991). "ATP synthase complex from bovine heart mitochondria: the oligomycin sensitivity conferring protein is essential for dicyclohexyl carbodiimide-sensitive ATPase".
1077:. The electrons are then transferred through a series of iron–sulfur clusters: the second kind of prosthetic group present in the complex. There are both and iron–sulfur clusters in complex I. 6355:
Van Walraven HS, Strotmann H, Schwarz O, Rumberg B (February 1996). "The H+/ATP coupling ratio of the ATP synthase from thiol-modulated chloroplasts and two cyanobacterial strains is four".
453:
produces only 2 ATP molecules, but somewhere between 30 and 36 ATPs are produced by the oxidative phosphorylation of the 10 NADH and 2 succinate molecules made by converting one molecule of
2757: 4414:
Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C, et al. (January 2003). "Architecture of succinate dehydrogenase and reactive oxygen species generation".
1065:
The start of the reaction, and indeed of the entire electron chain, is the binding of a NADH molecule to complex I and the donation of two electrons. The electrons enter complex I via a
7587:
Dervartanian DV, Veeger C (November 1964). "STUDIES ON SUCCINATE DEHYDROGENASE. I. SPECTRAL PROPERTIES OF THE PURIFIED ENZYME AND FORMATION OF ENZYME-COMPETITIVE INHIBITOR COMPLEXES".
1927:
yields than the full pathway. The advantages produced by a shortened pathway are not entirely clear. However, the alternative oxidase is produced in response to stresses such as cold,
1708:
This enzyme mediates the final reaction in the electron transport chain and transfers electrons to oxygen and hydrogen (protons), while pumping protons across the membrane. The final
5125:
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, et al. (May 1996). "The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A".
1617:
donor to a cytochrome c acceptor at a time, the reaction mechanism of complex III is more elaborate than those of the other respiratory complexes, and occurs in two steps called the
1443:
group. The iron atoms inside complex III's heme groups alternate between a reduced ferrous (+2) and oxidized ferric (+3) state as the electrons are transferred through the protein.
2642:
changes shape again and forces these molecules together, with the active site in the resulting "tight" state (shown in pink) binding the newly produced ATP molecule with very high
584:
and cytochromes. There are several types of iron–sulfur cluster. The simplest kind found in the electron transfer chain consists of two iron atoms joined by two atoms of inorganic
2405:). Estimates of the number of protons required to synthesize one ATP have ranged from three to four, with some suggesting cells can vary this ratio, to suit different conditions. 1462: 588:; these are called clusters. The second kind, called , contains a cube of four iron atoms and four sulfur atoms. Each iron atom in these clusters is coordinated by an additional 9885: 569:
oxidized on the other, ubiquinone will couple these reactions and shuttle protons across the membrane. Some bacterial electron transport chains use different quinones, such as
367:. This means one cannot occur without the other. The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as 1080:
As the electrons pass through this complex, four protons are pumped from the matrix into the intermembrane space. Exactly how this occurs is unclear, but it seems to involve
8442: 8430: 5453:
Ito Y, Saisho D, Nakazono M, Tsutsumi N, Hirai A (December 1997). "Transcript levels of tandem-arranged alternative oxidase genes in rice are increased by low temperature".
1989:
of a chemical measures how much energy is released when it is oxidized or reduced, with reducing agents having negative potentials and oxidizing agents positive potentials.
8454: 2988:
can freely diffuse across the mitochondrial outer-membrane and acidify the inter-membrane space, hence directly contributing to the proton motive force and ATP production.
1721: 8516: 893:. The abbreviations are discussed in the text. In all diagrams of respiratory complexes in this article, the matrix is at the bottom, with the intermembrane space above. 4702:"Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase" 257:. In eukaryotes, five main protein complexes are involved, whereas in prokaryotes many different enzymes are present, using a variety of electron donors and acceptors. 286:
across this membrane. This store of energy is tapped when protons flow back across the membrane and down the potential energy gradient, through a large enzyme called
9312: 8093:"Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase" 4939:
Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, et al. (July 1998). "Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex".
2649:
In some bacteria and archaea, ATP synthesis is driven by the movement of sodium ions through the cell membrane, rather than the movement of protons. Archaea such as
1132:
group that does not participate in electron transfer to coenzyme Q, but is believed to be important in decreasing production of reactive oxygen species. It oxidizes
6915:
Müller V (February 2004). "An exceptional variability in the motor of archael A1A0 ATPases: from multimeric to monomeric rotors comprising 6-13 ion binding sites".
230:, which is used throughout the cell whenever energy is needed. During oxidative phosphorylation, electrons are transferred from the electron donors to a series of 3313:, by his development in 1973 of the "binding change" mechanism, followed by his radical proposal of rotational catalysis in 1982. More recent work has included 8067: 6868:"Delta mu Na+ drives the synthesis of ATP via an delta mu Na(+)-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1" 2413: 7226:
Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, et al. (January 2002). "Superoxide activates mitochondrial uncoupling proteins".
7191:
Kadenbach B, Ramzan R, Wen L, Vogt S (March 2010). "New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms".
4268:
Baranova EA, Holt PJ, Sazanov LA (February 2007). "Projection structure of the membrane domain of Escherichia coli respiratory complex I at 8 A resolution".
2578:
ATP synthase is a massive protein complex with a mushroom-like shape. The mammalian enzyme complex contains 16 subunits and has a mass of approximately 600
7070:
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007). "Free radicals and antioxidants in normal physiological functions and human disease".
3275: 4000:
Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldón T, et al. (March 2005). "An anaerobic mitochondrion that produces hydrogen".
951: 1228:, carrying out anaerobic oxidative phosphorylation with fumarate as the electron acceptor. Another unconventional function of complex II is seen in the 3358:
in the 1930s but was ultimately discontinued due to its dangerous side effects. However, illicit use of the drug for this purpose continues today. See
1985:, for example, oxidative phosphorylation can be driven by a large number of pairs of reducing agents and oxidizing agents, which are listed below. The 1660:
were used to directly reduce two molecules of cytochrome c, the efficiency would be halved, with only one proton transferred per cytochrome c reduced.
4541:
Painter HJ, Morrisey JM, Mather MW, Vaidya AB (March 2007). "Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum".
465:
yields about 14 ATPs. These ATP yields are theoretical maximum values; in practice, some protons leak across the membrane, lowering the yield of ATP.
3258:
were known to be involved. However, in the early 1940s, the link between the oxidation of sugars and the generation of ATP was firmly established by
1644:
is bound and again passes its first electron to a cytochrome c acceptor. The second electron is passed to the bound ubisemiquinone, reducing it to QH
1454:, a heme protein loosely associated with the mitochondrion. Unlike coenzyme Q, which carries two electrons, cytochrome c carries only one electron. 8855: 5790:"Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components" 1250: 1380:
dehydrogenases. In plants, ETF-Q oxidoreductase is also important in the metabolic responses that allow survival in extended periods of darkness.
8509: 3914:
Page CC, Moser CC, Chen X, Dutton PL (November 1999). "Natural engineering principles of electron tunnelling in biological oxidation-reduction".
2708:
When one NADH is oxidized through the electron transfer chain, three ATPs are produced, which is equivalent to 7.3 kcal/mol x 3 = 21.9 kcal/mol.
2618:(the γ subunit stalk) within the α and β subunits. The α and β subunits are prevented from rotating themselves by the side-arm, which acts as a 8403: 8199: 1265:
and a cluster, but, unlike the other respiratory complexes, it attaches to the surface of the membrane and does not cross the lipid bilayer.
1238:. Here, the reversed action of complex II as an oxidase is important in regenerating ubiquinol, which the parasite uses in an unusual form of 8789: 8381: 9028: 5745:"The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes" 3390: 1894:
Many eukaryotic organisms have electron transport chains that differ from the much-studied mammalian enzymes described above. For example,
4887: 7338:"Acidosis Maintains the Function of Brain Mitochondria in Hypoxia-Tolerant Triplefin Fish: A Strategy to Survive Acute Hypoxic Exposure?" 3220:
can uncouple respiration from ATP synthesis. This rapid respiration produces heat, and is particularly important as a way of maintaining
7540:"Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I)" 2701:
The potential difference between these two redox pairs is 1.14 volt, which is equivalent to -52 kcal/mol or -2600 kJ per 6 mol of O
1640:. The first two substrates are released, but this ubisemiquinone intermediate remains bound. In the second step, a second molecule of QH 8502: 3301:
in 1978. Subsequent research concentrated on purifying and characterizing the enzymes involved, with major contributions being made by
2614:
interactions that propel the ring of c subunits past the proton channel. This rotating ring in turn drives the rotation of the central
4984:"The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex" 2646:. Finally, the active site cycles back to the open state, releasing ATP and binding more ADP and phosphate, ready for the next cycle. 6451:"Effects of carbon source on expression of F0 genes and on the stoichiometry of the c subunit in the F1F0 ATPase of Escherichia coli" 3116: 10777:
Single lines: pathways common to most lifeforms. Double lines: pathways not in humans (occurs in e.g. plants, fungi, prokaryotes).
8824: 8819: 6997: 6004:"Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors" 5383:
Moore AL, Siedow JN (August 1991). "The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria".
3862: 429:
operate mainly on ΔpH. However, they also require a small membrane potential for the kinetics of ATP synthesis. In the case of the
8138:"A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions" 4643:"Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool" 2360:
to produce enough proton-motive force to run part of the electron transport chain in reverse, causing complex I to generate NADH.
2010: 1986: 708: 9500: 8760: 5344:"Alternative oxidase in the branched mitochondrial respiratory network: an overview on structure, function, regulation, and role" 3195: 1273: 1148: 1625:, which is then oxidized, with one electron being passed to the second substrate, cytochrome c. The two protons released from QH 8482: 8439: 8427: 7981:
Mitchell P (July 1961). "Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism".
7667:
Borecký J, Vercesi AE (2005). "Plant uncoupling mitochondrial protein and alternative oxidase: energy metabolism and stress".
5774: 8487: 8477: 8451: 7514: 5016: 2599:
portion and back into the membrane is a long rod-like subunit that anchors the α and β subunits into the base of the enzyme.
25:
Oxidative phosphorylation is made up of two closely connected components: the electron transport chain and chemiosmosis. The
8472: 7825:"Esterification of inorganic phosphate coupled to electron transport between dihydrodiphosphopyridine nucleotide and oxygen" 6527: 4779: 3504: 8892: 6300: 3879:
Johnson DC, Dean DR, Smith AD, Johnson MK (2005). "Structure, function, and formation of biological iron-sulfur clusters".
4798:"The critical role of Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase during dark-induced starvation" 10906: 6806: 3270:
proved that the coenzyme NADH linked metabolic pathways such as the citric acid cycle and the synthesis of ATP. The term
1400: 1393: 765: 650: 8122: 8642: 8561: 8395: 4731: 3038:, an antidote used against chemical weapons, are the two important inhibitors of the site between cytochrome B and C1. 2876:{\displaystyle {\ce {O2->{\underset {Superoxide}{O2^{\underline {\bullet }}}}->{\underset {Peroxide}{O2^{2-}}}}}} 2168: 2078: 1258: 7854: 4502:"Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum" 8365: 8346: 8327: 8308: 8282: 8260: 8241: 7807: 2068: 2064: 928: 728: 724: 547:, so it diffuses freely within the membrane. When Q accepts two electrons and two protons, it becomes reduced to the 5303:"Branched mitochondrial electron transport in the Animalia: presence of alternative oxidase in several animal phyla" 3965:
Leys D, Scrutton NS (December 2004). "Electrical circuitry in biology: emerging principles from protein structure".
3605:"Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes" 8056: 5090:
Calhoun MW, Thomas JW, Gennis RB (August 1994). "The cytochrome oxidase superfamily of redox-driven proton pumps".
2331: 2282: 2187: 1113: 1106: 192:
carry out oxidative phosphorylation. This pathway is so pervasive because it releases more energy than alternative
9827: 9023: 3297:
in 1961. At first, this proposal was highly controversial, but it was slowly accepted and Mitchell was awarded a
1962:
In contrast to the general similarity in structure and function of the electron transport chains in eukaryotes,
8799: 8629: 8617: 8566: 7437: 6260:"Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain" 5254:"Purification and characterization of a 43-kDa rotenone-insensitive NADH dehydrogenase from plant mitochondria" 4747:"A new iron-sulfur flavoprotein of the respiratory chain. A component of the fatty acid beta oxidation pathway" 2097: 9100: 6688:
Capaldi RA, Aggeler R (March 2002). "Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor".
1590:{\displaystyle {\ce {QH2{}+ 2 Cyt\, c_{ox}{}+ 2H+_{matrix}-> Q{}+ 2 Cyt\, c_{red}{}+ 4H+_{intermembrane}}}} 10901: 9426: 8638: 2586:
and contains a ring of c subunits and the proton channel. The stalk and the ball-shaped headpiece is called F
6406:
Yoshida M, Muneyuki E, Hisabori T (September 2001). "ATP synthase--a marvellous rotary engine of the cell".
2575:, the hydrolysis reaction is used to acidify cellular compartments, by pumping protons and hydrolysing ATP. 425:
bacteria the electrical energy even has to compensate for a counteracting inverse pH difference. Inversely,
363:-releasing chemical reactions to drive energy-requiring reactions. The two sets of reactions are said to be 10533: 9529: 8625: 8466: 5348:
Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas
4594:"Reactions of electron-transfer flavoprotein and electron-transfer flavoprotein: ubiquinone oxidoreductase" 3241: 2920: 646: 265: 9673: 9662: 7870:"50 years of biological research--from oxidative phosphorylation to energy requiring transport regulation" 6119:"Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255" 2364:
function together, linked by the common ubiquinol intermediate. These respiratory chains therefore have a
1629:
pass into the intermembrane space. The third substrate is Q, which accepts the second electron from the QH
565:(Q) form. As a result, if two enzymes are arranged so that Q is reduced on one side of the membrane and QH 9493: 7497:
Heytler PG (1979). "Uncouplers of oxidative phosphorylation". In Sidney Fleischer, Lester Packer (eds.).
4078:
Hirst J (June 2005). "Energy transduction by respiratory complex I--an evaluation of current knowledge".
3251: 3156:
Prevents the transfer of electrons from complex I to ubiquinone by blocking the ubiquinone-binding site.
2671:
form of the enzyme is a specialized sodium-driven ATP synthase, but this might not be true in all cases.
1125: 747: 445:
The amount of energy released by oxidative phosphorylation is high, compared with the amount produced by
193: 6215:
Iuchi S, Lin EC (July 1993). "Adaptation of Escherichia coli to redox environments by gene expression".
253:, these proteins are located in the cell's outer membrane. These linked sets of proteins are called the 10707: 10582: 10109: 8933: 4065:
Medical CHEMISTRY Compendium. By Anders Overgaard Pedersen and Henning Nielsen. Aarhus University. 2008
3834:"Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management" 3309:
on the ATP synthase. A critical step towards solving the mechanism of the ATP synthase was provided by
2341:
Some prokaryotes use redox pairs that have only a small difference in midpoint potential. For example,
2139: 2083: 1866:{\displaystyle {\ce {4Cyt\,c_{red}{}+O2{}+8H+_{matrix}->4Cyt\,c_{ox}{}+2H2O{}+4H+_{intermembrane}}}} 260:
The energy transferred by electrons flowing through this electron transport chain is used to transport
6117:
Starkenburg SR, Chain PS, Sayavedra-Soto LA, Hauser L, Land ML, Larimer FW, et al. (March 2006).
5217:
Rasmusson AG, Soole KL, Elthon TE (2004). "Alternative NAD(P)H dehydrogenases of plant mitochondria".
3228:
animals, although these proteins may also have a more general function in cells' responses to stress.
3138:
proton pumping from ATP synthesis because it carries protons across the inner mitochondrial membrane.
1923:
The electron transport pathways produced by these alternative NADH and ubiquinone oxidases have lower
1257:, is a third entry point to the electron transport chain. It is an enzyme that accepts electrons from 21: 10612: 10293: 9842: 9565: 9297: 9219: 337:. The enzymes carrying out this metabolic pathway are also the target of many drugs and poisons that 7017: 4866: 3789:
Mitchell P (December 1979). "Keilin's respiratory chain concept and its chemiosmotic consequences".
520:
group in its structure. Cytochrome c is also found in some bacteria, where it is located within the
10270: 9980: 9767: 9317: 9038: 8979: 8885: 8721: 8681: 8556: 1261:
in the mitochondrial matrix, and uses these electrons to reduce ubiquinone. This enzyme contains a
677: 657:
is also oxidized by the electron transport chain, but feeds into the pathway at a different point.
613: 395: 254: 26: 5176:
Yoshikawa S, Muramoto K, Shinzawa-Itoh K, Aoyama H, Tsukihara T, Shimokata K, et al. (2006).
10861: 10849: 10785: 10507: 10252: 9411: 9160: 9155: 9141: 9116: 8746: 8662: 8573: 3359: 3355: 3237: 2900: 1928: 1220: 1085:
generation of a proton gradient, as two protons are taken up from the matrix as it is reduced to
738: 639: 581: 478: 434: 310: 3382: 1920:, and possibly some animals. This enzyme transfers electrons directly from ubiquinol to oxygen. 10735: 9952: 9750: 9486: 9446: 9380: 9266: 9261: 8966: 8705: 8621: 8195: 7140:
Finkel T, Holbrook NJ (November 2000). "Oxidants, oxidative stress and the biology of ageing".
7012: 5847:
Nealson KH (January 1999). "Post-Viking microbiology: new approaches, new data, new insights".
5606:"A structural model of the cytochrome C reductase/oxidase supercomplex from yeast mitochondria" 4861: 4846: 2357: 2291: 1924: 446: 177: 8654: 7909:
Belitser VA, Tsibakova ET (1939). "About phosphorilation mechanism coupled with respiration".
7105:
Raha S, Robinson BH (October 2000). "Mitochondria, oxygen free radicals, disease and ageing".
1423:, with each subunit complex containing 11 protein subunits, an iron–sulfur cluster and three 512:. This carries only electrons, and these are transferred by the reduction and oxidation of an 10833: 10363: 10137: 9999: 9451: 9416: 9372: 9136: 8995: 8599: 5230: 4917: 4392: 4217:
Efremov RG, Baradaran R, Sazanov LA (May 2010). "The architecture of respiratory complex I".
3892: 3314: 2643: 2120: 2021: 1234: 1081: 1070: 743: 683: 295: 3421:
Mitchell P, Moyle J (January 1967). "Chemiosmotic hypothesis of oxidative phosphorylation".
10809: 10358: 9634: 9619: 9390: 9095: 9071: 9033: 8770: 8700: 8588: 8384: 8149: 7990: 7939: 7290: 7235: 7149: 6364: 6130: 5856: 5801: 5560: 5501: 5134: 5046: 4948: 4654: 4550: 4423: 4226: 4173: 4009: 3923: 3798: 3702: 3430: 3263: 3213: 2956: 2568: 2087: 1957: 1686: 1679: 1669: 921: 815: 197: 483: 8: 10911: 10652: 10412: 10386: 10102: 9335: 8954: 8878: 8850: 6928: 4465:
Horsefield R, Iwata S, Byrne B (April 2004). "Complex II from a structural perspective".
3530: 3294: 3267: 2540:{\displaystyle {\ce {ADP + P_i + 4H+_{intermembrane}<=> ATP + H2O + 4H+_{matrix}}}} 1904: 673: 421:
equivalent: In mitochondria, the largest part of energy is provided by the potential; in
399: 322: 8494: 8153: 7994: 7943: 7886: 7869: 7294: 7239: 7153: 7046: 6725:"Catalytic and mechanical cycles in F-ATP synthases. Fourth in the Cycles Review Series" 6596:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
6368: 6134: 5860: 5805: 5564: 5505: 5490:"The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells" 5138: 5050: 4952: 4658: 4554: 4427: 4230: 4177: 4162:"Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus" 4013: 3927: 3833: 3802: 3706: 3434: 3411:
Voet, D.; Voet, J. G. (2004). "Biochemistry", 3rd ed., p. 804, Wiley.ISBN 0-471-19350-X.
