Knowledge

Plant communication

Source đź“ť

546:
signal. A cascade effect of stomatal closure was observed in neighboring unstressed plants that shared their rooting system but was not observed in the unstressed plants that did not share their rooting system. Therefore, neighboring plants demonstrate the ability to sense, integrate, and respond to stress cues transmitted through roots. Although Falik et al. did not identify the chemical responsible for perceiving stress cues, research conducted in 2016 by Delory et al. suggests several possibilities. They found that plant roots synthesize and release a wide array of organic compounds including solutes and volatiles (i.e. terpenes). They cited additional research demonstrating that root-emitted molecules have the potential to induce physiological responses in neighboring plants either directly or indirectly by modifying the soil chemistry. Moreover, Kegge et al. demonstrated that plants perceive the presence of neighbors through changes in water/nutrient availability, root exudates, and soil microorganisms.
542:(garden pea) plants communicate stress cues via their roots to allow neighboring unstressed plants to anticipate an abiotic stressor. Pea plants are commonly grown in temperate regions throughout the world. However, this adaptation allows plants to anticipate abiotic stresses such as drought. In 2011, Falik et al. tested the ability of unstressed pea plants to sense and respond to stress cues by inducing osmotic stress on a neighboring plant. Falik et al. subjected the root of an externally-induced plant to mannitol in order to inflict osmotic stress and drought-like conditions. Five unstressed plants neighbored both sides of this stressed plant. On one side, the unstressed plants shared their root system with their neighbors to allow for root communication. On the other side, the unstressed plants did not share root systems with their neighbors. 565:
transfer was bi-directional, if one species had a net gain in carbon, and if more carbon was transferred through the soil pathway or common mycorrhizal network (CMN). CMNs occur when fungal mycelia link roots of plants together. The researchers followed seedlings of paper birch and Douglas-fir in a greenhouse for 8 months, where hyphal linkages that crossed their roots were either severed or left intact. The experiment measured amounts of labeled carbon exchanged between seedlings. It was discovered that there was indeed a bi-directional sharing of carbon between the two tree species, with the Douglas-fir receiving a slight net gain in carbon. Also, the carbon was transferred through both soil and the CMN pathways, as transfer occurred when the CMN linkages were interrupted, but much more transfer occurred when the CMN's were left unbroken.
550:
well-defined mechanism and the potential adaptive implications for priming neighbors in preparation for forthcoming abiotic stresses; however, a literature review by Robbins et al. published in 2014 characterized the root endodermis as a signaling control center in response to abiotic environmental stresses including drought. They found that the plant hormone ABA regulates the root endodermal response under certain environmental conditions. In 2016 Rowe et al. experimentally validated this claim by showing that ABA regulated root growth under osmotic stress conditions. Additionally, changes in cytosolic calcium concentrations act as signals to close stomata in response to drought stress cues. Therefore, the flux of solutes, volatiles, hormones, and ions are likely involved in the integration of the response to stress cues emitted by roots.
211:, tomato plants emit VOCs that are released into the atmosphere and induce responses in neighboring tomato plants. When the herbivory-induced VOCs bind to receptors on other nearby tomato plants, responses occur within seconds. The neighboring plants experience a rapid depolarization in cell potential and increase in cytosolic calcium. Plant receptors are most commonly found on plasma membranes as well as within the cytosol, endoplasmic reticulum, nucleus, and other cellular compartments. VOCs that bind to plant receptors often induce signal amplification by action of secondary messengers including calcium influx as seen in response to neighboring herbivory. These emitted volatiles were measured by GC-MS and the most notable were 2-hexenal and 3-hexenal acetate. It was found that depolarization increased with increasing 569:
the adaptation of forest ecosystems. Plant genotypes have shown that mycorrhizal fungal traits are heritable and play a role in plant behavior. These relationships with fungal networks can be mutualistic, commensal, or even parasitic. It has been shown that plants can rapidly change behavior such as root growth, shoot growth, photosynthetic rate, and defense mechanisms in response to mycorrhizal colonization. Through root systems and common mycorrhizal networks, plants are able to communicate with one another below ground and alter behaviors or even share nutrients depending on different environmental cues.
198:) and, specifically, tomato plant volatile organic compounds. This was tested by growing a dodder weed seedling in a contained environment, connected to two different chambers. One chamber contained tomato VOCs while the other had artificial tomato plants. After 4 days of growth, the dodder weed seedling showed a significant growth towards the direction of the chamber with tomato VOC's. Their experiments also showed that the dodder weed seedlings could distinguish between wheat ( 478:
immediate great increase in expression of target genes. Phase 2 is a period of dormancy. Phase 3 is a weakened and delayed upregulation of the same target genes as phase 1. In phase 1, the speed of upregulation is nearly instantaneous which has led researchers to theorize that the initial response from a plant is through action potentials and variation potentials as opposed to chemical or hormonal signaling which is most likely responsible for the phase 3 response.
25: 202:) VOCs and tomato plant volatiles. As when one chamber was filled with each of the two different VOCs, dodder weeds grew towards tomato plants as one of the wheat VOC's is repellent. These findings show evidence that volatile organic compounds determine ecological interactions between plant species and show statistical significance that the dodder weed can distinguish between different plant species by sensing their VOCs. 412:(up to -200mV), making it harder to depolarize and fire an action potential. This is why it is essential for calcium ions to inactivate H+-ATPase activity so that depolarization can be reached. When the voltage gated chloride channels are activated and full depolarization occurs, calcium ions are pumped out of the cell (via a calcium-ATPase) after so that H+-ATPase activity resumes so that the cell can repolarize. 225: 342:, examined ferns and Venus fly traps because they showed excitation patterns similar to animal nerves. However, the mechanisms behind this electrical signaling are not well known and are a current topic of ongoing research. A plant may produce electrical signaling in response to wounding, temperature extremes, high salt conditions, drought conditions, and other various stimuli. 470:. In the phloem, the propagation of action potentials is dictated by the fluxes of chloride, potassium, and calcium ions, but the exact mechanism for propagation is not well understood. Alternatively, the transport of action potentials over short, local distances is distributed throughout the plant via 1283:
Mafra-Neto, Agenor; de Lame, Frédérique M.; Fettig, Christopher J.; Perring, Thomas M.; Stelinski, Lukasz L.; Stoltman, Lyndsie L.; Mafra, Leandro E. J.; Borges, Rafael; Vargas, Roger I. (2013). "Manipulation of Insect Behavior with Specialized Pheromone and Lure Application Technology (SPLAT®)". In
3378:
Khait I, Lewin-Epstein O, Sharon R, Saban K, Goldstein R, Anikster Y, Zeron Y, Agassy C, Nizan S, Sharabi G, Perelman R, Boonman A, Sade N, Yovel Y, Hadany L. Sounds emitted by plants under stress are airborne and informative. Cell. 2023 Mar 30;186(7):1328-1336.e10. doi: 10.1016/j.cell.2023.03.009.