10865: 10775:. Click any text (name of pathway or metabolites) to link to the corresponding article. 10169: 10130: 10076: 9939: 9458: 9131: 9076: 9063: 8741: 8230: 8014: 7963: 7799: 7768: 7692: 7644: 7623: 7569: 7364: 7337: 7259: 7173: 7038: 6940: 6845: 6749: 6724: 6670: 6616: 6591: 6431: 6388: 6240: 6228: 6192: 6175: 6151: 6118: 6102: 6085: 5880: 5635: 5586: 5418:
Vanlerberghe GC, McIntosh L (June 1997). "ALTERNATIVE OXIDASE: From Gene to Function".
5283: 5158: 5072: 4822: 4797: 4677: 4642: 4618: 4593: 4574: 4447: 4250: 4199: 4033: 3947: 3771: 3728: 3625: 3604: 3454: 3217: 3134:
that disrupt the proton gradient by carrying protons across a membrane. This ionophore
2933: 2335: 2305: 2268: 2059: 1977:
is understood in most detail, while archaeal systems are at present poorly understood.
897: 890: 719: 672:
across the inner membrane of the mitochondrion. This causes protons to build up in the
597: 407: 283: 270: 8172: 8137: 8109: 7841: 7118: 6892: 6867: 6793: 6701: 6567: 6542: 6475: 6450: 6287: 6061: 6044: 6020: 6003: 5976: 5951: 5924: 5899: 5824: 5789: 5720: 5703: 5679: 5654: 5573: 5548: 5466: 5396: 5059: 5034: 5003: 4904:
Crofts AR (2004). "The cytochrome bc1 complex: function in the context of structure".
4875: 4766: 4718: 4518: 4501: 10768: 10716: 10684: 9965: 9580: 9330: 9126: 8970: 8928: 8923: 8529: 8421: 8361: 8342: 8323: 8304: 8278: 8256: 8237: 8177: 8114: 8037: 8006: 7955: 7891: 7846: 7803: 7760: 7684: 7649: 7604: 7600: 7561: 7520: 7510: 7506: 7479: 7443: 7433: 7407: 7403: 7369: 7318: 7313: 7278: 7251: 7208: 7165: 7122: 7087: 7030: 6978: 6932: 6897: 6837: 6798: 6754: 6705: 6662: 6621: 6572: 6519: 6480: 6466: 6423: 6380: 6376: 6337: 6333: 6292: 6278: 6232: 6197: 6156: 6066: 6025: 5981: 5929: 5872: 5829: 5788:
Gupte S, Wu ES, Hoechli L, Hoechli M, Jacobson K, Sowers AE, et al. (May 1984).
5766: 5725: 5684: 5627: 5578: 5529: 5524: 5489: 5470: 5435: 5431: 5400: 5365: 5324: 5275: 5234: 5199: 5150: 5107: 5103: 5064: 5008: 4964: 4921: 4879: 4827: 4771: 4723: 4682: 4623: 4566: 4523: 4482: 4439: 4396: 4361: 4344:
Hirst J (December 2009). "Towards the molecular mechanism of respiratory complex I".
4326: 4285: 4242: 4191: 4139: 4095: 4025: 3982: 3939: 3896: 3854: 3814: 3763: 3720: 3715: 3690: 3671: 3666: 3649: 3630: 3585: 3550: 3496: 3446: 3290: 3120: 2737: 2633:. ATP is shown in red, ADP and phosphate in pink and the rotating γ subunit in black. 2244: 2225: 2206: 1709: 1439:. A cytochrome is a kind of electron-transferring protein that contains at least one 1042:{\displaystyle {\ce {NADH + Q + 5H+_{matrix}-> NAD+ + QH2 + 4H+_{intermembrane}}}} 631: 521: 372: 318: 208: 158: 34: 8870: 7930:
Slater EC (November 1953). "Mechanism of phosphorylation in the respiratory chain".
7772: 7696: 7573: 7042: 6944: 6883: 6849: 6674: 6392: 6244: 6142: 5884: 5639: 5590: 5360: 5343: 5162: 5076: 4796:
Ishizaki K, Larson TR, Schauer N, Fernie AR, Graham IA, Leaver CJ (September 2005).
4451: 4379:
Cecchini G (2003). "Function and structure of complex II of the respiratory chain".
3775: 3546: 3477:"Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases" 2602:
As protons cross the membrane through the channel in the base of ATP synthase, the F
912:
with the mammalian complex I having 46 subunits and a molecular mass of about 1,000
10877: 10227: 10176: 10123: 10095: 9593: 9552: 9353: 8692: 8546: 8167: 8157: 8104: 8018: 7998: 7967: 7947: 7881: 7836: 7795: 7786:
Lipmann F (1941). "Metabolic generation and utilization of phosphate bond energy".
7752: 7723: 7676: 7639: 7631: 7596: 7589:
Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects
7551: 7502: 7471: 7399: 7359: 7349: 7308: 7298: 7263: 7243: 7200: 7177: 7157: 7114: 7079: 7022: 6970: 6924: 6887: 6879: 6829: 6788: 6744: 6736: 6697: 6652: 6611: 6603: 6562: 6554: 6511: 6470: 6462: 6435: 6415: 6372: 6329: 6282: 6274: 6224: 6187: 6146: 6138: 6097: 6056: 6015: 5971: 5967: 5963: 5919: 5915: 5911: 5864: 5819: 5809: 5756: 5744: 5715: 5674: 5666: 5617: 5568: 5519: 5509: 5462: 5427: 5392: 5355: 5314: 5265: 5226: 5189: 5142: 5099: 5054: 4998: 4956: 4913: 4871: 4817: 4809: 4761: 4713: 4672: 4662: 4613: 4605: 4578: 4558: 4513: 4474: 4431: 4388: 4353: 4316: 4277: 4254: 4234: 4203: 4181: 4129: 4087: 4037: 4017: 3974: 3951: 3931: 3888: 3844: 3806: 3759: 3755: 3732: 3710: 3661: 3620: 3612: 3577: 3542: 3488: 3458: 3438: 3255: 3221: 3070: 2727: 2272: 1973: 1932: 1066: 913: 540: 338: 275: 189: 102: 55: 5287: 5146: 4983: 3568:
Rich PR (December 2003). "The molecular machinery of Keilin's respiratory chain".
3262:, confirming the central role of ATP in energy transfer that had been proposed by 2679:
The transport of electrons from redox pair NAD/ NADH to the final redox pair 1/2 O
33:
is the site of oxidative phosphorylation. The NADH and succinate generated in the
10721: 9986: 9926: 9810: 9735: 9539: 9307: 9189: 8458: 8446: 8434: 8399: 7204: 7083: 6499: 5194: 5177: 4746: 4321: 4304: 4134: 4117: 3476: 3335: 3081:
Inhibit the electron transport chain by binding more strongly than oxygen to the
3062: 2985: 2564: 1225: 299: 246: 231: 7743:
Kalckar HM (November 1974). "Origins of the concept oxidative phosphorylation".
7635: 7336:
Devaux JB, Hedges CP, Birch N, Herbert N, Renshaw GM, Hickey AJ (January 2019).
6259: 4960: 3849: 10916: 10821: 10797: 10589: 10519: 10183: 10067: 10054: 9690: 9649: 9384: 9302: 9292: 9241: 9229: 9202: 8142:
Proceedings of the National Academy of Sciences of the United States of America
7283:
Proceedings of the National Academy of Sciences of the United States of America
5794:
Proceedings of the National Academy of Sciences of the United States of America
5494:
Proceedings of the National Academy of Sciences of the United States of America
5319: 5302: 4647:
Proceedings of the National Academy of Sciences of the United States of America
3531:"Structures and proton-pumping strategies of mitochondrial respiratory enzymes" 3318: 3302: 3259: 2365: 2295: 2263: 2106: 1361: 1216: 927:
The reaction that is catalyzed by this enzyme is the two electron oxidation of
635: 458: 430: 235: 212: 162: 30: 8408: 7680: 7026: 6776: 5868: 5670: 5655:"Supercomplexes in the respiratory chains of yeast and mammalian mitochondria" 4281: 3978: 664:, the enzymes in this electron transport system use the energy released from O 402:. It has two components: a difference in proton concentration (a H gradient, Δ 309:
Although oxidative phosphorylation is a vital part of metabolism, it produces
10895: 10379: 10325: 10302: 10261: 10153: 10144: 10025: 9780: 9256: 8943: 8092: 7354: 6740: 5270: 5253: 4478: 3310: 3306: 3247: 2651: 2611: 2590:
and is the site of ATP synthesis. The ball-shaped complex at the end of the F
2371:
In addition to this metabolic diversity, prokaryotes also possess a range of
2342: 2314: 2196: 2173: 1420: 1133: 1073:(FMN). The addition of electrons to FMN converts it to its reduced form, FMNH 908:, is the first protein in the electron transport chain. Complex I is a giant 688: 654: 418: 354: 8392: 8162: 8057:"David Keilin's Respiratory Chain Concept and Its Chemiosmotic Consequences" 8041: 7447: 5514: 4701: 4667: 4435: 4186: 4161: 687:
that instead reduce protons to hydrogen in a remnant mitochondrion called a
10693: 10661: 10568: 10563: 10547: 10419: 10243: 10197: 10050: 9705: 9236: 9206: 9011: 8983: 8765: 8751: 8673: 8118: 8010: 7959: 7850: 7824: 7728: 7711: 7688: 7653: 7608: 7565: 7556: 7539: 7373: 7322: 7303: 7255: 7212: 7169: 7126: 7091: 7034: 6936: 6758: 6709: 6666: 6657: 6640: 6625: 6607: 6576: 6558: 6523: 6427: 6160: 6070: 5933: 5876: 5814: 5770: 5761: 5729: 5688: 5631: 5622: 5605: 5582: 5533: 5439: 5328: 5238: 5203: 5068: 4925: 4883: 4831: 4813: 4686: 4570: 4527: 4486: 4443: 4400: 4365: 4330: 4289: 4246: 4195: 4143: 4099: 4029: 3986: 3943: 3900: 3858: 3810: 3767: 3589: 3554: 3500: 3330: 3165: 3023: 2630: 2388: 2375: – different enzymes that catalyze the same reaction. For example, in 2310: 2192: 2125: 2110: 1637: 1451: 1262: 1137: 932: 917: 840: 820: 798: 774: 617: 577: 549: 532: 509: 390: 350: 291: 287: 227: 185: 42: 8181: 7895: 7764: 7483: 7411: 6982: 6901: 6841: 6802: 6484: 6384: 6341: 6296: 6236: 6201: 6029: 5985: 5833: 5474: 5404: 5369: 5279: 5154: 5111: 5012: 4968: 4727: 4627: 3724: 3675: 3634: 3450: 2984:
acidosis. Cytosolic protons that have accumulated with ATP hydrolysis and
2711:
The conservation of the energy can be calculated by the following formula
1446:
The reaction catalyzed by complex III is the oxidation of one molecule of
10772: 10638: 10575: 10526: 10220: 10204: 10190: 10088: 10083: 10012: 9900: 9870: 9795: 9362: 9224: 7524: 6592:"Structural model of F1-ATPase and the implications for rotary catalysis" 6515: 6498:
Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H (January 2000).
4775: 3818: 3526: 3492: 3298: 3225: 3181: 3035: 3031: 3019: 2970: 2964: 2940: 2731: 2347: 2129: 2102: 2040: 2026: 1945: 1634: 1436: 1396:. After each step, Q (in the upper part of the figure) leaves the enzyme. 426: 422: 7475: 6543:"Structure of the mitochondrial ATP synthase by electron cryomicroscopy" 4562: 4413: 4238: 4021: 3246:
The field of oxidative phosphorylation began with the report in 1906 by
2606:
proton-driven motor rotates. Rotation might be caused by changes in the
561:
releases two electrons and two protons, it becomes oxidized back to the
306:
of a part of the enzyme. The ATP synthase is a rotary mechanical motor.
10744: 10675: 10626: 10605: 10596: 10540: 10495: 10459: 10372: 10311: 10236: 10211: 10160: 10041: 9720: 9606: 9509: 9463: 9185: 9106: 9087: 9019: 8962: 8905: 8901: 8609: 8525: 7911: 7756: 6974: 6833: 4357: 4091: 3581: 3099: 3094: 3006: 2928: 2907:
radical, are very harmful to cells, as they oxidize proteins and cause
2742: 2607: 2579: 2155: 1428: 1424: 1388: 1377: 1369: 1365: 1239: 627: 589: 544: 492: 488: 462: 450: 384: 334: 314: 250: 181: 7624:"The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP" 6258:
Calhoun MW, Oden KL, Gennis RB, de Mattos MJ, Neijssel OM (May 1993).
6045:"Succinate dehydrogenase and fumarate reductase from Escherichia coli" 4609: 3616: 383:
process – it releases energy, whereas the synthesis of ATP is an
302:
reaction. The reaction is driven by the proton flow, which forces the
10645: 10630: 10621: 10499: 10489: 10477: 10464: 10450: 10439: 10435: 10404: 10399: 10392: 10351: 9913: 9358: 9165: 8909: 8551: 8270: 8002: 7951: 7161: 6500:"The cellular biology of proton-motive force generation by V-ATPases" 6419: 4116:
Lenaz G, Fato R, Genova ML, Bergamini C, Bianchi C, Biondi A (2006).
3442: 3203: 3199: 3186: 3148: 3135: 3131: 2952: 2948: 2398: 2353: 1698: 1447: 1086: 661: 623: 570: 380: 242: 7247: 6116: 5175: 5035:"Protonmotive pathways and mechanisms in the cytochrome bc1 complex" 3089:
center in cytochrome c oxidase, preventing the reduction of oxygen.
2967:, which detoxify the reactive species, limiting damage to the cell. 2939:
To counteract these reactive oxygen species, cells contain numerous
2828: 2780: 238:
ending in oxygen, whose reaction releases half of the total energy.
10668: 10472: 10346: 10339: 10116: 8583: 6961:
Davies KJ (1995). "Oxidative stress: the paradox of aerobic life".
6354: 6320:
Boyer PD (1997). "The ATP synthase--a splendid molecular machine".
3746:
Crane FL (December 2001). "Biochemical functions of coenzyme Q10".
3161: 3143: 3107:
Inhibits ATP synthase by blocking the flow of protons through the F
3015: 2960: 2908: 2904: 2746: 2572: 2049: 1963: 593: 474: 303: 173: 6998:"Theories of biological aging: genes, proteins, and free radicals" 6043:
Cecchini G, Schröder I, Gunsalus RP, Maklashina E (January 2002).
6042: 3999: 3935: 1656:
of proton transfer. If, instead of the Q cycle, one molecule of QH
1245: 249:
within the inner membrane of the cell's mitochondria, whereas, in
10845: 10728: 10556: 10514: 10485: 10332: 10286: 9478: 9421: 9406: 4500:
Kita K, Hirawake H, Miyadera H, Amino H, Takeo S (January 2002).
4305:"The gross structure of the respiratory complex I: a Lego System" 3058: 2944: 2916: 2372: 2253: 2249: 2234: 2230: 2177: 2151: 2147: 2030: 1967: 1917: 1621:. In the first step, the enzyme binds three substrates, first, QH 1618: 1373: 1229: 940: 505: 454: 326: 204: 10762: 5124: 3176:
Competitive inhibitors of succinate dehydrogenase (complex II).
924:, as is the case for many enzymes present in the mitochondrion. 10318: 10279: 10060: 8532: 7225: 5704:"Respiratory chain supercomplexes of mitochondria and bacteria" 5178:"Proton pumping mechanism of bovine heart cytochrome c oxidase" 3212:
Not all inhibitors of oxidative phosphorylation are toxins. In
3086: 2976: 2619: 2211: 2045: 1913: 1902:
Another example of a divergent electron transport chain is the
1694: 909: 669: 585: 376: 360: 261: 166: 4844: 1648:
as it gains two protons from the mitochondrial matrix. This QH
1383: 8834: 8829: 7499:
Biomembranes Part F: Bioenergetics: Oxidative Phosphorylation
6820:
Dimroth P (1994). "Bacterial sodium ion-coupled energetics".
5420:
Annual Review of Plant Physiology and Plant Molecular Biology
3321:, with Walker and Boyer being awarded a Nobel Prize in 1997. 3305:
on the complexes of the electron-transport chain, as well as
3066: 3001: 2979:
is fundamental for oxidative phosphorylation, a shortage in O
2215: 2005: 1909: 1895: 1674: 1101: 880: 703: 536: 528: 330: 170: 108: 8091:
Pullman ME, Penefsky HS, Datta A, Racker E (November 1960).
7072:
The International Journal of Biochemistry & Cell Biology
5603: 4118:"Mitochondrial Complex I: structural and functional aspects" 2595:
the ATP synthesis reaction. Reaching along the side of the F
1337:{\displaystyle {\ce {ETF_{red}{}+ Q -> ETF_{ox}{}+ QH2}}} 1192:{\displaystyle {\ce {{Succinate}+ Q -> {Fumarate}+ QH2}}} 885: 10428: 8814: 8809: 8804: 8794: 8784: 8577: 7279:"Mitochondria as ATP consumers: cellular treason in anoxia" 5604:
Heinemeyer J, Braun HP, Boekema EJ, Kouril R (April 2007).
5549:"A critical appraisal of the mitochondrial coenzyme Q pool" 4795: 4540: 3082: 2997: 2615: 1702: 1613:
As only one of the electrons can be transferred from the QH
1440: 1129: 642: 517: 513: 438:
it drives the counter-rotation of subunits a and c of the F
368: 219: 215: 129: 79: 8090: 7069: 6448: 6257: 6176:"The nitrite oxidizing system of Nitrobacter winogradskyi" 1096: 939:(represented as Q in the equation below), a lipid-soluble 695:
Typical respiratory enzymes and substrates in eukaryotes.
58: 10700: 8524: 8275:
Power, Sex, Suicide: Mitochondria and the Meaning of Life
7501:. Methods in Enzymology. Vol. 55. pp. 462–472. 6540: 6449:
Schemidt RA, Qu J, Williams JR, Brusilow WS (June 1998).
5452: 4499: 2912: 2772: 2674: 2625: 2508: 1832: 1810: 1762: 1744: 1559: 1503: 1477: 1330: 1312: 1288: 1185: 1013: 468: 138: 120: 88: 70: 8382:
Animated diagrams illustrating oxidative phosphorylation
7335: 6722: 5032: 4845:
Berry EA, Guergova-Kuras M, Huang LS, Crofts AR (2000).
4115: 3317:
on the enzymes involved in oxidative phosphorylation by
1951: 1251:
Electron transfer flavoprotein-ubiquinone oxidoreductase
176:, thereby releasing chemical energy in order to produce 7276: 6541:
Rubinstein JL, Walker JE, Henderson R (December 2003).
6405: 4216: 3878: 3383:"oxidative Meaning in the Cambridge English Dictionary" 607: 403: 279: 9103:(amino acid→pyruvate, acetyl CoA, or TCA intermediate) 7193:
Biochimica et Biophysica Acta (BBA) - General Subjects
7190: 6497: 5897: 3650:"The structure, function and evolution of cytochromes" 3535:
Annual Review of Biophysics and Biomolecular Structure
2971:
Oxidative phosphorylation in hypoxic/anoxic conditions
2582:. The portion embedded within the membrane is called F 2473: 2368:, with easily interchangeable sets of enzyme systems. 1889: 222:. Oxidative phosphorylation uses these molecules and O 8900: 5787: 4591: 2760: 2416: 1724: 1465: 1276: 1151: 954: 245:, these redox reactions are catalyzed by a series of 123: 117: 111: 67: 61: 9520: 5417: 5300: 5216: 4699: 4464: 3010:
below the concentration that these enzymes can use.
1663: 645:. This coenzyme contains electrons that have a high 141: 135: 126: 91: 85: 73: 8358:
Biophysical and Structural Aspects of Bioenergetics
8253:
Into the Cool: Energy Flow, Thermodynamics and Life
6049:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
6008:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
5898:Schäfer G, Engelhard M, Müller V (September 1999). 5708:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
5487: 5385:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
5341: 5182:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
5089: 4847:"Structure and function of cytochrome bc complexes" 4592:Ramsay RR, Steenkamp DJ, Husain M (February 1987). 4506:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
4309:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
4267: 4122:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
3913: 1360:In mammals, this metabolic pathway is important in 576:Within proteins, electrons are transferred between 105: 64: 8229: 7586: 7432:(2nd ed.). Kolkata, India: Books and Allied. 7392:Biochimica et Biophysica Acta (BBA) - Biomembranes 3474: 2875: 2539: 1865: 1589: 1336: 1191: 1041: 417:The two components of the proton-motive force are 7908: 7822: 7621: 7277:St-Pierre J, Brand MD, Boutilier RG (July 2000). 6774: 6723:Dimroth P, von Ballmoos C, Meier T (March 2006). 5033:Hunte C, Palsdottir H, Trumpower BL (June 2003). 4302: 4159: 2610:of amino acids in the ring of c subunits causing 2481: 2480: 2463: 2462: 457:to carbon dioxide and water, while each cycle of 294:. The ATP synthase uses the energy to transform 10893: 8856:Electron-transferring-flavoprotein dehydrogenase 8298: 8135: 6173: 5742: 5652: 4938: 4155: 4153: 1392:The two electron transfer steps in complex III: 1255:electron transferring-flavoprotein dehydrogenase 600:, which is rapid over distances of less than 1.4 8761:Complex III/Coenzyme Q - cytochrome c reductase 6775:Gresser MJ, Myers JA, Boyer PD (October 1982). 4700:Ikeda Y, Dabrowski C, Tanaka K (January 1983). 4640: 1246:Electron transfer flavoprotein-Q oxidoreductase 8277:(1st ed.). Oxford University Press, USA. 8250: 7666: 7139: 6687: 6641:"The rotary machine in the cell, ATP synthase" 6001: 5849:Origins of Life and Evolution of the Biosphere 4744: 1971:In the bacteria, oxidative phosphorylation in 9494: 8886: 8510: 8255:(1st ed.). University of Chicago Press. 8136:Boyer PD, Cross RL, Momsen W (October 1973). 7427: 5949: 4150: 3475:Dimroth P, Kaim G, Matthey U (January 2000). 3470: 3468: 3420: 3266:in 1941. Later, in 1949, Morris Friedkin and 943:that is found in the mitochondrion membrane: 527:Within the inner mitochondrial membrane, the 211:, producing carbon dioxide and the energetic 8360:(1st ed.). Royal Society of Chemistry. 8322:(1st ed.). Cambridge University Press. 7537: 7104: 6865: 6589: 5952:"The respiratory chains of Escherichia coli" 5488:Maxwell DP, Wang Y, McIntosh L (July 1999). 4641:Zhang J, Frerman FE, Kim JJ (October 2006). 4111: 4109: 3964: 3831: 3748:Journal of the American College of Nutrition 3654:Progress in Biophysics and Molecular Biology 1938: 1128:(FAD) cofactor, iron–sulfur clusters, and a 535:(Q) carries both electrons and protons by a 410:, with the N-side having a negative charge. 7709: 6716: 6638: 6083: 5945: 5943: 5382: 4061: 4059: 4057: 4055: 4053: 4051: 4049: 4047: 3602: 3524: 2382: 1384:Q-cytochrome c oxidoreductase (complex III) 203:The energy stored in the chemical bonds of 132: 114: 82: 76: 9501: 9487: 8893: 8879: 8517: 8503: 8404:University of Illinois at Urbana–Champaign 7389: 6770: 6768: 5904:Microbiology and Molecular Biology Reviews 3465: 3250:of a vital role for phosphate in cellular 2721: 2637:This ATP synthesis reaction is called the 881:NADH-coenzyme Q oxidoreductase (complex I) 495:form (Q) to the reduced ubiquinol form (QH 8227: 8171: 8161: 8108: 7885: 7840: 7727: 7643: 7555: 7363: 7353: 7312: 7302: 7016: 6956: 6954: 6917:Journal of Bioenergetics and Biomembranes 6891: 6861: 6859: 6792: 6748: 6656: 6615: 6566: 6474: 6286: 6191: 6150: 6101: 6060: 6019: 5975: 5923: 5823: 5813: 5760: 5719: 5678: 5621: 5572: 5540: 5523: 5513: 5359: 5318: 5269: 5193: 5058: 5002: 4981: 4865: 4821: 4765: 4717: 4676: 4666: 4617: 4517: 4320: 4185: 4133: 4106: 3848: 3714: 3665: 3624: 3520: 3518: 3516: 3514: 2915:. This cellular damage may contribute to 2903:and their reaction products, such as the 2859: 2520: 2436: 1846: 1821: 1799: 1795: 1773: 1733: 1729: 1570: 1548: 1544: 1514: 1492: 1488: 1022: 971: 359:Oxidative phosphorylation works by using 151:electron transport-linked phosphorylation 8355: 8054: 7980: 7622:Ricquier D, Bouillaud F (January 2000). 7385: 7383: 6315: 6313: 6214: 6174:Yamanaka T, Fukumori Y (December 1988). 5997: 5995: 5950:Ingledew WJ, Poole RK (September 1984). 5940: 5701: 5342:Sluse FE, Jarmuszkiewicz W (June 1998). 5301:McDonald A, Vanlerberghe G (June 2004). 5231:10.1146/annurev.arplant.55.031903.141720 4918:10.1146/annurev.physiol.66.032102.150251 4393:10.1146/annurev.biochem.72.121801.161700 4378: 4303:Friedrich T, Böttcher B (January 2004). 4073: 4071: 4044: 3893:10.1146/annurev.biochem.74.082803.133518 3788: 2749:anions, which are dangerously reactive. 2624: 1673: 1387: 1376:, as it accepts electrons from multiple 1100: 884: 482: 298:(ADP) into adenosine triphosphate, in a 20: 8415: 8125:from the original on 29 September 2007. 7867: 7823:Friedkin M, Lehninger AL (April 1949). 7785: 7742: 7538:Lambert AJ, Brand MD (September 2004). 7496: 7460: 6819: 6809:from the original on 29 September 2007. 6765: 6530:from the original on 30 September 2007. 5846: 5743:Schägger H, Pfeiffer K (October 2001). 5251: 4745:Ruzicka FJ, Beinert H (December 1977). 4734:from the original on 29 September 2007. 4160:Sazanov LA, Hinchliffe P (March 2006). 3872: 3825: 3647: 3507:from the original on 30 September 2007. 2456: 1097:Succinate-Q oxidoreductase (complex II) 37:are oxidized, releasing the energy of O 10894: 10742: 10733: 10726: 10705: 10698: 10691: 10682: 10673: 10666: 10659: 10650: 10643: 10636: 10619: 10610: 10603: 10594: 10587: 10580: 10573: 10545: 10538: 10531: 10524: 10512: 10505: 10483: 10470: 10457: 10433: 10426: 10417: 10410: 10384: 10377: 10356: 10337: 10323: 10309: 10300: 10291: 10284: 10277: 10259: 10250: 10241: 10234: 10225: 10218: 10209: 10202: 10195: 10174: 10167: 10158: 10151: 10142: 10135: 10128: 10121: 10114: 10107: 10100: 10093: 9976: 9961: 9948: 9935: 9922: 9909: 9896: 9881: 9851: 9838: 9823: 9806: 9791: 9776: 9763: 9746: 9731: 9716: 9670: 9659: 9646: 9631: 9616: 9603: 9590: 9577: 9562: 9549: 9536: 8317: 7929: 7857:from the original on 16 December 2008. 7712:"The alcoholic ferment of yeast-juice" 6995: 6960: 6951: 6914: 6856: 6408:Nature Reviews. Molecular Cell Biology 6123:Applied and Environmental Microbiology 4903: 3603:Porter RK, Brand MD (September 1995). 3511: 2714:Efficiency = (21.9 x 100%) / 52 = 42% 2675:Oxidative phosphorylation - energetics 1993:Respiratory enzymes and substrates in 1450:and the reduction of two molecules of 1253:(ETF-Q oxidoreductase), also known as 871: 469:Electron and proton transfer molecules 10714: 10561: 10554: 10448: 10397: 10370: 10344: 10268: 10188: 10181: 10081: 10074: 10065: 10048: 10039: 10021: 10008: 9995: 9866: 9701: 9686: 9482: 8874: 8498: 8336: 7423: 7421: 7380: 6319: 6310: 5992: 5653:Schägger H, Pfeiffer K (April 2000). 5546: 4467:Current Protein & Peptide Science 4343: 4210: 4077: 4068: 3967:Current Opinion in Structural Biology 3745: 1952:Prokaryotic electron transport chains 516:atom that the protein holds within a 325:, damaging cells and contributing to 9003:Electron acceptors other than oxygen 8375: 8269: 8232:Lehninger Principles of Biochemistry 8031: 7098: 6086:"Energy conservation in Nitrobacter" 3688: 3567: 3393:from the original on 24 January 2018 3053:Effect on oxidative phosphorylation 2751: 2736:Molecular oxygen is a good terminal 2407: 2356:. This problem is solved by using a 1715: 1456: 1267: 1142: 945: 608:Eukaryotic electron transport chains 8483:Coenzyme Q - cytochrome c reductase 8196:"The Nobel Prize in Chemistry 1997" 8097:The Journal of Biological Chemistry 7887:10.1146/annurev.bi.60.070191.000245 7829:The Journal of Biological Chemistry 7745:Molecular and Cellular Biochemistry 7544:The Journal of Biological Chemistry 6781:The Journal of Biological Chemistry 6645:The Journal of Biological Chemistry 6590:Leslie AG, Walker JE (April 2000). 6504:The Journal of Experimental Biology 5749:The Journal of Biological Chemistry 5610:The Journal of Biological Chemistry 5258:The Journal of Biological Chemistry 4991:The Journal of Biological Chemistry 4754:The Journal of Biological Chemistry 4706:The Journal of Biological Chemistry 3832:Søballe B, Poole RK (August 1999). 3481:The Journal of Experimental Biology 3405: 3216:, regulated proton channels called 1890:Alternative reductases and oxidases 651:inner membrane of the mitochondrion 398:across the membrane, is called the 13: 9508: 8747:Complex II/Succinate dehydrogenase 8643:Pyruvate dehydrogenase phosphatase 8216: 8034:Peter Mitchell and the Vital Force 7800:10.4159/harvard.9780674366701.c141 7418: 6929:10.1023/B:JOBB.0000019603.68282.04 6639:Noji H, Yoshida M (January 2001). 6229:10.1111/j.1365-2958.1993.tb01664.x 6193:10.1111/j.1574-6968.1988.tb02746.x 6103:10.1111/j.1574-6968.1990.tb03989.x 6002:Unden G, Bongaerts J (July 1997). 5252:Menz RI, Day DA (September 1996). 3691:"Why do c-type cytochromes exist?" 2955:, and antioxidant enzymes such as 2079:Glycerol-3-phosphate dehydrogenase 1652:is then released from the enzyme. 1633:and is reduced to Q, which is the 1259:electron-transferring flavoprotein 14: 10928: 8299:Nicholls DG, Ferguson SJ (2002). 4876:10.1146/annurev.biochem.69.1.1005 1664:Cytochrome c oxidase (complex IV) 10871: 10855: 10839: 10827: 10815: 10803: 10791: 10779: 10761: 9528: 8465:Interactive molecular models at 8303:(1st ed.). Academic Press. 8188: 8129: 8084: 8048: 8025: 7974: 7923: 7902: 7861: 7816: 7779: 7736: 7716:Proceedings of the Royal Society 6467:10.1128/jb.180.12.3205-3208.1998 6334:10.1146/annurev.biochem.66.1.717 6306:from the original on 2007-09-27. 6279:10.1128/jb.175.10.3020-3025.1993 5777:from the original on 2007-09-29. 5432:10.1146/annurev.arplant.48.1.703 5022:from the original on 2007-09-27. 4893:from the original on 2015-12-28. 4785:from the original on 2007-09-27. 4080:Biochemical Society Transactions 3868:from the original on 2008-05-29. 3570:Biochemical Society Transactions 2936:that reduce membrane potential. 2919:and is proposed as one cause of 1215:In some eukaryotes, such as the 592:, usually by the sulfur atom of 101: 54: 9024:Substrate-level phosphorylation 8771:Complex IV/Cytochrome c oxidase 8236:(4th ed.). W. H. Freeman. 8221: 8202:from the original on 2017-03-25 8073:from the original on 2007-09-27 7703: 7660: 7615: 7580: 7531: 7490: 7454: 7329: 7270: 7219: 7184: 7133: 7063: 6989: 6908: 6884:10.1128/jb.176.9.2543-2550.1994 6866:Becher B, Müller V (May 1994). 6813: 6681: 6632: 6583: 6534: 6491: 6442: 6399: 6348: 6251: 6208: 6167: 6143:10.1128/AEM.72.3.2050-2063.2006 6110: 6077: 6036: 5891: 5840: 5781: 5736: 5695: 5646: 5597: 5481: 5446: 5411: 5376: 5361:10.1590/S0100-879X1998000600003 5335: 5294: 5245: 5210: 5169: 5118: 5083: 5026: 4975: 4932: 4897: 4838: 4789: 4738: 4693: 4634: 4585: 4534: 4493: 4458: 4407: 4372: 4337: 4296: 4261: 3993: 3958: 3907: 3782: 3739: 3611:. 310 ( Pt 2) (Pt 2): 379–382. 3547:10.1146/annurev.biophys.30.1.23 3354:DNP was extensively used as an 3348: 2943:systems, including antioxidant 1419:. In mammals, this enzyme is a 626:biochemical processes, such as 344: 321:, which lead to propagation of 207:is released by the cell in the 8618:Pyruvate dehydrogenase complex 8251:Schneider ED, Sagan D (2006). 7107:Trends in Biochemical Sciences 6690:Trends in Biochemical Sciences 5968:10.1128/mmbr.48.3.222-271.1984 5916:10.1128/MMBR.63.3.570-620.1999 5900:"Bioenergetics of the Archaea" 5219:Annual Review of Plant Biology 5092:Trends in Biochemical Sciences 3843:. 145 ( Pt 8) (8): 1817–1830. 3760:10.1080/07315724.2001.10719063 3682: 3641: 3596: 3561: 3414: 3375: 2483: 2458: 1789: 1530: 1299: 1164: 987: 898:NADH-coenzyme Q oxidoreductase 379:and hydrogen (protons), is an 1: 9427:Reverse cholesterol transport 8639:Pyruvate dehydrogenase kinase 8339:Introduction to Bioenergetics 8110:10.1016/S0021-9258(20)81361-1 7874:Annual Review of Biochemistry 7842:10.1016/S0021-9258(18)56879-4 7119:10.1016/S0968-0004(00)01674-1 6963:Biochemical Society Symposium 6794:10.1016/S0021-9258(18)33672-X 6702:10.1016/S0968-0004(01)02051-5 6322:Annual Review of Biochemistry 6062:10.1016/S0005-2728(01)00238-9 6021:10.1016/S0005-2728(97)00034-0 5721:10.1016/S0005-2728(02)00271-2 5702:Schägger H (September 2002). 5574:10.1016/S0014-5793(01)03172-6 5467:10.1016/S0378-1119(97)00502-7 5397:10.1016/S0005-2728(05)80197-5 5147:10.1126/science.272.5265.1136 5060:10.1016/S0014-5793(03)00391-0 5004:10.1016/S0021-9258(19)38410-8 4854:Annual Review of Biochemistry 4767:10.1016/S0021-9258(19)75238-7 4719:10.1016/S0021-9258(18)33160-0 4519:10.1016/S0005-2728(01)00237-7 4381:Annual Review of Biochemistry 3881:Annual Review of Biochemistry 3369: 3360:2,4-Dinitrophenol#Dieting aid 3026:inhibit NADH and coenzyme Q. 2996:There are several well-known 2991: 1401:Q-cytochrome c oxidoreductase 1394:Q-cytochrome c oxidoreductase 573:, in addition to ubiquinone. 9079:(protein→peptide→amino acid) 8742:Complex I/NADH dehydrogenase 8467:Universidade Fernando Pessoa 7630:. 345 Pt 2 (Pt 2): 161–179. 7601:10.1016/0926-6569(64)90182-8 7507:10.1016/0076-6879(79)55060-5 7404:10.1016/0005-2736(91)90051-9 7205:10.1016/j.bbagen.2009.04.019 7084:10.1016/j.biocel.2006.07.001 6377:10.1016/0014-5793(95)01536-1 5195:10.1016/j.bbabio.2006.06.004 5104:10.1016/0968-0004(94)90071-X 4322:10.1016/j.bbabio.2003.10.002 4270:Journal of Molecular Biology 4135:10.1016/j.bbabio.2006.05.007 3716:10.1016/0014-5793(83)80289-0 3667:10.1016/0079-6107(85)90004-5 3293:with the publication of the 3242:History of molecular biology 3185: 3169: 3147: 3124: 3098: 3074: 2318: 2299: 2276: 2264:Dimethyl sulfoxide reductase 2257: 2238: 2219: 2200: 2181: 2162: 2133: 2114: 2091: 2072: 2053: 2034: 266:inner mitochondrial membrane 7: 8393:On-line biophysics lectures 8292: 7710:Harden A, Young WJ (1906). 