568:
This experiment showed that through fungal mycelia linkage of the roots of two plants, plants are able to communicate with one another and transfer nutrients as well as other resources through below ground root networks. Further studies go on to argue that this underground “tree talk” is crucial in
423:
and deactivates the H+-ATPase so that the cell can depolarize. It is unclear whether all of the heightened calcium ion intracellular concentration is solely due to calcium channel activation. It is possible that the transitory activation of calcium channels causes an influx of calcium ions into the
477:
When a plant responds to stimuli, sometimes the response time is nearly instantaneous which is much faster than chemical signals are able to travel. Current research suggests that electrical signaling may be responsible. In particular, the response of a plant to a wound is triphasic. Phase 1 is an
545:
Falik et al. found that unstressed plants demonstrated the ability to sense and respond to stress cues emitted from the roots of the osmotically stressed plant. Furthermore, the unstressed plants were able to send additional stress cues to other neighboring unstressed plants in order to relay the
430:
have proven hard to study and their mechanism is less well known than action potentials. Variation potentials are slower than action potentials, are not considered “all or nothing,” and they themselves can trigger several action potentials. The current understanding is that upon wounding or other
564:
Another form of plant communication occurs through their root networks. Through roots, plants can share many different resources including carbon, nitrogen, and other nutrients. This transfer of below ground carbon is examined in Philip et al. 2011. The goals of this paper were to test if carbon
167:
can emit VOCs to specifically target and attract starved prey. While these VOCs typically lead to increased resistance to herbivory in neighboring plants, there is no clear benefit to the emitting plant in helping nearby plants. As such, whether neighboring plants have evolved the capability to
3365:
Veits, M., Khait, I., Obolski, U., Zinger, E., Boonman, A., Goldshtein, A., Saban, K., Seltzer, R., Ben-Dor, U., Estlein, P., Kabat, A., Peretz, D., Ratzersdorfer, I., Krylov, S., Chamovitz, D., Sapir, Y., Yovel, Y. and Hadany, L. (2019), Flowers respond to pollinator sound within minutes by
549:
Although the underlying mechanism behind stress cues emitted by roots remains largely unknown, Falik et al. suggested that the plant hormone abscisic acid (ABA) may be responsible for integrating the observed phenotypic response (stomatal closure). Further research is needed to identify a
121:
Plants are exposed to many stress factors such as disease, temperature changes, herbivory, injury and more. Therefore, in order to respond or be ready for any kind of physiological state, they need to develop some sort of system for their survival in the moment and/or for the future.
629:
Bonato, B.; Peressotti, F.; Guerra, S.; Wang, Q.; & Umberto Castiello, U. (2021) “Cracking the code: a comparative approach to plant communication”. Communicative & Integrative Biology. 14(1): 176-185. doi: 10.1080/19420889.2021.1956719. PMID 34434483; PMC
215:
concentrations. These results indicate that tomato plants communicate with one another via airborne volatile cues, and when these VOC's are perceived by receptor plants, responses such as depolarization and calcium influx occur within seconds.
162:
to reduce mechanical damage inflicted on the plant to the induction of chemical defenses of a neighboring plant before it is being attacked. In addition, the host of VOCs emitted varies from plant to plant, where for example, the
249:
Terpenoids facilitate communication between plants and insects, mammals, fungi, microorganisms, and other plants. Terpenoids may act as both attractants and repellants for various insects. For example, pine shoot beetles
443:. This hydraulic wave may activate pressure gated channels due to the sudden change in pressure. Their ionic mechanism is very different from action potentials and is thought to involve the inactivation of the 424:
cell which activates intracellular stores of calcium ions to be released and subsequently causes depolarization (through the inactivation of H+-ATPase and activation of voltage gated chloride channels).
3355:
Gorzelak, M. A., A. K. Asay, B. J. Pickles, and S. W. Simard. 2015. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB Plants 7. Oxford
922:
Rohrbeck, D.; Buss, D.; Effmert, U.; Piechulla, B. (2006-09-01). "Localization of Methyl Benzoate Synthesis and Emission in Stephanotis floribunda and Nicotiana suaveolens Flowers".
390:
decreases intracellular calcium concentration by pumping calcium ions to the outside of the cell (this allows for the H+-ATPase to be reactivated and repolarization to be initiated)
454:
described action potentials and their long-distance propagation throughout plants. Action potentials in plants are carried out through a plants vascular network (particularly the
338:
Many researchers have shown that plants have the ability to use electrical signaling to communicate from leaves to stem to roots. Starting in the late 1800s scientists, such as
168:"eavesdrop" or whether there is an unknown tradeoff occurring is subject to much scientific debate. As related to the aspect of meaning-making, the field is also identified as 3346:
Philip, L., S. Simard, and M. Jones. 2010. Pathways for below-ground carbon transfer between paper birch and Douglas-fir seedlings. Plant Ecology & Diversity 3:221–233.
126:
encompasses communication using volatile organic compounds, electrical signaling, and common mycorrhizal networks between plants and a host of other organisms such as
1885:
Krol, Elzbieta; Dziubinska, Halina; Trebacz, Kazimierz (2003-05-15). "Low-Temperature Induced Transmembrane Potential Changes in the Liverwort Conocephalum conicum".
450:
Long distance electrical signaling in plants is characterized by electrical signaling that occurs over distances greater than the span of a single cell. In 1873,
1163:
Runyon, Justin B.; Mescher, Mark C.; De Moraes, Consuelo M. (2006-09-29). "Volatile chemical cues guide host location and host selection by parasitic plants".
2569:
Wildon, D. C.; Thain, J. F.; Minchin, P. E. H.; Gubb, I. R.; Reilly, A. J.; Skipper, Y. D.; Doherty, H. M.; O'Donnell, P. J.; Bowles, D. J. (November 1992).
1224:"Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication" 559: 458:), a network of tissues that connects all of the various plant organs, transporting signaling molecules throughout the plant. Increasing the frequency of 46: 39: 2800:"Electrical Impedance Analysis of Tissue Properties Associated with Ethylene Induction by Electric Currents in Cucumber (Cucumis sativus L.) Fruit" 640:
Wenke, Katrin; Kai, Marco; Piechulla, Birgit (2010-02-01). "Belowground volatiles facilitate interactions between plant roots and soil organisms".
205:
Tomato plant to plant communication is further examined in Zebelo et al. 2012, which studies tomato plant response to herbivory. Upon herbivory by
770:
De Moraes, C. M.; Lewis, W. J.; Paré, P. W.; Alborn, H. T.; Tumlinson, J. H. (1998). "Herbivore-infested plants selectively attract parasitoids".
1144: 1511: 973:
Baldwin, Jan T.; Schultz, Jack C. (1983). "Rapid Changes in Tree Leaf Chemistry Induced by Damage: Evidence for Communication between Plants".
384:(due to calcium ion influx) activates voltage gated chloride channels causing chloride ions to leave the cell and cause further depolarization 3287:"Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin" 2327:
Stahlberg, Rainer; Cleland, Robert E.; Van Volkenburgh, Elizabeth (2006), Baluška, František; Mancuso, Stefano; Volkmann, Dieter (eds.),
481:
Upon stressful events, there is variation in a plant's response. That is to say, it is not always the case that a plant responds with an
577:
Studies have shown that plants can respond to airborne sounds at audible frequencies and that they also produce airborne sounds at the
516:
In summary, electric signaling in plants is a powerful tool of communication and controls a plant's response to dangerous stimuli (like
158:, and have high vapor pressures. The responses of organisms to plant emitted VOCs varies from attracting the predator of a specific 2865:"Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes" 89: 61: 2348: 1318:
Byers, J. A.; Lanne, B. S.; Löfqvist, J. (1989-05-01). "Host tree unsuitability recognized by pine shoot beetles in flight".