6996:Rattan SI (December 2006). 4961:10.1126/science.281.5373.64 4906:Annual Review of Physiology 3850:10.1099/13500872-145-8-1817 3324: 2889: 2553: 1879: 1603: 1350: 1205: 1126:flavin adenine dinucleotide 1055: 282:gradient and the resulting 10: 10933: 10907:Integral membrane proteins 9464:Phospagen system (ATP-PCr) 8934:Primary nutritional groups 8562:Oxoglutarate dehydrogenase 8228:Nelson DL, Cox MM (2004). 6084:Freitag A, Bock E (1990). 5320:10.1080/1521-6540400000876 4982:Trumpower BL (July 1990). 3235: 3231: 2725: 2393:ATP synthase, also called 2386: 1955: 1667: 1114:Succinate-Q oxidoreductase 1107:Succinate-Q oxidoreductase 856: 836: 814: 611: 531:-soluble electron carrier 508:electron transfer protein 472: 348: 184:, this takes place inside 9517: 9439: 9399: 9371: 9352: 9326: 9298:Anoxygenic photosynthesis 9288: 9281: 9252: 9220:Pentose phosphate pathway 9215: 9198: 9181: 9174: 9154: 9115: 9086: 9062: 9053: 9010: 8994: 8975:Oxidative phosphorylation 8953: 8942: 8916: 8843: 8734: 8727:oxidative phosphorylation 8718: 8690: 8671: 8652: 8607: 8598: 8539: 8320:Biological Thermodynamics 7681:10.1007/s10540-005-2889-2 7636:10.1042/0264-6021:3450161 7027:10.1080/10715760600911303 6180:FEMS Microbiology Reviews 6090:FEMS Microbiology Letters 5547:Lenaz G (December 2001). 4282:10.1016/j.jmb.2006.11.026 3979:10.1016/j.sbi.2004.10.002 3689:Wood PM (December 1983). 3272:oxidative phosphorylation 3198:, thereby inhibiting the 2143:-amino acid dehydrogenase 1939:Organization of complexes 1069:attached to the complex, 50:Oxidative phosphorylation 9318:Entner-Doudoroff pathway 8980:electron transport chain 8967:Pyruvate decarboxylation 8722:electron transport chain 8682:Methylmalonyl-CoA mutase 8557:Isocitrate dehydrogenase 8388:Concepts in Biochemistry 8356:Wikstrom M, ed. (2005). 7428:Satyanarayana U (2002). 7355:10.3389/fphys.2018.01941 6741:10.1038/sj.embor.7400646 5271:10.1074/jbc.271.38.23117 4479:10.2174/1389203043486847 3387:dictionary.cambridge.org 3341: 3194:Binds to the Qi site of 2639:binding change mechanism 2573:vacuolar type H+-ATPases 2383:ATP synthase (complex V) 678:electrochemical gradient 614:Electron transport chain 396:electrochemical gradient 255:electron transport chain 27:electron transport chain 10786:carbohydrate metabolism 9412:Sphingolipid metabolism 9313:DeLey-Doudoroff pathway 9161:carbohydrate catabolism 9156:Carbohydrate metabolism 9142:Purine nucleotide cycle 8663:Glutamate dehydrogenase 8574:Succinate dehydrogenase 8567:Succinyl CoA synthetase 8478:succinate dehydrogenase 8424:molecule of the month: 8341:(1st ed.). Anmol. 8163:10.1073/pnas.70.10.2837 7628:The Biochemical Journal 7342:Frontiers in Physiology 6872:Journal of Bacteriology 6822:Antonie van Leeuwenhoek 6455:Journal of Bacteriology 6267:Journal of Bacteriology 5956:Microbiological Reviews 5869:10.1023/A:1006515817767 5671:10.1093/emboj/19.8.1777 5515:10.1073/pnas.96.14.8271 4668:10.1073/pnas.0604567103 4598:The Biochemical Journal 4436:10.1126/science.1079605 4346:The Biochemical Journal 4187:10.1126/science.1123809 3609:The Biochemical Journal 3356:anti-obesity medication 3238:History of biochemistry 3018:, the barbiturate drug 2901:reactive oxygen species 2722:Reactive oxygen species 2687:O can be summarized as 2332:succinate dehydrogenase 2188:Succinate dehydrogenase 1929:reactive oxygen species 1122:succinate dehydrogenase 739:Succinate dehydrogenase 479:Cofactor (biochemistry) 442:motor of ATP synthase. 435:Propionigenium modestum 311:reactive oxygen species 9381:Fatty acid degradation 9101:Amino acid degradation 8706:Aspartate transaminase 7729:10.1098/rspb.1906.0029 7557:10.1074/jbc.M406576200 7304:10.1073/pnas.140093597 6658:10.1074/jbc.R000021200 6608:10.1098/rstb.2000.0588 6217:Molecular Microbiology 5815:10.1073/pnas.81.9.2606 5762:10.1074/jbc.M106474200 5623:10.1074/jbc.M610545200 4814:10.1105/tpc.105.035162 3811:10.1126/science.388618 3196:cytochrome c reductase 2877: 2634: 2541: 2358:nitrite oxidoreductase 1867: 1683: 1591: 1405:cytochrome c reductase 1397: 1338: 1193: 1110: 1082:conformational changes 1043: 894: 638:, produce the reduced 500: 447:anaerobic fermentation 406:) and a difference in 268:, in a process called 178:adenosine triphosphate 46: 10834:amino acid metabolism 9417:Eicosanoid metabolism 9373:Fatty acid metabolism 9137:Pyrimidine metabolism 8996:Anaerobic respiration 7005:Free Radical Research 3362:for more information. 3254:, but initially only 3236:Further information: 3125:Poisons, weight-loss 3036:British anti-Lewisite 3022:, and the antibiotic 2878: 2726:Further information: 2628: 2542: 2387:Further information: 2169:Glucose dehydrogenase 2121:Lactate dehydrogenase 2022:Formate dehydrogenase 1956:Further information: 1868: 1677: 1668:Further information: 1592: 1391: 1339: 1235:Plasmodium falciparum 1194: 1104: 1071:flavin mononucleotide 1044: 891:NADH-Q oxidoreductase 888: 684:Trichomonas vaginalis 612:Further information: 486: 473:Further information: 349:Further information: 296:adenosine diphosphate 24: 10902:Cellular respiration 10810:cellular respiration 9391:Fatty acid synthesis 9096:Amino acid synthesis 8701:Pyruvate carboxylase 8589:Malate dehydrogenase 8488:cytochrome c oxidase 8452:Cytochrome c oxidase 8416:Structural resources 8198:. Nobel Foundation. 8066:. Nobel Foundation. 6559:10.1093/emboj/cdg608 6516:10.1242/jeb.203.1.89 3493:10.1242/jeb.203.1.51 3264:Fritz Albert Lipmann 3214:brown adipose tissue 3063:Carbon monoxide 2957:superoxide dismutase 2758: 2414: 1958:Microbial metabolism 1908:, which is found in 1722: 1687:Cytochrome c oxidase 1680:cytochrome c oxidase 1670:cytochrome c oxidase 1463: 1274: 1149: 952: 922:mitochondrial genome 582:iron–sulfur clusters 290:in a process called 284:electrical potential 198:anaerobic glycolysis 9982:Transcription & 8955:Aerobic respiration 8851:Alternative oxidase 8655:α-ketoglutaric acid 8154:1973PNAS...70.2837B 8055:Mitchell P (1978). 7995:1961Natur.191..144M 7944:1953Natur.172..975S 7868:Kalckar HM (1991). 7550:(38): 39414–39420. 7476:10.1021/bi00052a022 7295:2000PNAS...97.8670S 7240:2002Natur.415...96E 7154:2000Natur.408..239F 6787:(20): 12030–12038. 6369:1996FEBSL.379..309V 6135:2006ApEnM..72.2050S 5861:1999OLEB...29...73N 5806:1984PNAS...81.2606G 5755:(41): 37861–37867. 5616:(16): 12240–12248. 5565:2001FEBSL.509..151L 5506:1999PNAS...96.8271M 5264:(38): 23117–23120. 5188:(9–10): 1110–1116. 5139:1996Sci...272.1136T 5133:(5265): 1136–1144. 5051:2003FEBSL.545...39H 4997:(20): 11409–11412. 4953:1998Sci...281...64I 4659:2006PNAS..10316212Z 4653:(44): 16212–16217. 4563:10.1038/nature05572 4555:2007Natur.446...88P 4428:2003Sci...299..700Y 4239:10.1038/nature09066 4231:2010Natur.465..441E 4178:2006Sci...311.1430S 4172:(5766): 1430–1436. 4128:(9–10): 1406–1420. 4022:10.1038/nature03343 4014:2005Natur.434...74B 3928:1999Natur.402...47P 3803:1979Sci...206.1148M 3797:(4423): 1148–1159. 3707:1983FEBSL.164..223W 3648:Mathews FS (1985). 3576:(Pt 6): 1095–1105. 3435:1967Natur.213..137M 3295:chemiosmotic theory 3268:Albert L. Lehninger 3218:uncoupling proteins 2934:uncoupling proteins 2866: 2841: 2817: 2793: 2774: 2535: 2510: 2469: 2451: 2002:Respiratory enzyme 1998: 1905:alternative oxidase 1861: 1834: 1812: 1788: 1764: 1746: 1585: 1561: 1529: 1505: 1479: 1332: 1314: 1290: 1187: 1037: 1015: 986: 700:Respiratory enzyme 696: 676:, and generates an 674:intermembrane space 400:proton-motive force 10769:metabolic pathways 9459:Ethanol metabolism 9407:Steroid metabolism 9132:Nucleotide salvage 9064:Protein metabolism 8473:NADH dehydrogenase 8457:2020-07-24 at the 8445:2020-07-24 at the 8433:2020-07-24 at the 8398:2009-05-02 at the 7757:10.1007/BF01874172 7669:Bioscience Reports 6975:10.1042/bss0610001 6834:10.1007/BF00872221 4358:10.1042/BJ20091382 4092:10.1042/BST0330525 3582:10.1042/bst0311095 3315:structural studies 3276:Volodymyr Belitser 2873: 2870: 2846: 2821: 2815: 2798: 2762: 2655:also contain the A 2635: 2537: 2521: 2498: 2488: 2437: 2336:fumarate reductase 2306:Fumarate reductase 2060:NADH dehydrogenase 2011:Midpoint potential 1992: 1987:midpoint potential 1912:, as well as some 1863: 1847: 1822: 1800: 1774: 1752: 1734: 1684: 1587: 1571: 1549: 1515: 1493: 1467: 1398: 1368:and catabolism of 1334: 1320: 1302: 1278: 1189: 1175: 1111: 1039: 1023: 1003: 972: 902:NADH dehydrogenase 895: 873:Conditions: pH = 7 720:NADH dehydrogenase 709:Midpoint potential 694: 647:transfer potential 598:quantum tunnelling 539:cycle. This small 501: 408:electric potential 373:electron acceptors 341:their activities. 271:electron transport 232:electron acceptors 196:processes such as 155:terminal oxidation 47: 10887: 10886: 10757: 10756: 10717:Neurotransmitters 10096:Nucleotide sugars 9829:Direct / C4 / CAM 9476: 9475: 9472: 9471: 9435: 9434: 9348: 9347: 9344: 9343: 9331:Xylose metabolism 9277: 9276: 9150: 9149: 9127:Purine metabolism 9072:Protein synthesis 9049: 9048: 8971:Citric acid cycle 8929:Metabolic network 8924:Metabolic pathway 8868: 8867: 8864: 8863: 8714: 8713: 8530:Citric acid cycle 8376:General resources 8337:Rajan SS (2003). 8318:Haynie D (2001). 8148:(10): 2837–2839. 8103:(11): 3322–3329. 7989:(4784): 144–148. 7938:(4387): 975–978. 7516:978-0-12-181955-2 7289:(15): 8670–8674. 7148:(6809): 239–247. 7011:(12): 1230–1238. 6602:(1396): 465–471. 6553:(23): 6182–6192. 6461:(12): 3205–3208. 6273:(10): 3020–3025. 5500:(14): 8271–8276. 4760:(23): 8440–8445. 4610:10.1042/bj2410883 4422:(5607): 700–704. 4225:(7297): 441–445. 4086:(Pt 3): 525–529. 3617:10.1042/bj3100379 3429:(5072): 137–139. 3291:Peter D. Mitchell 3210: 3209: 3121:2,4-Dinitrophenol 2897: 2896: 2869: 2849: 2845: 2842: 2833: 2820: 2808: 2801: 2797: 2794: 2785: 2765: 2738:electron acceptor 2561: 2560: 2528: 2524: 2513: 2501: 2494: 2490: 2444: 2440: 2429: 2426: 2420: 2345:bacteria such as 2323: 2322: 2245:Nitrite reductase 2226:Nitrate reductase 2207:Ubiquinol oxidase 2158: 2142: 1887: 1886: 1854: 1850: 1837: 1825: 1807: 1803: 1798: 1781: 1777: 1755: 1741: 1737: 1732: 1710:electron acceptor 1611: 1610: 1578: 1574: 1556: 1552: 1547: 1535: 1522: 1518: 1500: 1496: 1491: 1470: 1403:is also known as 1358: 1357: 1323: 1309: 1305: 1298: 1285: 1281: 1213: 1212: 1178: 1170: 1163: 1156: 1063: 1062: 1030: 1026: 1006: 993: 979: 975: 964: 958: 878: 877: 681:protozoa such as 632:citric acid cycle 543:molecule is very 522:periplasmic space 419:thermodynamically 319:hydrogen peroxide 278:in the form of a 274:. This generates 247:protein complexes 209:citric acid cycle 190:aerobic organisms 159:metabolic pathway 35:citric acid cycle 16:Metabolic pathway 10924: 10881: 10878:lipid metabolism 10875: 10874: 10869: 10859: 10858: 10853: 10843: 10842: 10837: 10831: 10830: 10825: 10819: 10818: 10813: 10807: 10806: 10801: 10795: 10794: 10789: 10783: 10782: 10765: 10764: 10747: 10740: 10731: 10724: 10722:thyroid hormones 10712: 10703: 10696: 10689: 10680: 10671: 10664: 10657: 10648: 10641: 10634: 10617: 10608: 10601: 10592: 10585: 10578: 10571: 10559: 10552: 10543: 10536: 10529: 10522: 10510: 10503: 10481: 10468: 10455: 10446: 10431: 10424: 10415: 10408: 10395: 10382: 10375: 10368: 10354: 10342: 10335: 10321: 10307: 10298: 10289: 10282: 10275: 10266: 10257: 10248: 10239: 10232: 10223: 10216: 10207: 10200: 10193: 10186: 10179: 10172: 10165: 10156: 10149: 10140: 10133: 10126: 10119: 10112: 10105: 10098: 10091: 10079: 10072: 10063: 10046: 10034: 10030: 10019: 10015: 10006: 10002: 9993: 9989: 9983: 9974: 9970: 9959: 9955: 9946: 9942: 9933: 9929: 9920: 9916: 9907: 9903: 9894: 9890: 9879: 9875: 9864: 9860: 9849: 9845: 9836: 9832: 9821: 9817: 9804: 9800: 9789: 9785: 9774: 9770: 9761: 9757: 9744: 9740: 9729: 9725: 9714: 9710: 9699: 9695: 9681: 9678: 9668: 9665: 9657: 9654: 9644: 9641: 9629: 9626: 9614: 9611: 9601: 9598: 9588: 9585: 9575: 9572: 9560: 9557: 9547: 9544: 9532: 9521: 9503: 9496: 9489: 9480: 9479: 9447:Metal metabolism 9369: 9368: 9354:Lipid metabolism 9286: 9285: 9179: 9178: 9172: 9171: 9084: 9083: 9060: 9059: 8986: 8951: 8950: 8895: 8888: 8881: 8872: 8871: 8732: 8731: 8693:oxaloacetic acid 8605: 8604: 8547:Citrate synthase 8519: 8512: 8505: 8496: 8495: 8371: 8352: 8333: 8314: 8288: 8266: 8247: 8235: 8211: 8210: 8208: 8207: 8192: 8186: 8185: 8175: 8165: 8133: 8127: 8126: 8112: 8088: 8082: 8081: 8079: 8078: 8072: 8061: 8052: 8046: 8045: 8029: 8023: 8022: 8003:10.1038/191144a0 7978: 7972: 7971: 7952:10.1038/172975a0 7927: 7921: 7920: 7906: 7900: 7899: 7889: 7865: 7859: 7858: 7844: 7820: 7814: 7813: 7783: 7777: 7776: 7740: 7734: 7733: 7731: 7707: 7701: 7700: 7675:(3–4): 271–286. 7664: 7658: 7657: 7647: 7619: 7613: 7612: 7584: 7578: 7577: 7559: 7535: 7529: 7528: 7494: 7488: 7487: 7458: 7452: 7451: 7425: 7416: 7415: 7387: 7378: 7377: 7367: 7357: 7333: 7327: 7326: 7316: 7306: 7274: 7268: 7267: 7223: 7217: 7216: 7188: 7182: 7181: 7162:10.1038/35041687 7137: 7131: 7130: 7102: 7096: 7095: 7067: 7061: 7060: 7058: 7057: 7051: 7045:. Archived from 7020: 7002: 6993: 6987: 6986: 6958: 6949: 6948: 6912: 6906: 6905: 6895: 6878:(9): 2543–2550. 6863: 6854: 6853: 6817: 6811: 6810: 6796: 6772: 6763: 6762: 6752: 6720: 6714: 6713: 6685: 6679: 6678: 6660: 6651:(3): 1665–1668. 6636: 6630: 6629: 6619: 6587: 6581: 6580: 6570: 6547:The EMBO Journal 6538: 6532: 6531: 6495: 6489: 6488: 6478: 6446: 6440: 6439: 6420:10.1038/35089509 6403: 6397: 6396: 6352: 6346: 6345: 6317: 6308: 6307: 6305: 6290: 6264: 6255: 6249: 6248: 6212: 6206: 6205: 6195: 6171: 6165: 6164: 6154: 6129:(3): 2050–2063. 6114: 6108: 6107: 6105: 6081: 6075: 6074: 6064: 6055:(1–2): 140–157. 6040: 6034: 6033: 6023: 5999: 5990: 5989: 5979: 5947: 5938: 5937: 5927: 5895: 5889: 5888: 5844: 5838: 5837: 5827: 5817: 5800:(9): 2606–2610. 