489:. However, when a plant does generate either an action potential or variation potential, one of the direct effects can be an 190:(field dodder), uses VOCs to interact with various hosts and determine locations. Dodder seedlings show direct growth toward 509:
in neighboring leaves to a wound. Aside from gene expression, action potentials and variation potentials also can result in
1396: 68: 1033: 2759:
Roux, David; Vian, Alain; Girard, Sébastien; Bonnet, Pierre; Paladian, Françoise; Davies, Eric; Ledoigt, Gérard (2006).
871:
Dudareva, Natalia (April 2013). "Biosynthesis, function and metabolic engineering of plant volatile organic compounds".
3402: 1370: 108: 75: 3064:
Falik, Omer; Mordoch, Yonat; Quansah, Lydia; Fait, Aaron; Novoplansky, Ariel (2011-11-02). Kroymann, Juergen (ed.).
1583:
Furch, Alexandra C. U.; Zimmermann, Matthias R.; Will, Torsten; Hafke, Jens B.; van Bel, Aart J. E. (2010-08-01).
813:
Bonfante, Paola; Genre, Andrea (2015). "Arbuscular mycorrhizal dialogues: do you speak 'plantish' or 'fungish'?".
2703:"Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato" 605: 130:, other plants (of the same or other species), animals, insects, and fungi. Plants communicate through a host of 2639:"Rapid and Systemic Accumulation of Chloroplast mRNA-Binding Protein Transcripts after Flame Stimulus in Tomato" 57: 1090:
Heil, Martin; Karban, Richard (2010-03-01). "Explaining evolution of plant communication by airborne signals".
610: 436: 1837:"Reversible changes of extracellular pH during action potential generation in a higher plant Cucurbita pepo" 278:
Terpenoids are a large family of biological molecules with over 22,000 compounds. Terpenoids are similar to
3421: 2760: 494: 2110: 1710: 1529: 724:
Leonard, Anne S.; Francis, Jacob S. (2017-04-01). "Plant–animal communication: past, present and future".
3183:
Kegge, Wouter; Pierik, Ronald (March 2010). "Biogenic volatile organic compounds and plant competition".
693:"Plant–plant communication mediated by airborne signals: ecological and plant physiological perspectives" 409: 307: 134:(VOCs) that can be separated into four broad categories, each the product of distinct chemical pathways: 2969:
Kurenda, Andrzej; Nguyen, Chi Tam; Chételat, Aurore; Stolz, Stéphanie; Farmer, Edward E. (2019-12-17).
1933:"Ca2+ Dynamics during Membrane Excitation of Green Alga Chara: Model Simulations and Experimental Data" 405: 3436: 3431: 1223: 400:
pumps H+ out of the cell and the open K+ channels allow for the flow of K+ to the outside of the cell
303: 131: 287: 294:
subunits, arranged either regularly or irregularly. The biosynthesis of terpenoids occurs via the
154:. Due to the physical/chemical constraints most VOCs are of low molecular mass (< 300 Da), are 3136:"Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?" 82: 35: 3134:
Delory, Benjamin M.; Delaplace, Pierre; Fauconnier, Marie-Laure; du Jardin, Patrick (May 2016).
1991:"Mastoparan-Induced Intracellular Ca2+ Fluxes May Regulate Cell-to-Cell Communication in Plants" 360:
in plants are characterized as “all or nothing.” This is the understood mechanism for how plant
3426: 581:
range, presumably audible to multiple organisms including bats, mice, moths and other insects.
295: 3395:
The Hidden Life of Trees: What They Feel, How They Communicate―Discoveries from A Secret World
451: 207: 2464: 1299:
Llusià, Joan; Estiarte, Marc; Peñuelas, Josep (1996). "Terpenoids and plant communication".
3192: 3147: 3077: 2982: 2714: 2582: 2171: 2121: 2111:"Transmission route for action potentials and variation potentials in Helianthus annuus L." 1722: 1541: 1235: 1172: 1149: 1099: 1048: 982: 931: 822: 779: 733: 649: 2510:
Fromm, Joerg; Hajirezaei, Mohammad-Reza; Becker, Verena Katharina; Lautner, Silke (2013).
2278:
Farmer, Edward E.; Gao, Yong-Qiang; Lenzoni, Gioia; Wolfender, Jean-Luc; Wu, Qian (2020).
8: 2512:"Electrical signaling along the phloem and its physiological responses in the maize leaf" 486: 427: 350: 212: 3196: 3151: 3081: 2986: 2761:"Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants" 2718: 2586: 2571:"Electrical signalling and systemic proteinase inhibitor induction in the wounded plant" 2175: 2125: 1726: 1545: 1239: 1176: 1103: 1052: 986: 935: 826: 783: 737: 709: 692: 653: 3321: 3286: 3262: 3227: 3108: 3065: 3013: 2970: 2902: 2827: 2738: 2606: 2546: 2511: 2440: 2393: 2203: 2195: 2083: 2050: 1968: 1864: 1686: 1617: 1505: 1460: 1421: 1394:
RuĹľiÄŤka, Leopold (1953). "The isoprene rule and the biogenesis of terpenic compounds".
1343: 1204: 1014: 998: 955: 904: 892: 888: 795: 749: 673: 299: 3036: 2840: 2799: 2255: 2222: 2133: 2023: 1990: 1585:"Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima" 1473: 1440: 3398: 3326: 3308: 3267: 3249: 3208: 3165: 3113: 3095: 3018: 3000: 2951: 2943: 2894: 2886: 2845: 2819: 2780: 2776: 2730: 2676: 2671: 2658: 2638: 2598: 2551: 2533: 2492: 2484: 2445: 2385: 2344: 2309: 2301: 2260: 2242: 2187: 2137: 2088: 2070: 2028: 2010: 1960: 1952: 1910: 1902: 1856: 1804: 1796: 1791: 1774: 1746: 1738: 1709:
Sukhov, Vladimir; Nerush, Vladimir; Orlova, Lyubov; Vodeneev, Vladimir (2011-12-21).
1678: 1670: 1622: 1604: 1565: 1557: 1478: 1413: 1376: 1366: 1335: 1259: 1251: 1196: 1188: 1123: 1115: 1072: 1064: 1006: 947: 896: 848: 665: 252: 186: 2906: 1972: 1690: 1425: 1347: 1208: 1018: 959: 908: 3316: 3298: 3257: 3239: 3200: 3155: 3103: 3085: 3008: 2990: 2933: 2876: 2835: 2811: 2772: 2742: 2722: 2666: 2650: 2610: 2590: 2541: 2523: 2476: 2435: 2427: 2336: 2291: 2250: 2234: 2207: 2179: 2129: 2078: 2062: 2018: 2002: 1944: 1894: 1868: 1848: 1786: 1730: 1662: 1612: 1596: 1549: 1468: 1452: 1405: 1327: 1247: 1243: 1180: 1107: 1056: 990: 939: 880: 838: 830: 799: 787: 753: 741: 704: 677: 657: 482: 459: 361: 357: 346: 283: 3204: 2431: 1553: 1060: 834: 3090: 2340: 994: 600: 432: 420: 181: 139: 2415: 2329:"Slow Wave Potentials — a Propagating Electrical Signal Unique to Higher Plants" 2328: 2049:
Johns, Sarah; Hagihara, Takuma; Toyota, Masatsugu; Gilroy, Simon (2021-04-02).
1734: 1222:
Zebelo, Simon A.; Matsui, Kenji; Ozawa, Rika; Maffei, Massimo E. (2012-11-01).
1111: 595: 393: 387: 381: 339: 169: 3285:
Rowe, James H.; Topping, Jennifer F.; Liu, Junli; Lindsey, Keith (July 2016).
3160: 3135: 3044:
United States Department of Agriculture Natural Resources Conservation Service
1948: 1852: 1666: 1145:
An introduction to phytosemiotics: Semiotic botany and vegetative sign systems
745: 661: 345:
There are two types of electrical signals that a plant uses. The first is the
3415: 3312: 3253: 3169: 3099: 3004: 2947: 2890: 2863:
Salvador-RecatalĂ , Vicenta; Tjallingii, W. Freddy; Farmer, Edward E. (2014).
2823: 2784: 2734: 2662: 2602: 2537: 2488: 2389: 2305: 2246: 2191: 2141: 2074: 2066: 2014: 1956: 1906: 1860: 1800: 1742: 1674: 1608: 1561: 1380: 1339: 1255: 1192: 1119: 1068: 538: 444: 375: 371:
A short burst of calcium ions into the cell through the open calcium channels
327: 164: 2995: 2528: 1932: 1836: 1650: 1184: 3330: 3271: 3212: 3117: 3022: 2955: 2898: 2849: 2680: 2570: 2555: 2496: 2449: 2313: 2280:"Wound- and mechanostimulated electrical signals control hormone responses" 2264: 2092: 2032: 1964: 1914: 1808: 1750: 1682: 1626: 1569: 1417: 1263: 1200: 1127: 1076: 1010: 951: 900: 852: 669: 590: 490: 127: 3244: 2798:
Inaba, Akitsugu; Manabe, Taro; Tsuji, Hiroyuki; Iwamoto, Tomotada (1995).
2726: 2238: 1482: 943: 3392: 2815: 2654: 2006: 1898: 1600: 1456: 1140: 521: 471: 315: 311: 155: 2702: 2397: 2373: 2109:
Dziubińska, Halina; Trębacz, Kazimierz; Zawadzki, Tadeusz (2001-01-01).
1528:
Hedrich, Rainer; Salvador-RecatalĂ , Vicenta; Dreyer, Ingo (2016-05-01).
2831: 2199: 2183: 2159: 1464: 1409: 1331: 1002: 843: 578: 498: 467: 397: 323: 291: 267: 147: 143: 135: 3303: 3228:"Beyond the Barrier: Communication in the Root through the Endodermis" 2938: 2921: 2881: 2864: 2480: 2296: 2279: 1651:"A Mathematical Model of Action Potential in Cells of Vascular Plants" 884: 2594: 1584: 517: 506: 419:. Therefore, calcium's influx causes the activation of a kinase that 368:
A stimulus transitorily and reversibly activates calcium ion channels
319: 272: 244: 236: 232: 229: 159: 151: 3367: 3226:
Robbins, N. E.; Trontin, C.; Duan, L.; Dinneny, J. R. (2014-10-01).
408:
range from -80 to -200 mV. High H+-ATPase activity corresponds with
24: 1775:"Electrical signals and their physiological significance in plants" 502: 257: 239:, signalling to insects that a tree is already infested by beetles. 3133: 791: 3366:
increasing nectar sugar concentration. Ecol Lett, 22: 1483-1492.
2862: 279: 2051:"The fast and the furious: rapid long-range signaling in plants" 505:
has shown quick upregulation in the fruit of a plant as well as
2922:"Coordinated and rapid whole-plant systemic stomatal responses" 2637:
Vian, Alain; Henry-Vian, Chantal; Davies, Eric (October 1999).
2326: 1835:
Vodeneev, V. A.; Opritov, V. A.; Pyatygin, S. S. (2006-07-01).
463: 455: 416: 261: 191: 2463:
Calvo, Paco; Sahi, Vaidurya Pratap; Trewavas, Anthony (2017).
1527: 1282: 224: 3066:"Rumor Has It…: Relay Communication of Stress Cues in Plants" 2971:"Insect-damaged Arabidopsis moves like wounded Mimosa pudica" 2416:"Underground electrotonic signal transmission between plants" 510: 440: 290:
which states that terpenoids can be thought of being made of
2920:
Devireddy, Amith R.; Arbogast, Jimmie; Mittler, Ron (2020).
2509: 1288:. Vol. 1141. American Chemical Society. pp. 31–58. 1284:
John Beck; Joel Coats; Stephen Duke; Marja Koivunen (eds.).
921: 180:
In Runyon et al. 2006, the researchers demonstrate how the
2968: 2223:"Characterization of the Variation Potential in Sunflower" 1708: 1034:"Venus Flytrap: How an Excitable, Carnivorous Plant Works" 3225: 2277: 2221:
Stankovic, B.; Zawadzki, T.; Davies, E. (November 1997).
2108: 2048: 1530:"Electrical Wiring and Long-Distance Plant Communication" 501:
exhibit rapid upregulated gene expression. Additionally,
2919: 1582: 769: 3063: 2797: 2333:
Communication in Plants: Neuronal Aspects of Plant Life
2220: 1834: 1221: 3393:
Peter Wohlleben; Suzanne Simard; Tim Flannery (2016).
2568: 2414:
Volkov, Alexander G.; Shtessel, Yuri B. (2020-01-01).