5785: 5779: 5778: 5764: 5740: 5734: 5733: 5723: 5714:(1–3): 154–159. 5699: 5693: 5692: 5682: 5665:(8): 1777–1783. 5659:The EMBO Journal 5650: 5644: 5643: 5625: 5601: 5595: 5594: 5576: 5544: 5538: 5537: 5527: 5517: 5485: 5479: 5478: 5450: 5444: 5443: 5415: 5409: 5408: 5380: 5374: 5373: 5363: 5339: 5333: 5332: 5322: 5298: 5292: 5291: 5273: 5249: 5243: 5242: 5214: 5208: 5207: 5197: 5173: 5167: 5166: 5122: 5116: 5115: 5087: 5081: 5080: 5062: 5030: 5024: 5023: 5021: 5006: 4988: 4979: 4973: 4972: 4936: 4930: 4929: 4901: 4895: 4894: 4892: 4869: 4851: 4842: 4836: 4835: 4825: 4808:(9): 2587–2600. 4793: 4787: 4786: 4784: 4769: 4751: 4742: 4736: 4735: 4721: 4712:(2): 1066–1076. 4697: 4691: 4690: 4680: 4670: 4638: 4632: 4631: 4621: 4589: 4583: 4582: 4538: 4532: 4531: 4521: 4512:(1–2): 123–139. 4497: 4491: 4490: 4462: 4456: 4455: 4411: 4405: 4404: 4376: 4370: 4369: 4341: 4335: 4334: 4324: 4300: 4294: 4293: 4265: 4259: 4258: 4214: 4208: 4207: 4189: 4157: 4148: 4147: 4137: 4113: 4104: 4103: 4075: 4066: 4063: 4042: 4041: 3997: 3991: 3990: 3962: 3956: 3955: 3911: 3905: 3904: 3876: 3870: 3869: 3867: 3852: 3838: 3829: 3823: 3822: 3786: 3780: 3779: 3743: 3737: 3736: 3718: 3686: 3680: 3679: 3669: 3645: 3639: 3638: 3628: 3600: 3594: 3593: 3565: 3559: 3558: 3522: 3509: 3508: 3472: 3463: 3462: 3443:10.1038/213137a0 3418: 3412: 3409: 3403: 3402: 3400: 3398: 3379: 3363: 3352: 3284: 3256:sugar phosphates 3222:body temperature 3071:Hydrogen sulfide 3041: 3040: 2891: 2882: 2880: 2879: 2874: 2872: 2871: 2867: 2865: 2864: 2854: 2847: 2843: 2840: 2839: 2838: 2831: 2824: 2822: 2818: 2816: 2806: 2799: 2795: 2792: 2791: 2790: 2783: 2776: 2773: 2770: 2763: 2752: 2728:Oxidative stress 2555: 2546: 2544: 2543: 2538: 2536: 2534: 2529: 2526: 2522: 2511: 2509: 2506: 2499: 2492: 2491: 2489: 2487: 2486: 2479: 2471: 2470: 2468: 2461: 2453: 2450: 2445: 2442: 2438: 2427: 2424: 2418: 2408: 2338:, respectively. 2325:As shown above, 2287:-oxide reductase 2156: 2140: 2098:Pyruvate oxidase 1999: 1991: 1974:Escherichia coli 1933:oxidative stress 1881: 1872: 1870: 1869: 1864: 1862: 1860: 1855: 1852: 1848: 1839: 1835: 1833: 1830: 1823: 1814: 1811: 1808: 1805: 1801: 1796: 1787: 1782: 1779: 1775: 1766: 1763: 1760: 1753: 1748: 1745: 1742: 1739: 1735: 1730: 1716: 1689:, also known as 1605: 1596: 1594: 1593: 1588: 1586: 1584: 1579: 1576: 1572: 1563: 1560: 1557: 1554: 1550: 1545: 1537: 1533: 1528: 1523: 1520: 1516: 1507: 1504: 1501: 1498: 1494: 1489: 1481: 1478: 1475: 1468: 1457: 1352: 1343: 1341: 1340: 1335: 1333: 1331: 1328: 1321: 1316: 1313: 1310: 1307: 1303: 1296: 1292: 1289: 1286: 1283: 1279: 1268: 1207: 1198: 1196: 1195: 1190: 1188: 1186: 1183: 1176: 1171: 1168: 1161: 1157: 1154: 1143: 1116:, also known as 1067:prosthetic group 1057: 1048: 1046: 1045: 1040: 1038: 1036: 1031: 1028: 1024: 1014: 1011: 1004: 999: 998: 991: 985: 980: 977: 973: 962: 956: 946: 900:, also known as 874: 697: 693: 668:by NADH to pump 603: 276:potential energy 148: 147: 144: 143: 140: 137: 134: 131: 128: 125: 122: 119: 116: 113: 110: 107: 98: 97: 94: 93: 90: 87: 84: 81: 78: 75: 72: 69: 66: 63: 60: 10932: 10931: 10927: 10926: 10925: 10923: 10922: 10921: 10892: 10891: 10888: 10883: 10882: 10872: 10870: 10856: 10854: 10840: 10838: 10828: 10826: 10816: 10814: 10804: 10802: 10792: 10790: 10780: 10778: 10776: 10773:metro-style map 10766: 10758: 10753: 10752: 10751: 10750: 10749: 10748: 10743: 10741: 10737: 10734: 10732: 10727: 10725: 10719: 10715: 10713: 10709: 10708:Polyunsaturated 10706: 10704: 10699: 10697: 10692: 10690: 10686: 10683: 10681: 10677: 10674: 10672: 10667: 10665: 10660: 10658: 10654: 10651: 10649: 10644: 10642: 10637: 10635: 10624: 10620: 10618: 10614: 10611: 10609: 10604: 10602: 10598: 10595: 10593: 10588: 10586: 10581: 10579: 10574: 10572: 10566: 10562: 10560: 10555: 10553: 10549: 10546: 10544: 10539: 10537: 10532: 10530: 10525: 10523: 10517: 10513: 10511: 10506: 10504: 10493: 10484: 10482: 10475: 10471: 10469: 10462: 10458: 10456: 10452: 10449: 10447: 10443: 10434: 10432: 10427: 10425: 10421: 10418: 10416: 10411: 10409: 10402: 10398: 10396: 10388: 10385: 10383: 10378: 10376: 10371: 10369: 10365: 10362: 10357: 10355: 10349: 10345: 10343: 10338: 10336: 10330: 10327: 10324: 10322: 10316: 10313: 10310: 10308: 10304: 10301: 10299: 10295: 10292: 10290: 10285: 10283: 10278: 10276: 10272: 10269: 10267: 10263: 10260: 10258: 10254: 10251: 10249: 10245: 10242: 10240: 10235: 10233: 10229: 10226: 10224: 10219: 10217: 10213: 10210: 10208: 10203: 10201: 10196: 10194: 10189: 10187: 10182: 10180: 10175: 10173: 10168: 10166: 10162: 10159: 10157: 10152: 10150: 10146: 10143: 10141: 10136: 10134: 10129: 10127: 10122: 10120: 10115: 10113: 10108: 10106: 10101: 10099: 10094: 10092: 10086: 10082: 10080: 10075: 10073: 10069: 10066: 10064: 10056: 10049: 10047: 10043: 10040: 10037: 10035: 10028: 10026: 10022: 10020: 10013: 10009: 10007: 10000: 9996: 9994: 9987: 9985: 9981: 9977: 9975: 9968: 9966: 9962: 9960: 9953: 9949: 9947: 9940: 9936: 9934: 9928:Steroidogenesis 9927: 9923: 9921: 9914: 9910: 9908: 9901: 9897: 9895: 9888: 9886: 9882: 9880: 9873: 9871: 9867: 9865: 9859:phosphorylation 9858: 9856: 9852: 9850: 9843: 9839: 9837: 9830: 9828: 9824: 9822: 9815: 9813: 9811: 9807: 9805: 9798: 9796: 9792: 9790: 9783: 9781: 9777: 9775: 9768: 9764: 9762: 9755: 9753: 9751: 9747: 9745: 9738: 9736: 9732: 9730: 9723: 9721: 9717: 9715: 9708: 9706: 9702: 9700: 9693: 9691: 9687: 9684: 9682: 9676: 9674: 9671: 9669: 9663: 9660: 9658: 9652: 9650: 9647: 9645: 9639: 9637: 9635: 9632: 9630: 9624: 9622: 9620: 9617: 9615: 9609: 9607: 9604: 9602: 9596: 9594: 9591: 9589: 9583: 9581: 9578: 9576: 9570: 9568: 9566: 9563: 9561: 9555: 9553: 9550: 9548: 9542: 9540: 9537: 9533: 9513: 9507: 9477: 9468: 9452:Iron metabolism 9431: 9395: 9356: 9340: 9322: 9308:Carbon fixation 9273: 9248: 9211: 9194: 9190:Gluconeogenesis 9163: 9158: 9146: 9118: 9111: 9082: 9055: 9045: 9006: 8990: 8978: 8945: 8938: 8912: 8899: 8869: 8860: 8839: 8781: 8755: 8725: 8720: 8710: 8686: 8667: 8648: 8594: 8535: 8523: 8459:Wayback Machine 8447:Wayback Machine 8435:Wayback Machine 8418: 8402:Antony Crofts, 8400:Wayback Machine 8378: 8368: 8349: 8330: 8311: 8301:Bioenergetics 3 8295: 8285: 8263: 8244: 8224: 8219: 8217:Further reading 8214: 8205: 8203: 8194: 8193: 8189: 8134: 8130: 8089: 8085: 8076: 8074: 8070: 8059: 8053: 8049: 8030: 8026: 7979: 7975: 7928: 7924: 7907: 7903: 7866: 7862: 7821: 7817: 7810: 7784: 7780: 7741: 7737: 7708: 7704: 7665: 7661: 7620: 7616: 7585: 7581: 7536: 7532: 7517: 7495: 7491: 7459: 7455: 7440: 7426: 7419: 7388: 7381: 7334: 7330: 7275: 7271: 7248:10.1038/415096a 7234:(6867): 96–99. 7224: 7220: 7189: 7185: 7138: 7134: 7113:(10): 502–508. 7103: 7099: 7068: 7064: 7055: 7053: 7049: 7018:10.1.1.476.9259 7000: 6994: 6990: 6959: 6952: 6913: 6909: 6864: 6857: 6818: 6814: 6773: 6766: 6721: 6717: 6686: 6682: 6637: 6633: 6588: 6584: 6539: 6535: 6510:(Pt 1): 89–95. 6496: 6492: 6447: 6443: 6404: 6400: 6353: 6349: 6318: 6311: 6303: 6262: 6256: 6252: 6213: 6209: 6172: 6168: 6115: 6111: 6096:(1–3): 157–62. 6082: 6078: 6041: 6037: 6000: 5993: 5948: 5941: 5896: 5892: 5845: 5841: 5786: 5782: 5741: 5737: 5700: 5696: 5651: 5647: 5602: 5598: 5545: 5541: 5486: 5482: 5451: 5447: 5416: 5412: 5381: 5377: 5340: 5336: 5299: 5295: 5250: 5246: 5215: 5211: 5174: 5170: 5123: 5119: 5088: 5084: 5031: 5027: 5019: 4986: 4980: 4976: 4947:(5373): 64–71. 4937: 4933: 4902: 4898: 4890: 4867:10.1.1.319.5709 4849: 4843: 4839: 4794: 4790: 4782: 4749: 4743: 4739: 4698: 4694: 4639: 4635: 4590: 4586: 4549:(7131): 88–91. 4539: 4535: 4498: 4494: 4463: 4459: 4412: 4408: 4377: 4373: 4342: 4338: 4301: 4297: 4266: 4262: 4215: 4211: 4158: 4151: 4114: 4107: 4076: 4069: 4064: 4045: 4008:(7029): 74–79. 3998: 3994: 3963: 3959: 3922:(6757): 47–52. 3912: 3908: 3877: 3873: 3865: 3836: 3830: 3826: 3787: 3783: 3744: 3740: 3687: 3683: 3646: 3642: 3601: 3597: 3566: 3562: 3523: 3512: 3487:(Pt 1): 51–59. 3473: 3466: 3419: 3415: 3410: 3406: 3396: 3394: 3381: 3380: 3376: 3372: 3367: 3366: 3353: 3349: 3344: 3336:TIM/TOM Complex 3327: 3278: 3244: 3234: 3128:Inner membrane 3119: 3110: 3069: 3065: 3061: 3050:Site of action 2994: 2986:lactic acidosis 2982: 2973: 2860: 2855: 2850: 2844: 2834: 2830: 2829: 2823: 2807: 2802: 2796: 2786: 2782: 2781: 2775: 2771: 2766: 2761: 2759: 2756: 2755: 2734: 2724: 2704: 2697: 2694:+ NADH + H → H 2693: 2686: 2682: 2677: 2670: 2666: 2662: 2658: 2605: 2598: 2593: 2589: 2585: 2567:reaction is an 2565:phosphorylation 2530: 2525: 2507: 2502: 2482: 2475: 2474: 2472: 2464: 2457: 2455: 2454: 2452: 2446: 2441: 2417: 2415: 2412: 2411: 2404: 2391: 2385: 2283:Trimethylamine 1960: 1954: 1941: 1892: 1856: 1851: 1838: 1831: 1826: 1813: 1809: 1804: 1783: 1778: 1765: 1761: 1756: 1747: 1743: 1738: 1725: 1723: 1720: 1719: 1672: 1666: 1659: 1651: 1647: 1643: 1632: 1628: 1624: 1616: 1580: 1575: 1562: 1558: 1553: 1536: 1524: 1519: 1506: 1502: 1497: 1480: 1476: 1471: 1466: 1464: 1461: 1460: 1434: 1412: 1386: 1329: 1324: 1315: 1311: 1306: 1291: 1287: 1282: 1277: 1275: 1272: 1271: 1248: 1226:large intestine 1184: 1179: 1167: 1153: 1152: 1150: 1147: 1146: 1099: 1092: 1076: 1032: 1027: 1012: 1007: 994: 990: 981: 976: 955: 953: 950: 949: 883: 872: 863: 849: 845: 829: 825: 807: 803: 794: 783: 779: 769: 757: 753: 667: 620: 610: 601: 568: 560: 556: 498: 481: 471: 441: 357: 347: 329:and, possibly, 300:phosphorylation 236:redox reactions 234:in a series of 225: 213:electron donors 104: 100: 57: 53: 40: 17: 12: 11: 5: 10930: 10920: 10919: 10914: 10909: 10904: 10885: 10884: 10822:cell signaling 10798:photosynthesis 10796:Violet nodes: 10784:Orange nodes: 10760: 10759: 10755: 10754: 10441: 10387:Aromatic amino 10294:Branched-chain 9844:Light reaction 9535: 9534: 9527: 9526: 9525: 9524: 9519: 9518: 9515: 9514: 9506: 9505: 9498: 9491: 9483: 9474: 9473: 9470: 9469: 9467: 9466: 9461: 9456: 9455: 9454: 9443: 9441: 9437: 9436: 9433: 9432: 9430: 9429: 9424: 9419: 9414: 9409: 9403: 9401: 9397: 9396: 9394: 9393: 9388: 9385:Beta oxidation 9377: 9375: 9366: 9350: 9349: 9346: 9345: 9342: 9341: 9339: 9338: 9333: 9327: 9324: 9323: 9321: 9320: 9315: 9310: 9305: 9303:Chemosynthesis 9300: 9295: 9293:Photosynthesis 9289: 9283: 9279: 9278: 9275: 9274: 9272: 9271: 9270: 9269: 9264: 9253: 9250: 9249: 9247: 9246: 9245: 9244: 9242:Leloir pathway 9234: 9233: 9232: 9230:Polyol pathway 9222: 9216: 9213: 9212: 9210: 9209: 9203:Glycogenolysis 9199: 9196: 9195: 9193: 9192: 9182: 9176: 9169: 9152: 9151: 9148: 9147: 9145: 9144: 9139: 9134: 9129: 9123: 9121: 9113: 9112: 9110: 9109: 9104: 9098: 9092: 9090: 9081: 9080: 9074: 9068: 9066: 9057: 9051: 9050: 9047: 9046: 9044: 9043: 9042: 9041: 9036: 9031: 9016: 9014: 9008: 9007: 9005: 9004: 9000: 8998: 8992: 8991: 8989: 8988: 8959: 8957: 8948: 8940: 8939: 8937: 8936: 8931: 8926: 8920: 8918: 8914: 8913: 8898: 8897: 8890: 8883: 8875: 8866: 8865: 8862: 8861: 8859: 8858: 8853: 8847: 8845: 8841: 8840: 8838: 8837: 8832: 8827: 8822: 8817: 8812: 8807: 8802: 8797: 8792: 8787: 8779: 8774: 8773: 8768: 8763: 8758: 8753: 8749: 8744: 8738: 8736: 8729: 8716: 8715: 8712: 8711: 8709: 8708: 8703: 8697: 8695: 8688: 8687: 8685: 8684: 8678: 8676: 8669: 8668: 8666: 8665: 8659: 8657: 8650: 8649: 8647: 8646: 8637:(regulated by 8634: 8633: 8614: 8612: 8602: 8596: 8595: 8593: 8592: 8586: 8581: 8570: 8569: 8564: 8559: 8554: 8549: 8543: 8541: 8537: 8536: 8522: 8521: 8514: 8507: 8499: 8493: 8492: 8491: 8490: 8485: 8480: 8475: 8463: 8462: 8461: 8449: 8437: 8417: 8414: 8413: 8412: 8411:Graham Johnson 8406: 8390: 8377: 8374: 8373: 8372: 8366: 8353: 8347: 8334: 8328: 8315: 8309: 8294: 8291: 8290: 8289: 8283: 8267: 8261: 8248: 8242: 8223: 8220: 8218: 8215: 8213: 8212: 8187: 8128: 8083: 8047: 8024: 7973: 7922: 7901: 7860: 7835:(2): 611–644. 7815: 7808: 7778: 7751:(1–2): 55–63. 7735: 7722:(77): 405–20. 7702: 7659: 7614: 7595:(2): 233–247. 7579: 7530: 7515: 7489: 7470:(1): 164–173. 7453: 7438: 7417: 7398:(2): 255–258. 7379: 7328: 7269: 7218: 7199:(3): 205–212. 7183: 7132: 7097: 7062: 6988: 6950: 6923:(1): 115–125. 6907: 6855: 6828:(4): 381–395. 6812: 6764: 6735:(3): 276–282. 6715: 6696:(3): 154–160. 6680: 6631: 6582: 6533: 6490: 6441: 6414:(9): 669–677. 6398: 6363:(3): 309–313. 6347: 6309: 6250: 6207: 6186:(4): 259–270. 6166: 6109: 6076: 6035: 6014:(3): 217–234. 5991: 5962:(3): 222–271. 5939: 5910:(3): 570–620. 5890: 5839: 5780: 5735: 5694: 5645: 5596: 5559:(2): 151–155. 5539: 5480: 5461:(2): 121–129. 5445: 5410: 5391:(2): 121–140. 5375: 5354:(6): 733–747. 5334: 5313:(6): 333–341. 5293: 5244: 5209: 5168: 5117: 5098:(8): 325–330. 5082: 5025: 4974: 4931: 4896: 4837: 4802:The Plant Cell 4788: 4737: 4692: 4633: 4604:(3): 883–892. 4584: 4533: 4492: 4473:(2): 107–118. 4457: 4406: 4371: 4352:(2): 327–339. 4336: 4295: 4276:(1): 140–154. 4260: 4209: 4149: 4105: 4067: 4043: 3992: 3973:(6): 642–647. 3957: 3906: 3871: 3824: 3781: 3754:(6): 591–598. 3738: 3701:(2): 223–226. 3681: 3640: 3595: 3560: 3510: 3464: 3413: 3404: 3373: 3371: 3368: 3365: 3364: 3346: 3345: 3343: 3340: 3339: 3338: 3333: 3326: 3323: 3319:John E. Walker 3303:David E. Green 3274:was coined by 3260:Herman Kalckar 3233: 3230: 3208: 3207: 3192: 3189: 3184: 3178: 3177: 3174: 3171: 3168: 3158: 3157: 3154: 3151: 3146: 3140: 3139: 3129: 3126: 3123: 3113: 3112: 3108: 3105: 3102: 3097: 3091: 3090: 3079: 3076: 3073: 3055: 3054: 3051: 3048: 3045: 2993: 2990: 2980: 2972: 2969: 2895: 2894: 2885: 2883: 2863: 2858: 2853: 2837: 2827: 2814: 2811: 2805: 2789: 2779: 2769: 2723: 2720: 2702: 2695: 2691: 2684: 2680: 2676: 2673: 2668: 2664: 2660: 2656: 2603: 2596: 2591: 2587: 2583: 2559: 2558: 2549: 2547: 2533: 2519: 2516: 2505: 2497: 2485: 2478: 2467: 2460: 2449: 2435: 2432: 2423: 2402: 2384: 2381: 2366:modular design 2321: 2320: 2317: 2308: 2302: 2301: 2298: 2289: 2279: 2278: 2275: 2266: 2260: 2259: 2256: 2247: 2241: 2240: 2237: 2228: 2222: 2221: 2218: 2209: 2203: 2202: 2199: 2190: 2184: 2183: 2180: 2171: 2165: 2164: 2161: 2145: 2136: 2135: 2132: 2123: 2117: 2116: 2113: 2107:Carbon dioxide 2100: 2094: 2093: 2090: 2081: 2075: 2074: 2071: 2062: 2056: 2055: 2052: 2043: 2037: 2036: 2033: 2024: 2018: 2017: 2008: 2003: 1953: 1950: 1940: 1937: 1891: 1888: 1885: 1884: 1875: 1873: 1859: 1845: 1842: 1829: 1820: 1817: 1794: 1791: 1786: 1772: 1769: 1759: 1751: 1728: 1665: 1662: 1657: 1649: 1645: 1641: 1635:ubisemiquinone 1630: 1626: 1622: 1614: 1609: 1608: 1599: 1597: 1583: 1569: 1566: 1543: 1540: 1532: 1527: 1513: 1510: 1487: 1484: 1474: 1432: 1410: 1385: 1382: 1362:beta oxidation 1356: 1355: 1346: 1344: 1327: 1319: 1301: 1295: 1247: 1244: 1242:biosynthesis. 1217:parasitic worm 1211: 1210: 1201: 1199: 1182: 1174: 1166: 1160: 1098: 1095: 1090: 1074: 1061: 1060: 1051: 1049: 1035: 1021: 1018: 1010: 1002: 997: 989: 984: 970: 967: 961: 882: 879: 876: 875: 869: 868: 865: 861: 858: 854: 853: 850: 847: 846:/ Cytochrome a 843: 838: 834: 833: 830: 827: 826:/ Cytochrome c 823: 818: 812: 811: 808: 805: 804:/ Cytochrome b 801: 796: 792: 788: 787: 784: 781: 780:/ Coenzyme Q10 777: 772: 767: 762: 761: 758: 755: 751: 741: 735: 734: 731: 722: 716: 715: 706: 701: 665: 636:beta oxidation 609: 606: 566: 558: 554: 496: 470: 467: 459:beta oxidation 439: 346: 343: 223: 38: 15: 9: 6: 4: 3: 2: 10929: 10918: 10915: 10913: 10910: 10908: 10905: 10903: 10900: 10899: 10897: 10890: 10879: 10876:Green nodes: 10867: 10863: 10860:Brown nodes: 10851: 10847: 10835: 10823: 10811: 10799: 10787: 10774: 10770: 10746: 10739: 10730: 10723: 10718: 10711: 10702: 10695: 10694:Sphingolipids 10688: 10687:sphingolipids 10679: 10670: 10663: 10662:Glycerolipids 10656: 10655:phospholipids 10647: 10640: 10632: 10628: 10623: 10616: 10607: 10600: 10591: 10584: 10577: 10570: 10569:proteoglycans 10565: 10564:Glycoproteins 10558: 10551: 10542: 10535: 10528: 10521: 10516: 10509: 10501: 10497: 10491: 10487: 10479: 10474: 10466: 10461: 10454: 10444: 10437: 10430: 10423: 10414: 10406: 10401: 10394: 10390: 10381: 10374: 10367: 10360: 10353: 10348: 10341: 10334: 10329: 10320: 10315: 10306: 10297: 10288: 10281: 10274: 10265: 10256: 10247: 10238: 10231: 10222: 10215: 10206: 10199: 10192: 10185: 10178: 10171: 10164: 10155: 10148: 10139: 10132: 10125: 10118: 10111: 10104: 10097: 10090: 10085: 10078: 10071: 10062: 10058: 10052: 10045: 10038: 10033: 10032: 10031: 10018: 10017: 10016: 10005: 10004: 10003: 9992: 9991: 9990: 9984: 9973: 9972: 9971: 9958: 9957: 9956: 9945: 9944: 9943: 9932: 9931: 9930: 9919: 9918: 9917: 9906: 9905: 9904: 9893: 9892: 9891: 9878: 9877: 9876: 9863: 9862: 9861: 9848: 9847: 9846: 9835: 9834: 9833: 9831:carbon intake 9820: 9819: 9818: 9803: 9802: 9801: 9788: 9787: 9786: 9773: 9772: 9771: 9760: 9759: 9758: 9743: 9742: 9741: 9728: 9727: 9726: 9713: 9712: 9711: 9698: 9697: 9696: 9685: 9680: 9679: 9667: 9666: 9656: 9655: 9643: 9642: 9628: 9627: 9613: 9612: 9600: 9599: 9587: 9586: 9574: 9573: 9559: 9558: 9546: 9545: 9531: 9523: 9522: 9516: 9511: 9504: 9499: 9497: 9492: 9490: 9485: 9484: 9481: 9465: 9462: 9460: 9457: 9453: 9450: 9449: 9448: 9445: 9444: 9442: 9438: 9428: 9425: 9423: 9420: 9418: 9415: 9413: 9410: 9408: 9405: 9404: 9402: 9398: 9392: 9389: 9386: 9382: 9379: 9378: 9376: 9374: 9370: 9367: 9364: 9360: 9355: 9351: 9337: 9336:Radiotrophism 9334: 9332: 9329: 9328: 9325: 9319: 9316: 9314: 9311: 9309: 9306: 9304: 9301: 9299: 9296: 9294: 9291: 9290: 9287: 9284: 9280: 9268: 9265: 9263: 9260: 9259: 9258: 9257:Glycosylation 9255: 9254: 9251: 9243: 9240: 9239: 9238: 9235: 9231: 9228: 9227: 9226: 9223: 9221: 9218: 9217: 9214: 9208: 9204: 9201: 9200: 9197: 9191: 9187: 9184: 9183: 9180: 9177: 9173: 9170: 9167: 9162: 9157: 9153: 9143: 9140: 9138: 9135: 9133: 9130: 9128: 9125: 9124: 9122: 9120: 9114: 9108: 9105: 9102: 9099: 9097: 9094: 9093: 9091: 9089: 9085: 9078: 9075: 9073: 9070: 9069: 9067: 9065: 9061: 9058: 9052: 9040: 9037: 9035: 9032: 9030: 9027: 9026: 9025: 9021: 9018: 9017: 9015: 9013: 9009: 9002: 9001: 8999: 8997: 8993: 8985: 8981: 8976: 8972: 8968: 8964: 8961: 8960: 8958: 8956: 8952: 8949: 8947: 8941: 8935: 8932: 8930: 8927: 8925: 8922: 8921: 8919: 8915: 8911: 8907: 8903: 8896: 8891: 8889: 8884: 8882: 8877: 8876: 8873: 8857: 8854: 8852: 8849: 8848: 8846: 8842: 8836: 8833: 8831: 8828: 8826: 8823: 8821: 8818: 8816: 8813: 8811: 8808: 8806: 8803: 8801: 8798: 8796: 8793: 8791: 8788: 8786: 8782: 8776: 8775: 8772: 8769: 8767: 8764: 8762: 8759: 8757: 8750: 8748: 8745: 8743: 8740: 8739: 8737: 8733: 8730: 8728: 8723: 8719:Mitochondrial 8717: 8707: 8704: 8702: 8699: 8698: 8696: 8694: 8689: 8683: 8680: 8679: 8677: 8675: 8670: 8664: 8661: 8660: 8658: 8656: 8651: 8644: 8640: 8636: 8635: 8631: 8627: 8623: 8619: 8616: 8615: 8613: 8611: 8606: 8603: 8601: 8597: 8590: 8587: 8585: 8582: 8579: 8575: 8572: 8571: 8568: 8565: 8563: 8560: 8558: 8555: 8553: 8550: 8548: 8545: 8544: 8542: 8538: 8534: 8531: 8527: 8520: 8515: 8513: 8508: 8506: 8501: 8500: 8497: 8489: 8486: 8484: 8481: 8479: 8476: 8474: 8471: 8470: 8468: 8464: 8460: 8456: 8453: 8450: 8448: 8444: 8441: 8438: 8436: 8432: 8429: 8426: 8425: 8423: 8420: 8419: 8410: 8407: 8405: 8401: 8397: 8394: 8391: 8389: 8386: 8383: 8380: 8379: 8369: 8367:0-85404-346-2 8363: 8359: 8354: 8350: 8348:81-261-1364-2 8344: 8340: 8335: 8331: 8329:0-521-79549-4 8325: 8321: 8316: 8312: 8310:0-12-518121-3 8306: 8302: 8297: 8296: 8286: 8284:0-19-920564-7 8280: 8276: 8272: 8268: 8264: 8262:0-226-73937-6 8258: 8254: 8249: 8245: 8243:0-7167-4339-6 8239: 8234: 8233: 8226: 8225: 8201: 8197: 8191: 8183: 8179: 8174: 8169: 8164: 8159: 8155: 8151: 8147: 8143: 8139: 8132: 8124: 8120: 8116: 8111: 8106: 8102: 8098: 8094: 8087: 8069: 8065: 8064:Nobel lecture 8058: 8051: 8043: 8039: 8035: 8032:Saier Jr MH. 8028: 8020: 8016: 8012: 8008: 8004: 8000: 7996: 7992: 7988: 7984: 7977: 7969: 7965: 7961: 7957: 7953: 7949: 7945: 7941: 7937: 7933: 7926: 7918: 7914: 7913: 7905: 7897: 7893: 7888: 7883: 7879: 7875: 7871: 7864: 7856: 7852: 7848: 7843: 7838: 7834: 7830: 7826: 7819: 7811: 7809:9780674366701 7805: 7801: 7797: 7793: 7789: 7782: 7774: 7770: 7766: 7762: 7758: 7754: 7750: 7746: 7739: 7730: 7725: 7721: 7717: 7713: 7706: 7698: 7694: 7690: 7686: 7682: 7678: 7674: 7670: 7663: 7655: 7651: 7646: 7641: 7637: 7633: 7629: 7625: 7618: 7610: 7606: 7602: 7598: 7594: 7590: 7583: 7575: 7571: 7567: 7563: 7558: 7553: 7549: 7545: 7541: 7534: 7526: 7522: 7518: 7512: 7508: 7504: 7500: 7493: 7485: 7481: 7477: 7473: 7469: 7465: 7457: 7449: 7445: 7441: 7435: 7431: 7424: 7422: 7413: 7409: 7405: 7401: 7397: 7393: 7386: 7384: 7375: 7371: 7366: 7361: 7356: 7351: 7347: 7343: 7339: 7332: 7324: 7320: 7315: 7310: 7305: 7300: 7296: 7292: 7288: 7284: 7280: 7273: 7265: 7261: 7257: 7253: 7249: 7245: 7241: 7237: 7233: 7229: 7222: 7214: 7210: 7206: 7202: 7198: 7194: 7187: 7179: 7175: 7171: 7167: 7163: 7159: 7155: 7151: 7147: 7143: 7136: 7128: 7124: 7120: 7116: 7112: 7108: 7101: 7093: 7089: 7085: 7081: 7077: 7073: 7066: 7052:on 2014-06-14 7048: 7044: 7040: 7036: 7032: 7028: 7024: 7019: 7014: 7010: 7006: 6999: 6992: 6984: 6980: 6976: 6972: 6968: 6964: 6957: 6955: 6946: 6942: 6938: 6934: 6930: 6926: 6922: 6918: 6911: 6903: 6899: 6894: 6889: 6885: 6881: 6877: 6873: 6869: 6862: 6860: 6851: 6847: 6843: 6839: 6835: 6831: 6827: 6823: 6816: 6808: 6804: 6800: 6795: 6790: 6786: 6782: 6778: 6771: 6769: 6760: 6756: 6751: 6746: 6742: 6738: 6734: 6730: 6726: 6719: 6711: 6707: 6703: 6699: 6695: 6691: 6684: 6676: 6672: 6668: 6664: 6659: 6654: 6650: 6646: 6642: 6635: 6627: 6623: 6618: 6613: 6609: 6605: 6601: 6597: 6593: 6586: 6578: 6574: 6569: 6564: 6560: 6556: 6552: 6548: 6544: 6537: 6529: 6525: 6521: 6517: 6513: 6509: 6505: 6501: 6494: 6486: 6482: 6477: 6472: 6468: 6464: 6460: 6456: 6452: 6445: 6437: 6433: 6429: 6425: 6421: 6417: 6413: 6409: 6402: 6394: 6390: 6386: 6382: 6378: 6374: 6370: 6366: 6362: 6358: 6351: 6343: 6339: 6335: 6331: 6327: 6323: 6316: 6314: 6302: 6298: 6294: 6289: 6284: 6280: 6276: 6272: 6268: 6261: 6254: 6246: 6242: 6238: 6234: 6230: 6226: 6222: 6218: 6211: 6203: 6199: 6194: 6189: 6185: 6181: 6177: 6170: 6162: 6158: 6153: 6148: 6144: 6140: 6136: 6132: 6128: 6124: 6120: 6113: 6104: 6099: 6095: 6091: 6087: 6080: 6072: 6068: 6063: 6058: 6054: 6050: 6046: 6039: 6031: 6027: 6022: 6017: 6013: 6009: 6005: 5998: 5996: 5987: 5983: 5978: 5973: 5969: 5965: 5961: 5957: 5953: 5946: 5944: 5935: 5931: 5926: 5921: 5917: 5913: 5909: 5905: 5901: 5894: 5886: 5882: 5878: 5874: 5870: 5866: 5862: 5858: 5854: 5850: 5843: 5835: 5831: 5826: 5821: 5816: 5811: 5807: 5803: 5799: 5795: 5791: 5784: 5776: 5772: 5768: 5763: 5758: 5754: 5750: 5746: 5739: 5731: 5727: 5722: 5717: 5713: 5709: 5705: 5698: 5690: 5686: 5681: 5676: 5672: 5668: 5664: 5660: 5656: 5649: 5641: 5637: 5633: 5629: 5624: 5619: 5615: 5611: 5607: 5600: 5592: 5588: 5584: 5580: 5575: 5570: 5566: 5562: 5558: 5554: 5550: 5543: 5535: 5531: 5526: 5521: 5516: 5511: 5507: 5503: 5499: 5495: 5491: 5484: 5476: 5472: 5468: 5464: 5460: 5456: 5449: 5441: 5437: 5433: 5429: 5425: 5421: 5414: 5406: 5402: 5398: 5394: 5390: 5386: 5379: 5371: 5367: 5362: 5357: 5353: 5349: 5345: 5338: 5330: 5326: 5321: 5316: 5312: 5308: 5304: 5297: 5289: 5285: 5281: 5277: 5272: 5267: 5263: 5259: 5255: 5248: 5240: 5236: 5232: 5228: 5224: 5220: 5213: 5205: 5201: 5196: 5191: 5187: 5183: 5179: 5172: 5164: 5160: 5156: 5152: 5148: 5144: 5140: 5136: 5132: 5128: 5121: 5113: 5109: 5105: 5101: 5097: 5093: 5086: 5078: 5074: 5070: 5066: 5061: 5056: 5052: 5048: 5044: 5040: 5036: 5029: 5018: 5014: 5010: 5005: 5000: 4996: 4992: 4985: 4978: 4970: 4966: 4962: 4958: 4954: 4950: 4946: 4942: 4935: 4927: 4923: 4919: 4915: 4911: 4907: 4900: 4889: 4885: 4881: 4877: 4873: 4868: 4863: 4860:: 1005–1075. 4859: 4855: 4848: 4841: 4833: 4829: 4824: 4819: 4815: 4811: 4807: 4803: 4799: 4792: 4781: 4777: 4773: 4768: 4763: 4759: 4755: 4748: 4741: 4733: 4729: 4725: 4720: 4715: 4711: 4707: 4703: 4696: 4688: 4684: 4679: 4674: 4669: 4664: 4660: 4656: 4652: 4648: 4644: 4637: 4629: 4625: 4620: 4615: 4611: 4607: 4603: 4599: 4595: 4588: 4580: 4576: 4572: 4568: 4564: 4560: 4556: 4552: 4548: 4544: 4537: 4529: 4525: 4520: 4515: 4511: 4507: 4503: 4496: 4488: 4484: 4480: 4476: 4472: 4468: 4461: 4453: 4449: 4445: 4441: 4437: 4433: 4429: 4425: 4421: 4417: 4410: 4402: 4398: 4394: 4390: 4386: 4382: 4375: 4367: 4363: 4359: 4355: 4351: 4347: 4340: 4332: 4328: 4323: 4318: 4314: 4310: 4306: 4299: 4291: 4287: 4283: 4279: 4275: 4271: 4264: 4256: 4252: 4248: 4244: 4240: 4236: 4232: 4228: 4224: 4220: 4213: 4205: 4201: 4197: 4193: 4188: 4183: 4179: 4175: 4171: 4167: 4163: 4156: 4154: 4145: 4141: 4136: 4131: 4127: 4123: 4119: 4112: 4110: 4101: 4097: 4093: 4089: 4085: 4081: 4074: 4072: 4062: 4060: 4058: 4056: 4054: 4052: 4050: 4048: 4039: 4035: 4031: 4027: 4023: 4019: 4015: 4011: 4007: 4003: 3996: 3988: 3984: 3980: 3976: 3972: 3968: 3961: 3953: 3949: 3945: 3941: 3937: 3936:10.1038/46972 3933: 3929: 3925: 3921: 3917: 3910: 3902: 3898: 3894: 3890: 3886: 3882: 3875: 3864: 3860: 3856: 3851: 3846: 3842: 3835: 3828: 3820: 3816: 3812: 3808: 3804: 3800: 3796: 3792: 3785: 3777: 3773: 3769: 3765: 3761: 3757: 3753: 3749: 3742: 3734: 3730: 3726: 3722: 3717: 3712: 3708: 3704: 3700: 3696: 3692: 3685: 3677: 3673: 3668: 3663: 3659: 3655: 3651: 3644: 3636: 3632: 3627: 3622: 3618: 3614: 3610: 3606: 3599: 3591: 3587: 3583: 3579: 3575: 3571: 3564: 3556: 3552: 3548: 3544: 3540: 3536: 3532: 3528: 3521: 3519: 3517: 3515: 3506: 3502: 3498: 3494: 3490: 3486: 3482: 3478: 3471: 3469: 3460: 3456: 3452: 3448: 3444: 3440: 3436: 3432: 3428: 3424: 3417: 3408: 3392: 3388: 3384: 3378: 3374: 3361: 3357: 3351: 3347: 3337: 3334: 3332: 3329: 3328: 3322: 3320: 3316: 3312: 3311:Paul D. Boyer 3308: 3307:Efraim Racker 3304: 3300: 3296: 3292: 3286: 3282: 3277: 3273: 3269: 3265: 3261: 3257: 3253: 3249: 3248:Arthur Harden 3243: 3239: 3229: 3227: 3223: 3219: 3215: 3205: 3201: 3197: 3193: 3190: 3188: 3183: 3180: 3179: 3175: 3172: 3167: 3163: 3160: 3159: 3155: 3152: 3150: 3145: 3142: 3141: 3137: 3133: 3130: 3127: 3122: 3118: 3115: 3114: 3106: 3103: 3101: 3096: 3093: 3092: 3088: 3084: 3080: 3077: 3072: 3068: 3064: 3060: 3057: 3056: 3052: 3049: 3046: 3043: 3042: 3039: 3037: 3033: 3027: 3025: 3021: 3017: 3011: 3008: 3003: 2999: 2989: 2987: 2978: 2968: 2966: 2962: 2958: 2954: 2950: 2946: 2942: 2937: 2935: 2930: 2924: 2922: 2918: 2914: 2910: 2906: 2902: 2893: 2886: 2884: 2861: 2856: 2851: 2835: 2825: 2812: 2809: 2803: 2787: 2777: 2767: 2754: 2753: 2750: 2748: 2744: 2739: 2733: 2729: 2719: 2715: 2712: 2709: 2706: 2699: 2688: 2672: 2654: 2653: 2652:Methanococcus 2647: 2645: 2640: 2632: 2629:Mechanism of 2627: 2623: 2621: 2617: 2613: 2612:electrostatic 2609: 2600: 2581: 2576: 2574: 2570: 2566: 2557: 2550: 2548: 2531: 2517: 2514: 2503: 2495: 2476: 2465: 2447: 2443:intermembrane 2433: 2430: 2421: 2410: 2409: 2406: 2400: 2396: 2390: 2380: 2378: 2374: 2369: 2367: 2361: 2359: 2355: 2350: 2349: 2344: 2339: 2337: 2333: 2328: 2316: 2312: 2309: 2307: 2304: 2303: 2297: 2293: 2290: 2288: 2286: 2281: 2280: 2274: 2270: 2267: 2265: 2262: 2261: 2255: 2251: 2248: 2246: 2243: 2242: 2236: 2232: 2229: 2227: 2224: 2223: 2217: 2213: 2210: 2208: 2205: 2204: 2198: 2194: 2191: 2189: 2186: 2185: 2179: 2175: 2172: 2170: 2167: 2166: 2160: 2153: 2149: 2146: 2144: 2138: 2137: 2131: 2127: 2124: 2122: 2119: 2118: 2112: 2108: 2104: 2101: 2099: 2096: 2095: 2089: 2085: 2082: 2080: 2077: 2076: 2070: 2066: 2063: 2061: 2058: 2057: 2051: 2047: 2044: 2042: 2039: 2038: 2032: 2028: 2025: 2023: 2020: 2019: 2016: 2012: 2009: 2007: 2004: 2001: 2000: 1996: 1990: 1988: 1984: 1978: 1976: 1975: 1969: 1965: 1959: 1949: 1947: 1936: 1934: 1930: 1926: 1921: 1919: 1915: 1911: 1907: 1906: 1900: 1897: 1883: 1876: 1874: 1857: 1853:intermembrane 1843: 1840: 1827: 1818: 1815: 1792: 1784: 1770: 1767: 1757: 1749: 1726: 1718: 1717: 1714: 1711: 1706: 1704: 1700: 1696: 1692: 1688: 1681: 1676: 1671: 1661: 1653: 1639: 1636: 1620: 1607: 1600: 1598: 1581: 1577:intermembrane 1567: 1564: 1541: 1538: 1525: 1511: 1508: 1485: 1482: 1472: 1459: 1458: 1455: 1453: 1449: 1444: 1442: 1438: 1430: 1426: 1422: 1418: 1414: 1409:cytochrome bc 1406: 1402: 1395: 1390: 1381: 1379: 1375: 1371: 1367: 1363: 1354: 1347: 1345: 1325: 1317: 