1711:"Simulation of action potential propagation in plants" 1298: 1162: 415:
Calcium's interaction with the H+-ATPase is through a
3284: 1884: 560:
Plant to plant communication via mycorrhizal networks
439:
throughout the plant that is transmitted through the
282:
in their carbon skeleton but unlike terpenes contain
3397:. Translated by Jane Billinghurst. Greystone Books. 2758: 2636: 310:(DMAPP) as key components. The MEP pathway produces 1649:Sukhov, Vladimir; Vodeneev, Vladimir (2009-11-17). 1439:McGarvey, Douglas J.; Croteau, Rodney (July 1995). 286:. The structure of terpenoids is described by the 2335:, Berlin, Heidelberg: Springer, pp. 291–308, 1317: 2701:Stanković, Bratislav; Davies, Eric (1997-07-01). 2462: 691:Yoneya, Kinuyo; Takabayashi, Junji (2014-01-01). 690: 639: 3413: 1931:Wacke, M.; Thiel, G.; HĂĽtt, M.-T. (2003-02-01). 256:) are attracted to certain monoterpenes ( (+/-)- 16:Communication between plants and other organisms 2975:Proceedings of the National Academy of Sciences 2700: 1438: 493:of a certain gene's expression. In particular, 2413: 1930: 1648: 972: 723: 3342: 3340: 812: 527: 1772: 1360: 1032:Hedrich, Rainer; Neher, Erwin (March 2018). 1031: 3182: 2371: 326:derivatives while the MVA pathway produces 271:), while being repelled by others (such as 3337: 1988: 1510:: CS1 maint: location missing publisher ( 1089: 3320: 3302: 3261: 3243: 3159: 3107: 3089: 3012: 2994: 2937: 2880: 2839: 2670: 2545: 2527: 2439: 2295: 2254: 2082: 2022: 1790: 1616: 1472: 842: 708: 572: 356:Similar to action potentials in animals, 264:and terpinolene) produced by Scots pines 175: 109:Learn how and when to remove this message 1989:Tucker, E. B.; Boss, W. F. (June 1996). 870: 223: 2420:Communicative & Integrative Biology 2157: 1393: 1361:Hill, Ruaraidh; Connolly, J.D. (1991). 553: 333: 3414: 3129: 3127: 3059: 3057: 3055: 3053: 2754: 2752: 2696: 2694: 2692: 2690: 2632: 2630: 2628: 2626: 2624: 2622: 2620: 2409: 2407: 2367: 2365: 2153: 2151: 2104: 2102: 2044: 2042: 1984: 1982: 1926: 1924: 1880: 1878: 1830: 1828: 1826: 1824: 1822: 1820: 1818: 1495: 45:Please improve this article by adding 1768: 1766: 1764: 1762: 1760: 1704: 1702: 1700: 1644: 1642: 1640: 1638: 1636: 1523: 1521: 302:(MVA) pathways both of which include 2160:"Action Potentials in Higher Plants" 1773:Fromm, Jörg; Lautner, Silke (2007). 1397:Cellular and Molecular Life Sciences 1286:Natural Products for Pest Management 866: 864: 862: 765: 763: 18: 3124: 3050: 3029: 2749: 2687: 2617: 2404: 2362: 2148: 2099: 2039: 1979: 1921: 1875: 1841:Russian Journal of Plant Physiology 1815: 710:10.5511/plantbiotechnology.14.0827a 374:Calcium ions reversibly inactivate 13: 3386: 3278: 3219: 3176: 2372:Thain, J.F.; Wildon, D.C. (1992). 1757: 1697: 1633: 1518: 14: 3448: 3368:https://doi.org/10.1111/ele.13331 2374:"Electrical signalling in plants" 1092:Trends in Ecology & Evolution 966: 859: 760: 2777:10.1111/j.1399-3054.2006.00740.x 1792:10.1111/j.1365-3040.2006.01614.x 532: 23: 3372: 3359: 3349: 2962: 2913: 2856: 2791: 2562: 2503: 2456: 2320: 2271: 2214: 1937:The Journal of Membrane Biology 1576: 1489: 1432: 1387: 1354: 1311: 1292: 1276: 1215: 1156: 1134: 1083: 1025: 606:Plant defense against herbivory 1715:Journal of Theoretical Biology 1589:Journal of Experimental Botany 1248:10.1016/j.plantsci.2012.08.006 915: 806: 717: 684: 633: 623: 1: 3205:10.1016/j.tplants.2009.11.007 2469:Plant, Cell & Environment 2432:10.1080/19420889.2020.1757207 2134:10.1078/S0176-1617(04)70143-1 1779:Plant, Cell & Environment 1554:10.1016/j.tplants.2016.01.016 1061:10.1016/j.tplants.2017.12.004 835:10.1016/j.tplants.2014.12.002 616: 611:Plant perception (physiology) 219: 47:secondary or tertiary sources 3091:10.1371/journal.pone.0023625 2341:10.1007/978-3-540-28516-8_20 2158:Pickard, Barbara G. (1973). 995:10.1126/science.221.4607.277 431:stressful events, a plant's 7: 2114:Journal of Plant Physiology 1655:Journal of Membrane Biology 584: 474:connections between cells. 406:resting membrane potentials 10: 3453: 2516:Frontiers in Plant Science 2384:(3/4 (301/302)): 553–564. 1735:10.1016/j.jtbi.2011.09.019 1301:Bull. Inst. Cat. Hist. Nat 1112:10.1016/j.tree.2009.09.010 557: 528:Below-ground communication 396:occurs when the activated 296:methylerythritol phosphate 242: 132:volatile organic compounds 3161:10.1007/s11104-016-2823-3 2378:Science Progress (1933- ) 1949:10.1007/s00232-002-1054-0 1887:Plant and Cell Physiology 1853:10.1134/S102144370604008X 1667:10.1007/s00232-009-9218-9 746:10.1007/s10682-017-9884-5 662:10.1007/s00425-009-1076-2 452:Sir John Burdon-Sanderson 435:changes which releases a 308:dimethylallyl diphosphate 1496:Darwin, Charles (1875). 1363:Dictionary of terpenoids 288:biogenetic isoprene rule 3185:Trends in Plant Science 2996:10.1073/pnas.1912386116 2529:10.3389/fpls.2013.00239 1534:Trends in Plant Science 1185:10.1126/science.1131371 1041:Trends in Plant Science 893:newphytologist.198.1.16 815:Trends in Plant Science 520:), helping to maintain 466:to become increasingly 304:isopentenyl diphosphate 196:Lycopersicon esculentum 2465:"Are plants sentient?" 2067:10.1093/plphys/kiaa098 1441:"Terpenoid Metabolism" 1365:. Chapman & Hall. 573:Acoustic communication 349:and the second is the 240: 176:Volatile communication 34:relies excessively on 3245:10.1104/pp.114.244871 2765:Physiologia Plantarum 2727:10.1007/s004250050143 2239:10.1104/pp.115.3.1083 944:10.1055/s-2006-924076 243:Further information: 227: 208:Spodoptera littoralis 58:"Plant communication" 2816:10.1104/pp.107.1.199 2655:10.1104/pp.121.2.517 2007:10.1104/pp.111.2.459 1498:Insectivorous Plants 1457:10.1105/tpc.7.7.1015 1150:Sign Systems Studies 726:Evolutionary Ecology 554:Mycorrhizal networks 428:Variation potentials 334:Electrical signaling 3422:Plant communication 3197:2010TPS....15..126K 3152:2016PlSoi.402....1D 3082:2011PLoSO...623625F 3037:"PEA Pisum sativum" 2987:2019PNAS..11626066K 2981:(51): 26066–26071. 2719:1997Plant.202..402S 2587:1992Natur.360...62W 2176:1973BotRv..39..172P 2126:2001JPPhy.158.1167D 1727:2011JThBi.291...47S 1546:2016TPS....21..376H 1240:2012PlnSc.196...93Z 1177:2006Sci...313.1964R 1171:(5795): 1964–1967. 1104:2010TEcoE..25..137H 1053:2018TPS....23..220H 987:1983Sci...221..277B 936:2006PlBio...8..615R 827:2015TPS....20..150B 784:1998Natur.393..570D 738:2017EvEco..31..143L 697:Plant Biotechnology 654:2010Plant.231..499W 513:and leaf movement. 495:protease inhibitors 487:variation potential 351:variation potential 213:green leaf volatile 124:Plant communication 2184:10.1007/BF02859299 1899:10.1093/pcp/pcg070 1601:10.1093/jxb/erq181 1410:10.1007/BF02167631 1332:10.1007/BF01952042 241: 3304:10.1111/nph.13882 2939:10.1111/nph.16143 2882:10.1111/nph.12807 2481:10.1111/pce.13065 2475:(11): 2858–2869. 2350:978-3-540-28516-8 2297:10.1111/nph.16646 1595:(13): 3697–3708. 981:(4607): 277–279. 885:10.1111/nph.12145 778:(6685): 570–573. 460:action potentials 410:hyperpolarization 362:action potentials 358:action potentials 284:functional groups 253:Tomicus piniperda 200:Triticum aestivum 187:Cuscuta pentagona 150:derivatives, and 119: 118: 111: 93: 3444: 3437:Chemical ecology 3432:Plant physiology 3408: 3380: 3376: 3370: 3363: 3357: 3353: 3347: 3344: 3335: 3334: 3324: 3306: 3282: 3276: 3275: 3265: 3247: 3232:Plant Physiology 3223: 3217: 3216: 3180: 3174: 3173: 3163: 3131: 3122: 3121: 3111: 3093: 3061: 3048: 3047: 3041: 3033: 3027: 3026: 3016: 2998: 2966: 2960: 2959: 2941: 2917: 2911: 2910: 2884: 2860: 2854: 2853: 2843: 2804:Plant Physiology 2795: 2789: 2788: 2756: 2747: 2746: 2698: 2685: 2684: 2674: 2643:Plant Physiology 2634: 2615: 2614: 2595:10.1038/360062a0 2566: 2560: 2559: 2549: 2531: 2507: 2501: 2500: 2460: 2454: 2453: 2443: 2411: 2402: 2401: 2369: 2360: 2359: 2358: 2357: 2324: 2318: 2317: 2299: 2290:(4): 1037–1050. 2275: 2269: 2268: 2258: 2233:(3): 1083–1088. 2227:Plant Physiology 2218: 2212: 2211: 2164:Botanical Review 2155: 2146: 2145: 2120:(9): 1167–1172. 2106: 2097: 2096: 2086: 2055:Plant Physiology 2046: 2037: 2036: 2026: 1995:Plant Physiology 1986: 1977: 1976: 1928: 1919: 1918: 1882: 1873: 1872: 1832: 1813: 1812: 1794: 1770: 1755: 1754: 1706: 1695: 1694: 1646: 1631: 1630: 1620: 1580: 1574: 1573: 1525: 1516: 1515: 1509: 1501: 1493: 1487: 1486: 1476: 1451:(7): 1015–1026. 1436: 1430: 1429: 1391: 1385: 1384: 1358: 1352: 1351: 1315: 1309: 1308: 1296: 1290: 1289: 1280: 1274: 1273: 1271: 1270: 1219: 1213: 1212: 1160: 1154: 1138: 1132: 1131: 1087: 1081: 1080: 1038: 1029: 1023: 1022: 970: 964: 963: 919: 913: 912: 868: 857: 856: 846: 810: 804: 803: 767: 758: 757: 721: 715: 714: 712: 688: 682: 681: 637: 631: 627: 483:action potential 445:P-type H+-ATPase 347:action potential 268:Pinus sylvestris 140:phenylpropanoids 114: 107: 103: 100: 94: 92: 51: 27: 19: 3452: 3451: 3447: 3446: 3445: 3443: 3442: 3441: 3412: 3411: 3405: 3389: 3387:Further reading 3384: 3383: 3377: 3373: 3364: 3360: 3354: 3350: 3345: 3338: 3291:New Phytologist 3283: 3279: 3224: 3220: 3181: 3177: 3132: 3125: 3062: 3051: 3039: 3035: 3034: 3030: 2967: 2963: 2926:New Phytologist 2918: 2914: 2869:New Phytologist 2861: 2857: 2796: 2792: 2757: 2750: 2699: 2688: 2635: 2618: 2581:(6399): 62–65. 2567: 2563: 2508: 2504: 2461: 2457: 2412: 2405: 2370: 2363: 2355: 2353: 2351: 2325: 2321: 2284:New Phytologist 2276: 2272: 2219: 2215: 2156: 2149: 2107: 2100: 2047: 2040: 1987: 1980: 1929: 1922: 1883: 1876: 1833: 1816: 1771: 1758: 1707: 1698: 1647: 1634: 1581: 1577: 1526: 1519: 1503: 1502: 1494: 1490: 1437: 1433: 1404:(10): 357–367. 1392: 1388: 1373: 1359: 1355: 1316: 1312: 1297: 1293: 1281: 1277: 1268: 1266: 1220: 1216: 1161: 1157: 1139: 1135: 1088: 1084: 1036: 1030: 1026: 971: 967: 920: 916: 873:New Phytologist 869: 860: 811: 807: 768: 761: 722: 718: 689: 685: 638: 634: 628: 624: 619: 601:Plant cognition 587: 575: 562: 556: 535: 530: 433:turgor pressure 388:Calcium-ATPases 364:are initiated: 336: 322:, and volatile 247: 222: 182:parasitic plant 178: 115: 104: 98: 95: 52: 50: 44: 40:primary sources 28: 17: 12: 11: 5: 3450: 3440: 3439: 3434: 3429: 3424: 3410: 3409: 3404:978-1771642484 3403: 3388: 3385: 3382: 3381: 3379:PMID 37001499. 3371: 3358: 3348: 3336: 3297:(1): 225–239. 3277: 3238:(2): 551–559. 3218: 3191:(3): 126–132. 3175: 3140:Plant and Soil 3123: 3076:(11): e23625. 3049: 3028: 2961: 2912: 2875:(2): 674–684. 2855: 2810:(1): 199–205. 2790: 2771:(2): 283–288. 2748: 2713:(4): 402–406. 2686: 2649:(2): 517–524. 2616: 2561: 2502: 2455: 2403: 2361: 2349: 2319: 2270: 2213: 2170:(2): 172–201. 2147: 2098: 2061:(3): 694–706. 2038: 2001:(2): 459–467. 1978: 1943:(3): 179–192. 1920: 1893:(5): 527–533. 1874: 1847:(4): 481–487. 1814: 1785:(3): 249–257. 1756: 1696: 1632: 1575: 1540:(5): 376–387. 1517: 1488: 1445:The Plant Cell 1431: 1386: 1372:978-0412257704 1371: 1353: 1326:(5): 489–492. 1310: 1291: 1275: 1214: 1155: 1133: 1098:(3): 137–144. 1082: 1047:(3): 220–234. 1024: 965: 930:(5): 615–626. 914: 858: 821:(3): 150–154. 805: 759: 732:(2): 143–151. 716: 703:(5): 409–416. 683: 648:(3): 499–506. 