1293: 1270: 1269: 1266: 1264: 1260: 1256: 1252: 1243: 1241: 1237: 1236: 1231: 1227: 1223: 1222: 1218: 1209: 1202: 1200: 1180: 1172: 1158: 1145: 1144: 1141: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1108: 1103: 1094: 1088: 1083: 1078: 1072: 1068: 1059: 1052: 1050: 1033: 1029:intermembrane 1019: 1016: 1008: 1000: 995: 982: 968: 965: 959: 948: 947: 944: 942: 938: 934: 930: 925: 923: 919: 915: 911: 907: 903: 899: 892: 889:Complex I or 887: 870: 866: 859: 855: 851: 842: 839: 835: 831: 822: 819: 817: 813: 809: 800: 797: 791:Cytochrome bc 790: 789: 785: 776: 773: 771: 766:Cytochrome bc 764: 763: 759: 749: 745: 742: 740: 737: 736: 732: 730: 726: 723: 721: 718: 717: 714: 710: 707: 705: 702: 699: 698: 692: 690: 689:hydrogenosome 686: 685: 679: 675: 671: 663: 658: 656: 652: 648: 644: 641: 637: 633: 629: 625: 619: 615: 605: 599: 595: 591: 587: 583: 579: 574: 572: 564: 552: 551: 546: 542: 538: 534: 530: 525: 523: 519: 515: 511: 507: 494: 490: 487:Reduction of 485: 480: 476: 466: 464: 460: 456: 452: 448: 443: 437: 436: 432: 431:fusobacterium 428: 424: 420: 415: 411: 409: 405: 401: 397: 393: 392: 386: 382: 378: 374: 370: 366: 362: 356: 355:Bioenergetics 352: 342: 340: 336: 332: 328: 324: 323:free radicals 320: 316: 312: 307: 305: 301: 297: 293: 289: 285: 281: 277: 273: 272: 267: 263: 258: 256: 252: 248: 244: 239: 237: 233: 229: 221: 217: 214: 210: 206: 201: 199: 195: 191: 188:. Almost all 187: 183: 179: 175: 172: 168: 164: 160: 156: 152: 146: 96: 51: 44: 41:to power the 36: 32: 28: 23: 19: 10889: 10844:Grey nodes: 10832:Blue nodes: 10820:Pink nodes: 10738:cannabinoids 10576:Chlorophylls 10527:Antioxidants 10280:Serine group 10191:Photosystems 10177:P-glycerates 10124:P-glycerates 10089:sialic acids 10084:Amino sugars 10036: 10024: 10023: 10011: 10010: 9998: 9997: 9979: 9978: 9964: 9963: 9951: 9950: 9938: 9937: 9925: 9924: 9912: 9911: 9899: 9898: 9884: 9883: 9869: 9868: 9855: 9854: 9853: 9841: 9840: 9826: 9825: 9809: 9808: 9794: 9793: 9779: 9778: 9769:Fermentation 9766: 9765: 9749: 9748: 9734: 9733: 9719: 9718: 9704: 9703: 9689: 9688: 9683: 9672: 9661: 9648: 9633: 9618: 9605: 9592: 9579: 9564: 9551: 9538: 9237:Galactolysis 9207:Glycogenesis 9012:Fermentation 8984:ATP synthase 8974: 8777: 8766:Cytochrome c 8726: 8674:succinyl-CoA 8440:Cytochrome c 8428:ATP synthase 8409:ATP Synthase 8387: 8385:Wiley and Co 8357: 8338: 8319: 8300: 8274: 8252: 8231: 8222:Introductory 8204:. Retrieved 8190: 8145: 8141: 8131: 8100: 8096: 8086: 8075:. Retrieved 8063: 8050: 8033: 8027: 7986: 7982: 7976: 7935: 7931: 7925: 7916: 7910: 7904: 7877: 7873: 7863: 7832: 7828: 7818: 7791: 7787: 7781: 7748: 7744: 7738: 7719: 7715: 7705: 7672: 7668: 7662: 7627: 7617: 7592: 7588: 7582: 7547: 7543: 7533: 7498: 7492: 7467: 7464:Biochemistry 7463: 7456: 7430:Biochemistry 7429: 7395: 7391: 7345: 7341: 7331: 7286: 7282: 7272: 7231: 7227: 7221: 7196: 7192: 7186: 7145: 7141: 7135: 7110: 7106: 7100: 7078:(1): 44–84. 7075: 7071: 7065: 7054:. Retrieved 7047:the original 7008: 7004: 6991: 6966: 6962: 6920: 6916: 6910: 6875: 6871: 6825: 6821: 6815: 6784: 6780: 6732: 6729:EMBO Reports 6728: 6718: 6693: 6689: 6683: 6648: 6644: 6634: 6599: 6595: 6585: 6550: 6546: 6536: 6507: 6503: 6493: 6458: 6454: 6444: 6411: 6407: 6401: 6360: 6357:FEBS Letters 6356: 6350: 6325: 6321: 6270: 6266: 6253: 6220: 6216: 6210: 6183: 6179: 6169: 6126: 6122: 6112: 6093: 6089: 6079: 6052: 6048: 6038: 6011: 6007: 5959: 5955: 5907: 5903: 5893: 5855:(1): 73–93. 5852: 5848: 5842: 5797: 5793: 5783: 5752: 5748: 5738: 5711: 5707: 5697: 5662: 5658: 5648: 5613: 5609: 5599: 5556: 5553:FEBS Letters 5552: 5542: 5497: 5493: 5483: 5458: 5454: 5448: 5423: 5419: 5413: 5388: 5384: 5378: 5351: 5347: 5337: 5310: 5306: 5296: 5261: 5257: 5247: 5222: 5218: 5212: 5185: 5181: 5171: 5130: 5126: 5120: 5095: 5091: 5085: 5045:(1): 39–46. 5042: 5039:FEBS Letters 5038: 5028: 4994: 4990: 4977: 4944: 4940: 4934: 4909: 4905: 4899: 4857: 4853: 4840: 4805: 4801: 4791: 4757: 4753: 4740: 4709: 4705: 4695: 4650: 4646: 4636: 4601: 4597: 4587: 4546: 4542: 4536: 4509: 4505: 4495: 4470: 4466: 4460: 4419: 4415: 4409: 4384: 4380: 4374: 4349: 4345: 4339: 4312: 4308: 4298: 4273: 4269: 4263: 4222: 4218: 4212: 4169: 4165: 4125: 4121: 4083: 4079: 4005: 4001: 3995: 3970: 3966: 3960: 3919: 3915: 3909: 3884: 3880: 3874: 3841:Microbiology 3840: 3827: 3794: 3790: 3784: 3751: 3747: 3741: 3698: 3695:FEBS Letters 3694: 3684: 3657: 3653: 3643: 3608: 3598: 3573: 3569: 3563: 3538: 3534: 3525:Schultz BE, 3484: 3480: 3426: 3422: 3416: 3407: 3395:. Retrieved 3386: 3377: 3350: 3331:Respirometry 3287: 3271: 3252:fermentation 3245: 3211: 3191:Complex III 3166:oxaloacetate 3028: 3024:piericidin A 3012: 2995: 2974: 2938: 2925: 2898: 2887: 2735: 2716: 2713: 2710: 2707: 2700: 2689: 2678: 2650: 2648: 2638: 2636: 2631:ATP synthase 2601: 2577: 2562: 2551: 2394: 2392: 2389:ATP synthase 2376: 2370: 2362: 2346: 2340: 2326: 2324: 2284: 2014: 1994: 1982: 1979: 1972: 1961: 1946:respirasomes 1942: 1922: 1903: 1901: 1893: 1877: 1707: 1690: 1685: 1678:Complex IV: 1654: 1638:free radical 1612: 1601: 1452:cytochrome c 1445: 1416: 1415:, or simply 1408: 1404: 1399: 1359: 1348: 1254: 1249: 1233: 1221:Ascaris suum 1219: 1214: 1203: 1121: 1117: 1112: 1105:Complex II: 1079: 1064: 1053: 936: 933:coenzyme Q10 926: 918:cell nucleus 905: 901: 896: 841:Cytochrome a 821:Cytochrome c 799:Cytochrome b 775:Coenzyme Q10 712: 682: 659: 621: 618:Chemiosmosis 575: 562: 548: 541:benzoquinone 533:coenzyme Q10 526: 510:cytochrome c 502: 444: 433: 427:chloroplasts 416: 412: 391:chemiosmosis 389: 364: 358: 351:Chemiosmosis 345:Chemiosmosis 308: 292:chemiosmosis 288:ATP synthase 269: 259: 240: 202: 194:fermentation 186:mitochondria 154: 150: 49: 48: 43:ATP synthase 18: 10868:metabolism. 10852:metabolism. 10808:Red nodes: 10745:Eicosanoids 10710:fatty acids 10639:Cholesterol 10627:carotenoids 10606:Polyketides 10541:Nucleotides 10496:tocopherols 10460:Calciferols 10373:Amino acids 10366:amino acids 10296:amino acids 10271:Respiratory 10014:Proteolysis 10001:Translation 9988:replication 9954:MEP pathway 9941:MVA pathway 9902:Lipogenesis 9874:deamination 9664:Peroxisomal 9556:respiration 9363:lipogenesis 9225:Fructolysis 9039:Lactic acid 8783:synthesis: 8600:Anaplerotic 7788:Adv Enzymol 6328:: 717–749. 6223:(1): 9–15. 5426:: 703–734. 4912:: 689–733. 3887:: 247–281. 3660:(1): 1–56. 3299:Nobel prize 3279: [ 3226:hibernating 3182:Antimycin A 3173:Complex II 3078:Complex IV 3032:antimycin A 2965:peroxidases 2941:antioxidant 2732:Antioxidant 2580:kilodaltons 2569:equilibrium 2348:Nitrobacter 2159:-amino acid 2041:Hydrogenase 2027:Bicarbonate 1701:and one of 1437:cytochromes 1425:cytochromes 1417:complex III 1370:amino acids 1366:fatty acids 914:kilodaltons 857:Complex IV 837:Complex IV 580:cofactors, 571:menaquinone 545:hydrophobic 423:alkaliphile 264:across the 251:prokaryotes 228:produce ATP 10912:Metabolism 10896:Categories 10862:nucleotide 10646:Bile acids 10622:Terpenoids 10453:vitamin Bs 10436:Cobalamins 10364:glucogenic 10352:polyamines 10312:Homoserine 10184:Glyoxylate 10077:Inositol-P 9872:Amino acid 9812:feeders to 9640:elongation 9595:Glyoxylate 9584:acid cycle 9510:Metabolism 9186:Glycolysis 9119:metabolism 9117:Nucleotide 9107:Urea cycle 9088:Amino acid 9077:Catabolism 9020:Glycolysis 8963:Glycolysis 8946:metabolism 8906:catabolism 8902:Metabolism 8778:Coenzyme Q 8752:Coenzyme Q 8610:acetyl-CoA 8526:Metabolism 8206:2007-07-21 8077:2007-07-21 7919:: 516–534. 7912:Biokhimiya 7794:: 99–162. 7439:8187134801 7056:2017-10-27 5307:IUBMB Life 4387:: 77–109. 4315:(1): 1–9. 3370:References 3153:Complex I 3132:Ionophores 3104:Complex V 3100:Antibiotic 3095:Oligomycin 3044:Compounds 3007:oligomycin 2992:Inhibitors 2929:coenzyme Q 2819:Superoxide 2743:superoxide 2608:ionization 2343:nitrifying 2006:Redox pair 1899:membrane. 1691:complex IV 1435:and two b 1429:cytochrome 1378:acetyl-CoA 1240:pyrimidine 1118:complex II 937:ubiquinone 816:Complex IV 704:Redox pair 662:eukaryotes 628:glycolysis 590:amino acid 563:ubiquinone 557:); when QH 504:the water- 493:ubiquinone 489:coenzyme Q 463:fatty acid 451:Glycolysis 385:endergonic 335:senescence 315:superoxide 243:eukaryotes 182:eukaryotes 180:(ATP). In 10631:vitamin A 10615:backbones 10613:Terpenoid 10508:Cofactors 10500:vitamin E 10490:vitamin K 10478:vitamin A 10473:Retinoids 10465:vitamin D 10440:vitamin B 10405:vitamin C 10400:Ascorbate 10393:histidine 10380:Shikimate 10359:Ketogenic 10326:Glutamate 10303:Aspartate 10255:glutarate 10170:Pentose-P 10154:Succinate 10145:Propionyl 10138:Tetrose-P 10131:Pentose-P 10027:Glycosyl- 9967:Shikimate 9915:Lipolysis 9857:Oxidative 9814:gluconeo- 9756:oxylation 9737:Gluconeo- 9694:genolysis 9677:oxidation 9653:oxidation 9625:synthesis 9569:phosphate 9359:lipolysis 9166:anabolism 8910:anabolism 8552:Aconitase 7013:CiteSeerX 5225:: 23–39. 4862:CiteSeerX 3541:: 23–65. 3285:in 1939. 3204:ubiquinol 3200:oxidation 3187:Piscicide 3149:Pesticide 3136:uncouples 3111:subunit. 2953:vitamin E 2949:vitamin C 2909:mutations 2862:− 2836:− 2813:_ 2810:∙ 2788:− 2484:⇀ 2477:− 2466:− 2459:↽ 2399:phosphate 2395:complex V 2354:anabolism 2315:Succinate 2197:Succinate 2174:Gluconate 2148:2-oxoacid 1790:⟶ 1699:magnesium 1697:, one of 1531:⟶ 1448:ubiquinol 1300:⟶ 1232:parasite 1165:⟶ 1155:Succinate 1134:succinate 1087:ubiquinol 988:⟶ 906:complex I 655:Succinate 624:catabolic 550:ubiquinol 491:from its 381:exergonic 174:nutrients 161:in which 10850:cofactor 10729:Steroids 10669:Acyl-CoA 10653:Glycero- 10557:Proteins 10520:minerals 10515:Vitamins 10486:Quinones 10422:pigments 10347:Creatine 10340:Arginine 10244:Succinyl 10198:Pyruvate 10117:Glycerol 10110:Triose-P 10103:Hexose-P 10055:multiple 9752:Pyruvate 9543:fixation 9282:Nonhuman 9267:O-linked 9262:N-linked 9054:Specific 8584:Fumarase 8455:Archived 8443:Archived 8431:Archived 8396:Archived 8293:Advanced 8273:(2006). 8200:Archived 8123:Archived 8119:13738472 8068:Archived 8042:55202414 8011:13771349 7960:13111237 7880:: 1–37. 7855:Archived 7851:18116985 7773:26999163 7697:18598358 7689:16283557 7654:10620491 7609:14249115 7574:26620903 7566:15262965 7448:71209231 7374:30713504 7348:: 1941. 7323:10890886 7256:11780125 7213:19409964 7170:11089981 7127:11050436 7092:16978905 7043:11125090 7035:17090411 6969:: 1–31. 6945:24887884 6937:15168615 6850:23763996 6807:Archived 6759:16607397 6710:11893513 6675:30953216 6667:11080505 6626:10836500 6577:14633978 6528:Archived 6524:10600677 6428:11533724 6393:35989618 6301:Archived 6245:39165641 6161:16517654 6071:11803023 5934:10477309 5885:12289639 5877:11536899 5775:Archived 5771:11483615 5730:12206908 5689:10775262 5640:18123642 5632:17322303 5591:46138989 5583:11741580 5534:10393984 5440:15012279 5329:15370881 5239:15725055 5204:16904626 5163:20860573 5077:13942619 5069:12788490 5017:Archived 4926:14977419 4888:Archived 4884:10966481 4832:16055629 4780:Archived 4732:Archived 4687:17050691 4571:17330044 4528:11803022 4487:15078221 4452:29222766 4444:12560550 4401:14527321 4366:20025615 4331:14741580 4290:17157874 4247:20505720 4196:16469879 4144:16828051 4100:15916556 4030:15744302 3987:15582386 3944:10573417 3901:15952888 3863:Archived 3859:10463148 3776:28013583 3768:11771674 3590:14641005 3555:11340051 3529:(2001). 3505:Archived 3501:10600673 3397:28 April 3391:Archived 3325:See also 3170:Poisons 3162:Malonate 3144:Rotenone 3075:Poisons 3016:rotenone 2961:catalase 2947:such as 2945:vitamins 2905:hydroxyl 2868:Peroxide 2826:→ 2778:→ 2747:peroxide 2698:O + NAD 2644:affinity 2373:isozymes 2311:Fumarate 2193:Fumarate 2126:Pyruvate 2111:Pyruvate 2050:Hydrogen 2015:(Volts) 1964:bacteria 1918:protists 1169:Fumarate 1138:fumarate 920:and the 795:complex 713:(Volts) 640:coenzyme 594:cysteine 553:form (QH 475:Coenzyme 375:such as 313:such as 304:rotation 10866:protein 10846:vitamin 10548:Nucleic 10451:Various 10333:proline 10287:Alanine 10253:α-Keto- 10230:acetate 10221:Citrate 10205:Lactate 10061:glycans 9969:pathway 9889:shuttle 9887:Citrate 9816:genesis 9799:genesis 9754:decarb- 9739:genesis 9709:genesis 9571:pathway 9567:Pentose 9422:Ketosis 9034:Ethanol 8917:General 8756:(CoQ10) 8735:Primary 8591:and ETC 8533:enzymes 8182:4517936 8150:Bibcode 8019:1784050 7991:Bibcode 7968:4153659 7940:Bibcode 7896:1883194 7765:4279328 7645:1220743 7484:8380331 7412:1831660 7365:6346031 7291:Bibcode 7264:4349744 7236:Bibcode 7178:2502238 7150:Bibcode 6983:8660387 6902:8169202 6842:7832594 6803:6214554 6750:1456893 6617:1692760 6485:9620972 6436:3926411 6385:8603713 6365:Bibcode 6342:9242922 6297:8491720 6237:8412675 6202:2856189 6152:1393235 6131:Bibcode 6030:9230919 5986:6387427 5857:Bibcode 5834:6326133 5802:Bibcode 5561:Bibcode 5502:Bibcode 5475:9426242 5405:1883834 5370:9698817 5280:8798503 5155:8638158 5135:Bibcode 5127:Science 5112:7940677 5047:Bibcode 5013:2164001 4969:9651245 4949:Bibcode 4941:Science 4823:1197437 4728:6401712 4678:1637562 4655:Bibcode 4628:3593226 4619:1147643 4579:4421676 4551:Bibcode 4424:Bibcode 4416:Science 4255:4372778 4227:Bibcode 4204:1892332 4174:Bibcode 4166:Science 4038:4401178 4010:Bibcode 3952:4431405 3924:Bibcode 3799:Bibcode 3791:Science 3733:7685958 3725:6317447 3703:Bibcode 3676:3881803 3635:7654171 3626:1135905 3527:Chan SI 3459:4149605 3451:4291593 3431:Bibcode 3232:History 3059:Cyanide 2917:disease 2377:E. coli 2327:E. coli 2254:Ammonia 2250:Nitrite 2235:Nitrite 2231:Nitrate 2178:Glucose 2152:ammonia 2130:Lactate 2103:Acetate 2088:Gly-3-P 2031:Formate 2013:  1995:E. coli 1983:E. coli 1968:archaea 1619:Q cycle 1413:complex 1374:choline 1230:malaria 941:quinone 770:complex 754:or FADH 711:  670:protons 506:soluble 455:glucose 365:coupled 339:inhibit 327:disease 262:protons 205:glucose 171:oxidize 167:enzymes 157:is the 29:in the 10767:Major 10720:& 10685:Glyco- 10625:& 10597:Acetyl 10567:& 10518:& 10494:& 10391:& 10350:& 10331:& 10319:lysine 10317:& 10264:bodies 10262:Ketone 10237:Malate 10228:Oxalo- 10212:Acetyl 10161:Acetyl 10087:& 10070:sugars 10068:Simple 10059:& 10057:sugars 10051:Double 9722:Glyco- 9707:Glyco- 9692:Glyco- 9582:Citric 9554:Photo- 9541:Carbon 8944:Energy 8825:COQ10B 8820:COQ10A 8364:  8345:  8326:  8307:  8281:  8271:Lane N 8259:  8240:  8180:  8173:427120 8170:  8117:  8040:  8017:  8009:  7983:Nature 7966:  7958:  7932:Nature 7894:  7849:  7806:  7771:  7763:  7695:  7687:  7652:  7642:  7607:  7572:  7564:  7525:156853 7523:  7513:  7482:  7446:  7436:  7410:  7372:  7362:  7321:  7311:  7262:  7254:  7228:Nature 7211:  7176:  7168:  7142:Nature 7125:  7090:  7041:  7033:  7015:  6981:  6943:  6935:  6900:  6893:205391 6890:  6848:  6840:  6801:  6757:  6747:  6708:  6673:  6665:  6624:  6614:  6575:  6568:291849 6565:  6522:  6483:  6476:107823 6473:  6434:  6426:  6391:  6383:  6340:  6295:  6288:204621 6285:  6243:  6235:  6200:  6159:  6149:  6069:  6028:  5984:  5977:373010 5974:  5932:  5925:103747 5922:  5883:  5875:  5832:  5825:345118 5822:  5769:  5728:  5687:  5680:302020 5677:  5638:  5630:  5589:  5581:  5532:  5522:  5473:  5438:  5403:  5368:  5327:  5288:893754 5286:  5278:  5237:  5202:  5161:  5153:  5110:  5075:  5067:  5011:  4967:  4924:  4882:  4864:  4830:  4820:  4776:925004 4774:  4726:  4685:  4675:  4626:  4616:  4577:  4569:  4543:Nature 4526:  4485:  4450:  4442:  4399:  4364:  4329:  4288:  4253:  4245:  4219:Nature 4202:  4194:  4142:  4098:  4036:  4028:  4002:Nature 3985:  3950:  3942:  3916:Nature 3899:  3857:  3819:388618 3817:  3774:  3766:  3731:  3723:  3674:  3633:  3623:  3588:  3553:  3499:  3457:  3449:  3423:Nature 3034:, and 3020:amytal 3002:toxins 2977:oxygen 2963:, and 2899:These 2620:stator 2527:matrix 2319:+0.03 2300:+0.13 2277:+0.16 2258:+0.36 2239:+0.42 2220:+0.82 2212:Oxygen 2201:+0.03 2182:−0.14 2134:−0.19 2092:−0.19 2073:−0.32 2054:−0.42 2046:Proton 2035:−0.43 1910:plants 1896:plants 1780:matrix 1695:copper 1521:matrix 1427:: one 1263:flavin 978:matrix 910:enzyme 867:+0.82 852:+0.29 832:+0.22 810:+0.12 786:+0.06 760:−0.20 750:/ FMNH 733:−0.32 634:, and 630:, the 604:10 m. 586:sulfur 578:flavin 377:oxygen 361:energy 10917:Redox 10736:Endo- 10701:Waxes 10678:acids 10676:Fatty 10550:acids 10429:Hemes 10413:δ-ALA 10389:acids 10361:& 10328:group 10314:group 10305:group 10273:chain 10044:acids 10042:Sugar 10029:ation 9797:Keto- 9784:lysis 9782:Keto- 9724:lysis 9636:Fatty 9621:Fatty 9610:cycle 9597:cycle 9440:Other 9400:Other 9175:Human 9056:paths 8844:Other 8835:PDSS2 8830:PDSS1 8540:Cycle 8071:(PDF) 8060:(PDF) 8015:S2CID 7964:S2CID 7769:S2CID 7693:S2CID 7570:S2CID 7314:27006 7260:S2CID 7174:S2CID 7050:(PDF) 7039:S2CID 7001:(PDF) 6941:S2CID 6846:S2CID 6671:S2CID 6432:S2CID 6389:S2CID 6304:(PDF) 6263:(PDF) 6241:S2CID 5881:S2CID 5636:S2CID 5587:S2CID 5525:22224 5284:S2CID 5159:S2CID 5073:S2CID 5020:(PDF) 4987:(PDF) 4891:(PDF) 4850:(PDF) 4783:(PDF) 4750:(PDF) 4575:S2CID 4448:S2CID 4251:S2CID 4200:S2CID 4034:S2CID 3948:S2CID 3866:(PDF) 3837:(PDF) 3772:S2CID 3729:S2CID 3455:S2CID 3342:Notes 3283:] 3067:Azide 2998:drugs 2921:aging 2690:1/2 O 2563:This 2216:Water 1914:fungi 1421:dimer 864:/ HO 622:Many 537:redox 529:lipid 461:of a 331:aging 163:cells 149:) or 99:, US 10864:and 10848:and 10599:-CoA 10534:PRPP 10420:Bile 10246:-CoA 10214:-CoA 10163:-CoA 10147:-CoA 9675:beta 9651:Beta 9638:acid 9623:acid 9608:Urea 9164:and 8815:COQ9 8810:COQ7 8805:COQ6 8800:COQ5 8795:COQ4 8790:COQ3 8785:COQ2 8641:and 8578:SDHA 8362:ISBN 8343:ISBN 8324:ISBN 8305:ISBN 8279:ISBN 8257:ISBN 8238:ISBN 8178:PMID 8115:PMID 8038:OCLC 8007:PMID 7956:PMID 7892:PMID 7847:PMID 7804:ISBN 7761:PMID 7685:PMID 7650:PMID 7605:PMID 7562:PMID 7521:PMID 7511:ISBN 7480:PMID 7444:OCLC 7434:ISBN 7408:PMID 7396:1067 7370:PMID 7319:PMID 7252:PMID 7209:PMID 7197:1800 7166:PMID 7123:PMID 7088:PMID 7031:PMID 6979:PMID 6933:PMID 6898:PMID 6838:PMID 6799:PMID 6755:PMID 6706:PMID 6663:PMID 6622:PMID 6573:PMID 6520:PMID 6481:PMID 6424:PMID 6381:PMID 6338:PMID 6293:PMID 6233:PMID 6198:PMID 6157:PMID 6067:PMID 6053:1553 6026:PMID 6012:1320 5982:PMID 5930:PMID 5873:PMID 5830:PMID 5767:PMID 5726:PMID 5712:1555 5685:PMID 5628:PMID 5579:PMID 5530:PMID 5471:PMID 5455:Gene 5436:PMID 5401:PMID 5389:1059 5366:PMID 5325:PMID 5276:PMID 5235:PMID 5200:PMID 5186:1757 5151:PMID 5108:PMID 5065:PMID 5009:PMID 4965:PMID 4922:PMID 4880:PMID 4828:PMID 4772:PMID 4724:PMID 4683:PMID 4624:PMID 4567:PMID 4524:PMID 4510:1553 4483:PMID 4440:PMID 4397:PMID 4362:PMID 4327:PMID 4313:1608 4286:PMID 4243:PMID 4192:PMID 4140:PMID 4126:1757 4096:PMID 4026:PMID 3983:PMID 3940:PMID 3897:PMID 3855:PMID 3815:PMID 3764:PMID 3721:PMID 3672:PMID 3631:PMID 3586:PMID 3551:PMID 3497:PMID 3447:PMID 3399:2018 3240:and 3224:for 3164:and 3117:CCCP 3047:Use 3000:and 2951:and 2730:and 2616:axle 2334:and 2292:TMAO 2269:DMSO 2084:DHAP 2069:NADH 1966:and 1703:zinc 1441:heme 1372:and 1130:heme 957:NADH 929:NADH 729:NADH 643:NADH 616:and 518:heme 514:iron 477:and 369:NADH 353:and 333:and 317:and 220:FADH 218:and 216:NADH 165:use 52:(UK 31:cell 10771:in 10590:MVA 10583:MEP 9512:map 9188:⇄ 9029:ABE 8691:to 8672:to 8653:to 8608:to 8422:PDB 8168:PMC 8158:doi 8105:doi 8101:235 7999:doi 7987:191 7948:doi 7936:172 7882:doi 7837:doi 7833:178 7796:doi 7753:doi 7724:doi 7677:doi 7640:PMC 7632:doi 7597:doi 7552:doi 7548:279 7503:doi 7472:doi 7400:doi 7360:PMC 7350:doi 7309:PMC 7299:doi 7244:doi 7232:415 7201:doi 7158:doi 7146:408 7115:doi 7080:doi 7023:doi 6971:doi 6925:doi 6888:PMC 6880:doi 6876:176 6830:doi 6789:doi 6785:257 6745:PMC 6737:doi 6698:doi 6653:doi 6649:276 6612:PMC 6604:doi 6600:355 6563:PMC 6555:doi 6512:doi 6508:203 6471:PMC 6463:doi 6459:180 6416:doi 6373:doi 6361:379 6330:doi 6283:PMC 6275:doi 6271:175 6225:doi 6188:doi 6147:PMC 6139:doi 6098:doi 6057:doi 6016:doi 5972:PMC 5964:doi 5920:PMC 5912:doi 5865:doi 5820:PMC 5810:doi 5757:doi 5753:276 5716:doi 5675:PMC 5667:doi 5618:doi 5614:282 5569:doi 5557:509 5520:PMC 5510:doi 5463:doi 5459:203 5428:doi 5393:doi 5356:doi 5315:doi 5266:doi 5262:271 5227:doi 5190:doi 5143:doi 5131:272 5100:doi 5055:doi 5043:545 4999:doi 4995:265 4957:doi 4945:281 4914:doi 4872:doi 4818:PMC 4810:doi 4762:doi 4758:252 4714:doi 4710:258 4673:PMC 4663:doi 4651:103 4614:PMC 4606:doi 4602:241 4559:doi 4547:446 4514:doi 4475:doi 4432:doi 4420:299 4389:doi 4354:doi 4350:425 4317:doi 4278:doi 4274:366 4235:doi 4223:465 4182:doi 4170:311 4130:doi 4088:doi 4018:doi 4006:434 3975:doi 3932:doi 3920:402 3889:doi 3845:doi 3807:doi 3795:206 3756:doi 3711:doi 3699:164 3662:doi 3621:PMC 3613:doi 3578:doi 3543:doi 3489:doi 3485:203 3439:doi 3427:213 3202:of 2975:As 2913:DNA 2911:in 2745:or 2683:/ H 2493:ATP 2419:ADP 2296:TMA 2273:DMS 2065:NAD 1925:ATP 1797:Cyt 1740:red 1731:Cyt 1555:red 1546:Cyt 1490:Cyt 1364:of 1304:ETF 1284:red 1280:ETF 1136:to 1120:or 1093:). 1089:(QH 992:NAD 935:or 931:by 904:or 848:red 828:red 806:red 782:red 748:FAD 746:or 744:FMN 725:NAD 660:In 371:to 241:In 226:to 169:to 153:or 10898:: 10633:) 10502:) 10480:) 10467:) 10445:) 10442:12 10407:) 9361:, 9205:⇄ 9022:→ 8982:+ 8973:→ 8969:→ 8965:→ 8908:, 8904:, 8780:10 8754:10 8630:E3 8628:, 8626:E2 8624:, 8622:E1 8528:: 8469:: 8176:. 8166:. 8156:. 8146:70 8144:. 8140:. 8121:. 8113:. 8099:. 8095:. 8062:. 8036:. 8013:. 8005:. 7997:. 7985:. 7962:. 7954:. 7946:. 7934:. 7915:. 7890:. 7878:60 7876:. 7872:. 7853:. 7845:. 7831:. 7827:. 7802:. 7790:. 7767:. 7759:. 7747:. 7718:. 7714:. 7691:. 7683:. 7673:25 7671:. 7648:. 7638:. 7626:. 7603:. 7593:92 7591:. 7568:. 7560:. 7546:. 7542:. 7519:. 7509:. 7478:. 7468:32 7466:. 7442:. 7420:^ 7406:. 7394:. 7382:^ 7368:. 7358:. 7344:. 7340:. 7317:. 7307:. 7297:. 7287:97 7285:. 7281:. 7258:. 7250:. 7242:. 7230:. 7207:. 7195:. 7172:. 7164:. 7156:. 7144:. 7121:. 7111:25 7109:. 7086:. 7076:39 7074:. 7037:. 7029:. 7021:. 7009:40 7007:. 7003:. 6977:. 6967:61 6965:. 6953:^ 6939:. 6931:. 6921:36 6919:. 6896:. 6886:. 6874:. 6870:. 6858:^ 6844:. 6836:. 6826:65 6824:. 6805:. 6797:. 6783:. 6779:. 6767:^ 6753:. 6743:. 6731:. 6727:. 6704:. 6694:27 6692:. 6669:. 6661:. 6647:. 6643:. 6620:. 6610:. 6598:. 6594:. 6571:. 6561:. 6551:22 6549:. 6545:. 6526:. 6518:. 6506:. 6502:. 6479:. 6469:. 6457:. 6453:. 6430:. 6422:. 6410:. 6387:. 6379:. 6371:. 6359:. 6336:. 6326:66 6324:. 6312:^ 6299:. 6291:. 6281:. 6269:. 6265:. 6239:. 6231:. 6219:. 6196:. 6184:54 6182:. 6178:. 6155:. 6145:. 6137:. 6127:72 6125:. 6121:. 6094:66 6092:. 6088:. 6065:. 6051:. 6047:. 6024:. 6010:. 6006:. 5994:^ 5980:. 5970:. 5960:48 5958:. 5954:. 5942:^ 5928:. 5918:. 5908:63 5906:. 5902:. 5879:. 5871:. 5863:. 5853:29 5851:. 5828:. 5818:. 5808:. 5798:81 5796:. 5792:. 5773:. 5765:. 5751:. 5747:. 5724:. 5710:. 5706:. 5683:. 5673:. 5663:19 5661:. 5657:. 5634:. 5626:. 5612:. 5608:. 5585:. 5577:. 5567:. 5555:. 5551:. 5528:. 5518:. 5508:. 5498:96 5496:. 5492:. 5469:. 5457:. 5434:. 5424:48 5422:. 5399:. 5387:. 5364:. 5352:31 5350:. 5346:. 5323:. 5311:56 5309:. 5305:. 5282:. 5274:. 5260:. 5256:. 5233:. 5223:55 5221:. 5198:. 5184:. 5180:. 5157:. 5149:. 5141:. 5129:. 5106:. 5096:19 5094:. 5071:. 5063:. 5053:. 5041:. 5037:. 5015:. 5007:. 4993:. 4989:. 4963:. 4955:. 4943:. 4920:. 4910:66 4908:. 4886:. 4878:. 4870:. 4858:69 4856:. 4852:. 4826:. 4816:. 4806:17 4804:. 4800:. 4778:. 4770:. 4756:. 4752:. 4730:. 4722:. 4708:. 4704:. 4681:. 4671:. 4661:. 4649:. 4645:. 4622:. 4612:. 4600:. 4596:. 4573:. 4565:. 4557:. 4545:. 4522:. 4508:. 4504:. 4481:. 4469:. 4446:. 4438:. 4430:. 4418:. 4395:. 4385:72 4383:. 4360:. 4348:. 4325:. 4311:. 4307:. 4284:. 4272:. 4249:. 4241:. 4233:. 4221:. 4198:. 4190:. 4180:. 4168:. 4164:. 4152:^ 4138:. 4124:. 4120:. 4108:^ 4094:. 4084:33 4082:. 4070:^ 4046:^ 4032:. 4024:. 4016:. 4004:. 3981:. 3971:14 3969:. 3946:. 3938:. 3930:. 3918:. 3895:. 3885:74 3883:. 3861:. 3853:. 3839:. 3813:. 3805:. 3793:. 3770:. 3762:. 3752:20 3750:. 3727:. 3719:. 3709:. 3697:. 3693:. 3670:. 3658:45 3656:. 3652:. 3629:. 3619:. 3607:. 3584:. 3574:31 3572:. 3549:. 3539:30 3537:. 3533:. 3513:^ 3503:. 3495:. 3483:. 3479:. 3467:^ 3453:. 3445:. 3437:. 3425:. 3389:. 3385:. 3281:uk 3206:. 3087:Cu 3083:Fe 2959:, 2923:. 2705:. 2401:(P 2313:/ 2294:/ 2271:/ 2252:/ 2233:/ 2214:/ 2195:/ 2176:/ 2163:? 2154:/ 2150:+ 2128:/ 2115:? 2109:/ 2105:+ 2086:/ 2067:/ 2048:/ 2029:/ 1997:. 1935:. 1916:, 1806:ox 1705:. 1499:ox 1469:QH 1407:, 1322:QH 1308:ox 1177:QH 1005:QH 844:ox 824:ox 802:ox 778:ox 727:/ 691:. 653:. 524:. 499:). 449:. 404:pH 280:pH 200:. 130:eɪ 109:ɑː 10880:. 10836:. 10824:. 10812:. 10800:. 10788:. 10629:( 10498:( 10492:) 10488:( 10476:( 10463:( 10438:( 10403:( 10053:/ 9502:e 9495:t 9488:v 9387:) 9383:( 9365:) 9357:( 9168:) 9159:( 8987:) 8977:( 8894:e 8887:t 8880:v 8724:/ 8645:) 8632:) 8620:( 8580:) 8576:( 8518:e 8511:t 8504:v 8370:. 8351:. 8332:. 8313:. 8287:. 8265:. 8246:. 8209:. 8184:. 8160:: 8152:: 8107:: 8080:. 8044:. 8021:. 8001:: 7993:: 7970:. 7950:: 7942:: 7917:4 7898:. 7884:: 7839:: 7812:. 7798:: 7792:1 7775:. 7755:: 7749:5 7732:. 7726:: 7720:B 7699:. 7679:: 7656:. 7634:: 7611:. 7599:: 7576:. 7554:: 7527:. 7505:: 7486:. 7474:: 7450:. 7414:. 7402:: 7376:. 7352:: 7346:9 7325:. 7301:: 7293:: 7266:. 7246:: 7238:: 7215:. 7203:: 7180:. 7160:: 7152:: 7129:. 7117:: 7094:. 7082:: 7059:. 7025:: 6985:. 6973:: 6947:. 6927:: 6904:. 6882:: 6852:. 6832:: 6791:: 6761:. 6739:: 6733:7 6712:. 6700:: 6677:. 6655:: 6628:. 6606:: 6579:. 6557:: 6514:: 6487:. 6465:: 6438:. 6418:: 6412:2 6395:. 6375:: 6367:: 6344:. 6332:: 6277:: 6247:. 6227:: 6221:9 6204:. 6190:: 6163:. 6141:: 6133:: 6106:. 6100:: 6073:. 6059:: 6032:. 6018:: 5988:. 5966:: 5936:. 5914:: 5887:. 5867:: 5859:: 5836:. 5812:: 5804:: 5759:: 5732:. 5718:: 5691:. 5669:: 5642:. 5620:: 5593:. 5571:: 5563:: 5536:. 5512:: 5504:: 5477:. 5465:: 5442:. 5430:: 5407:. 5395:: 5372:. 5358:: 5331:. 5317:: 5290:. 5268:: 5241:. 5229:: 5206:. 5192:: 5165:. 5145:: 5137:: 5114:. 5102:: 5079:. 5057:: 5049:: 5001:: 4971:. 4959:: 4951:: 4928:. 4916:: 4874:: 4834:. 4812:: 4764:: 4716:: 4689:. 4665:: 4657:: 4630:. 4608:: 4581:. 4561:: 4553:: 4530:. 4516:: 4489:. 4477:: 4471:5 4454:. 4434:: 4426:: 4403:. 4391:: 4368:. 4356:: 4333:. 4319:: 4292:. 4280:: 4257:. 4237:: 4229:: 4206:. 4184:: 4176:: 4146:. 4132:: 4102:. 4090:: 4040:. 4020:: 4012:: 3989:. 3977:: 3954:. 3934:: 3926:: 3903:. 3891:: 3847:: 3821:. 3809:: 3801:: 3778:. 3758:: 3735:. 3713:: 3705:: 3678:. 3664:: 3637:. 3615:: 3592:. 3580:: 3557:. 3545:: 3491:: 3461:. 3441:: 3433:: 3401:. 3109:o 3085:– 2981:2 2892:) 2890:7 2888:( 2857:2 2852:2 2848:O 2832:e 2804:2 2800:O 2784:e 2768:2 2764:O 2703:2 2696:2 2692:2 2685:2 2681:2 2669:o 2667:A 2665:1 2661:o 2659:A 2657:1 2604:O 2597:1 2592:1 2588:1 2584:O 2556:) 2554:6 2552:( 2532:+ 2523:H 2518:4 2515:+ 2512:O 2504:2 2500:H 2496:+ 2448:+ 2439:H 2434:4 2431:+ 2428:i 2425:P 2422:+ 2403:i 2285:N 2157:D 2141:D 1944:" 1882:) 1880:5 1878:( 1858:+ 1849:H 1844:4 1841:+ 1836:O 1828:2 1824:H 1819:2 1816:+ 1802:c 1793:4 1785:+ 1776:H 1771:8 1768:+ 1758:2 1754:O 1750:+ 1736:c 1727:4 1682:. 1658:2 1650:2 1646:2 1642:2 1631:2 1627:2 1623:2 1615:2 1606:) 1604:4 1602:( 1582:+ 1573:H 1568:4 1565:+ 1551:c 1542:2 1539:+ 1534:Q 1526:+ 1517:H 1512:2 1509:+ 1495:c 1486:2 1483:+ 1473:2 1433:1 1431:c 1411:1 1353:) 1351:3 1349:( 1326:2 1318:+ 1297:Q 1294:+ 1208:) 1206:2 1204:( 1181:2 1173:+ 1162:Q 1159:+ 1109:. 1091:2 1075:2 1058:) 1056:1 1054:( 1034:+ 1025:H 1020:4 1017:+ 1009:2 1001:+ 996:+ 983:+ 974:H 969:5 966:+ 963:Q 960:+ 862:2 860:O 793:1 768:1 756:2 752:2 666:2 602:× 567:2 559:2 555:2 497:2 440:O 224:2 145:/ 142:v 139:ɪ 136:t 133:. 127:d 124:ˌ 121:ɪ 118:s 115:. 112:k 106:ˈ 103:/ 95:/ 92:v 89:ɪ 86:t 83:. 80:ə 77:. 74:d 71:ɪ 68:s 65:ˈ 62:k 59:ɒ 56:/ 45:. 39:2

Index


electron transport chain
cell
citric acid cycle
ATP synthase
/ɒkˈsɪd.ə.tɪv/
/ˈɑːk.sɪˌd.tɪv/
metabolic pathway
cells
enzymes
oxidize
nutrients
adenosine triphosphate
eukaryotes
mitochondria
aerobic organisms
fermentation
anaerobic glycolysis
glucose
citric acid cycle
electron donors
NADH
FADH
produce ATP
electron acceptors
redox reactions
eukaryotes
protein complexes
prokaryotes
electron transport chain

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.