632: 621: 620: 618: 615: 614: 613: 608: 603: 598: 596:Phytosemiotics 593: 586: 583: 574: 571: 558:Main article: 555: 552: 534: 531: 529: 526: 472:plasmodesmatal 437:hydraulic wave 421:phosphorylates 402: 401: 394:Repolarization 391: 385: 382:Depolarization 379: 372: 369: 340:Charles Darwin 335: 332: 328:sesquiterpenes 300:mevalonic acid 221: 218: 177: 174: 170:phytosemiotics 165:Venus Fly Trap 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 3449: 3438: 3435: 3433: 3430: 3428: 3427:Communication 3425: 3423: 3420: 3419: 3417: 3406: 3400: 3396: 3391: 3390: 3375: 3369: 3362: 3352: 3343: 3341: 3332: 3328: 3323: 3318: 3314: 3310: 3305: 3300: 3296: 3292: 3288: 3281: 3273: 3269: 3264: 3259: 3255: 3251: 3246: 3241: 3237: 3233: 3229: 3222: 3214: 3210: 3206: 3202: 3198: 3194: 3190: 3186: 3179: 3171: 3167: 3162: 3157: 3153: 3149: 3146:(1–2): 1–26. 3145: 3141: 3137: 3130: 3128: 3119: 3115: 3110: 3105: 3101: 3097: 3092: 3087: 3083: 3079: 3075: 3071: 3067: 3060: 3058: 3056: 3054: 3045: 3038: 3032: 3024: 3020: 3015: 3010: 3006: 3002: 2997: 2992: 2988: 2984: 2980: 2976: 2972: 2965: 2957: 2953: 2949: 2945: 2940: 2935: 2931: 2927: 2923: 2916: 2908: 2904: 2900: 2896: 2892: 2888: 2883: 2878: 2874: 2870: 2866: 2859: 2851: 2847: 2842: 2837: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2805: 2801: 2794: 2786: 2782: 2778: 2774: 2770: 2766: 2762: 2755: 2753: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2716: 2712: 2708: 2704: 2697: 2695: 2693: 2691: 2682: 2678: 2673: 2668: 2664: 2660: 2656: 2652: 2648: 2644: 2640: 2633: 2631: 2629: 2627: 2625: 2623: 2621: 2612: 2608: 2604: 2600: 2596: 2592: 2588: 2584: 2580: 2576: 2572: 2565: 2557: 2553: 2548: 2543: 2539: 2535: 2530: 2525: 2521: 2517: 2513: 2506: 2498: 2494: 2490: 2486: 2482: 2478: 2474: 2470: 2466: 2459: 2451: 2447: 2442: 2437: 2433: 2429: 2425: 2421: 2417: 2410: 2408: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2368: 2366: 2352: 2346: 2342: 2338: 2334: 2330: 2323: 2315: 2311: 2307: 2303: 2298: 2293: 2289: 2285: 2281: 2274: 2266: 2262: 2257: 2252: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2217: 2209: 2205: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2154: 2152: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2112: 2105: 2103: 2094: 2090: 2085: 2080: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2045: 2043: 2034: 2030: 2025: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1992: 1985: 1983: 1974: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1934: 1927: 1925: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1881: 1879: 1870: 1866: 1862: 1858: 1854: 1850: 1846: 1842: 1838: 1831: 1829: 1827: 1825: 1823: 1821: 1819: 1810: 1806: 1802: 1798: 1793: 1788: 1784: 1780: 1776: 1769: 1767: 1765: 1763: 1761: 1752: 1748: 1744: 1740: 1736: 1732: 1728: 1724: 1720: 1716: 1712: 1705: 1703: 1701: 1692: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1645: 1643: 1641: 1639: 1637: 1628: 1624: 1619: 1614: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1579: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1524: 1522: 1513: 1507: 1499: 1492: 1484: 1480: 1475: 1470: 1466: 1462: 1458: 1454: 1450: 1446: 1442: 1435: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1399: 1398: 1390: 1382: 1378: 1374: 1368: 1364: 1357: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1314: 1306: 1302: 1295: 1287: 1279: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1228:Plant Science 1225: 1218: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1159: 1152: 1151: 1146: 1142: 1137: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1086: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1035: 1028: 1020: 1016: 1012: 1008: 1004: 1000: 996: 992: 988: 984: 980: 976: 969: 961: 957: 953: 949: 945: 941: 937: 933: 929: 925: 924:Plant Biology 918: 910: 906: 902: 898: 894: 890: 886: 882: 878: 874: 867: 865: 863: 854: 850: 845: 840: 836: 832: 828: 824: 820: 816: 809: 801: 797: 793: 792:10.1038/31219 789: 785: 781: 777: 773: 766: 764: 755: 751: 747: 743: 739: 735: 731: 727: 720: 711: 706: 702: 698: 694: 687: 679: 675: 671: 667: 663: 659: 655: 651: 647: 643: 636: 626: 622: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 588: 582: 580: 570: 566: 561: 551: 547: 543: 541: 540: 539:Pisum sativum 533:Chemical Cues 525: 523: 519: 514: 512: 508: 504: 500: 496: 492: 488: 484: 479: 475: 473: 469: 465: 461: 457: 453: 448: 446: 442: 438: 434: 429: 425: 422: 418: 413: 411: 407: 399: 395: 392: 389: 386: 383: 380: 377: 373: 370: 367: 366: 365: 363: 359: 354: 352: 348: 343: 341: 331: 329: 325: 321: 317: 313: 309: 305: 301: 297: 293: 289: 285: 281: 276: 274: 270: 269: 263: 259: 255: 254: 246: 238: 234: 231: 226: 217: 214: 210: 209: 203: 201: 197: 193: 189: 188: 183: 173: 171: 166: 161: 157: 153: 149: 145: 141: 138:derivatives, 137: 133: 129: 128:soil microbes 125: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: â€“  59: 55: 54:Find sources: 48: 42: 41: 37: 32:This article 30: 26: 21: 20: 3394: 3374: 3361: 3351: 3294: 3290: 3280: 3235: 3231: 3221: 3188: 3184: 3178: 3143: 3139: 3073: 3069: 3043: 3031: 2978: 2974: 2964: 2932:(1): 21–25. 2929: 2925: 2915: 2872: 2868: 2858: 2807: 2803: 2793: 2768: 2764: 2710: 2706: 2646: 2642: 2578: 2574: 2564: 2519: 2515: 2505: 2472: 2468: 2458: 2426:(1): 54–58. 2423: 2419: 2381: 2377: 2354:, retrieved 2332: 2322: 2287: 2283: 2273: 2230: 2226: 2216: 2167: 2163: 2117: 2113: 2058: 2054: 1998: 1994: 1940: 1936: 1890: 1886: 1844: 1840: 1782: 1778: 1718: 1714: 1661:(1): 59–67. 1658: 1654: 1592: 1588: 1578: 1537: 1533: 1497: 1491: 1448: 1444: 1434: 1401: 1395: 1389: 1362: 1356: 1323: 1319: 1313: 1304: 1300: 1294: 1285: 1278: 1267:. Retrieved 1231: 1227: 1217: 1168: 1164: 1158: 1153:28: 326–350. 1148: 1141:Kull, Kalevi 1136: 1095: 1091: 1085: 1044: 1040: 1027: 978: 974: 968: 927: 923: 917: 879:(1): 16–32. 876: 872: 818: 814: 808: 775: 771: 729: 725: 719: 700: 696: 686: 645: 641: 635: 625: 591:Biosemiotics 576: 567: 563: 548: 544: 537: 536: 515: 491:upregulation 480: 476: 468:cross linked 449: 426: 414: 403: 355: 344: 337: 316:monoterpenes 312:hemiterpenes 277: 265: 251: 248: 206: 204: 199: 195: 185: 179: 123: 120: 105: 99:October 2021 96: 86: 79: 72: 65: 53: 33: 1320:Experientia 844:2318/158569 630:PMC8381849. 522:homeostasis 462:causes the 298:(MEP) and 235:is a plant 156:hydrophobic 3416:Categories 2356:2021-06-03 1307:: 125–133. 1269:2020-10-20 1234:: 93–100. 617:References 579:ultrasonic 499:calmodulin 324:carotenoid 320:diterpenes 306:(IPP) and 292:isoprenoid 220:Terpenoids 152:terpenoids 148:amino acid 144:benzenoids 136:fatty acid 69:newspapers 36:references 3356:Academic. 3313:0028-646X 3254:0032-0889 3170:0032-079X 3100:1932-6203 3005:0027-8424 2948:1469-8137 2891:1469-8137 2824:0032-0889 2785:1399-3054 2735:1432-2048 2663:0032-0889 2603:1476-4687 2538:1664-462X 2489:1365-3040 2390:0036-8504 2306:1469-8137 2247:0032-0889 2192:0006-8101 2142:0176-1617 2075:1532-2548 2015:0032-0889 1957:1432-1424 1907:0032-0781 1861:1608-3407 1801:1365-3040 1743:0022-5193 1721:: 47–55. 1675:1432-1424 1609:0022-0957 1562:1360-1385 1506:cite book 1500:. London. 1381:497430488 1340:0014-4754 1256:0168-9452 1193:1095-9203 1120:0169-5347 1069:1360-1385 518:herbivory 507:jasmonate 398:H+-ATPase 376:H+-ATPase 273:verbenone 245:Terpenoid 237:pheromone 233:verbenone 230:terpenoid 160:herbivore 3331:26889752 3272:25125504 3213:20036599 3118:22073135 3070:PLOS ONE 3023:31792188 2956:31454419 2907:19489725 2899:24716546 2850:12228354 2681:10517843 2556:23847642 2497:28875517 2450:32395195 2398:43421317 2314:32392391 2265:12223859 2093:33793939 2033:12226302 1973:15569873 1965:12571752 1915:12773639 1809:17263772 1751:21959317 1691:13334600 1683:19921324 1627:20584788 1570:26880317 1426:44195550 1418:13116962 1348:10669662 1264:23017903 1209:10477465 1201:17008532 1128:19837476 1077:29336976 1019:31818182 1011:17815197 960:40502773 952:16755462 909:26160875 901:23383981 853:25583176 670:20012987 585:See also 511:stomatal 503:ethylene 378:activity 280:terpenes 262:3-carene 258:a-pinene 194:plants ( 3322:4982081 3263:4213087 3193:Bibcode 3148:Bibcode 3109:3206794 3078:Bibcode 3014:6926025 2983:Bibcode 2832:4276290 2743:5018084 2715:Bibcode 2611:4274162 2583:Bibcode 2547:3701874 2522:: 239. 2441:7202782 2208:5026557 2200:4353850 2172:Bibcode 2122:Bibcode 2084:8133610 1869:5037025 1723:Bibcode 1618:2921205 1542:Bibcode 1483:7640522 1465:3870054 1236:Bibcode 1173:Bibcode 1165:Science 1100:Bibcode 1049:Bibcode 1003:1691120 983:Bibcode 975:Science 932:Bibcode 823:Bibcode 800:4346152 780:Bibcode 754:9578593 734:Bibcode 678:1409780 650:Bibcode 83:scholar 3401:  3329:  3319:  3311:  3270:  3260:  3252:  3211:  3168:  3116:  3106:  3098:  3021:  3011:  3003:  2954:  2946:  2905:  2897:  2889:  2848:  2841:161186 2838:  2830:  2822:  2783:  2741:  2733:  2707:Planta 2679:  2669:  2661:  2609:  2601:  2575:Nature 2554:  2544:  2536:  2495:  2487:  2448:  2438:  2396:  2388:  2347:  2312:  2304:  2263:  2256:158572 2253:  2245:  2206:  2198:  2190:  2140:  2091:  2081:  2073:  2031:  2024:157856 2021:  2013:  1971:  1963:  1955:  1913:  1905:  1867:  1859:  1807:  1799:  1749:  1741:  1689:  1681:  1673:  1625:  1615:  1607:  1568:  1560:  1481:  1474:160903 1471:  1463:  1424:  1416:  1379:  1369:  1346:  1338:  1262:  1254:  1207:  1199:  1191:  1143:2000. 1126:  1118:  1075:  1067:  1017:  1009:  1001:  958:  950:  907:  899:  891:  851:  798:  772:Nature 752:  676:  668:  642:Planta 464:phloem 456:phloem 417:kinase 404:Plant 260:, (+)- 192:tomato 85:  78:  71:  64:  56:  3040:(PDF) 2903:S2CID 2828:JSTOR 2739:S2CID 2672:59414 2607:S2CID 2394:JSTOR 2204:S2CID 2196:JSTOR 1969:S2CID 1865:S2CID 1687:S2CID 1461:JSTOR 1422:S2CID 1344:S2CID 1205:S2CID 1037:(PDF) 1015:S2CID 999:JSTOR 956:S2CID 905:S2CID 889:JSTOR 796:S2CID 750:S2CID 674:S2CID 441:xylem 90:JSTOR 76:books 3399:ISBN 3327:PMID 3309:ISSN 3268:PMID 3250:ISSN 3209:PMID 3166:ISSN 3114:PMID 3096:ISSN 3019:PMID 3001:ISSN 2952:PMID 2944:ISSN 2895:PMID 2887:ISSN 2846:PMID 2820:ISSN 2781:ISSN 2731:ISSN 2677:PMID 2659:ISSN 2599:ISSN 2552:PMID 2534:ISSN 2493:PMID 2485:ISSN 2446:PMID 2386:ISSN 2345:ISBN 2310:PMID 2302:ISSN 2261:PMID 2243:ISSN 2188:ISSN 2138:ISSN 2089:PMID 2071:ISSN 2029:PMID 2011:ISSN 1961:PMID 1953:ISSN 1911:PMID 1903:ISSN 1857:ISSN 1805:PMID 1797:ISSN 1747:PMID 1739:ISSN 1679:PMID 1671:ISSN 1623:PMID 1605:ISSN 1566:PMID 1558:ISSN 1512:link 1479:PMID 1414:PMID 1377:OCLC 1367:ISBN 1336:ISSN 1260:PMID 1252:ISSN 1197:PMID 1189:ISSN 1124:PMID 1116:ISSN 1073:PMID 1065:ISSN 1007:PMID 948:PMID 897:PMID 849:PMID 666:PMID 497:and 228:The 62:news 3317:PMC 3299:doi 3295:211 3258:PMC 3240:doi 3236:166 3201:doi 3156:doi 3144:402 3104:PMC 3086:doi 3009:PMC 2991:doi 2979:116 2934:doi 2930:225 2877:doi 2873:203 2836:PMC 2812:doi 2808:107 2773:doi 2769:128 2723:doi 2711:202 2667:PMC 2651:doi 2647:121 2591:doi 2579:360 2542:PMC 2524:doi 2477:doi 2436:PMC 2428:doi 2337:doi 2292:doi 2288:227 2251:PMC 2235:doi 2231:115 2180:doi 2130:doi 2118:158 2079:PMC 2063:doi 2059:185 2019:PMC 2003:doi 1999:111 1945:doi 1941:191 1895:doi 1849:doi 1787:doi 1731:doi 1719:291 1663:doi 1659:232 1613:PMC 1597:doi 1550:doi 1469:PMC 1453:doi 1406:doi 1328:doi 1244:doi 1232:196 1181:doi 1169:313 1108:doi 1057:doi 991:doi 979:221 940:doi 881:doi 877:198 839:hdl 831:doi 788:doi 776:393 742:doi 705:doi 658:doi 646:231 485:or 275:). 38:to 3418:: 3339:^ 3325:. 3315:. 3307:. 3293:. 3289:. 3266:. 3256:. 3248:. 3234:. 3230:. 3207:. 3199:. 3189:15 3187:. 3164:. 3154:. 3142:. 3138:. 3126:^ 3112:. 3102:. 3094:. 3084:. 3072:. 3068:. 3052:^ 3042:. 3017:. 3007:. 2999:. 2989:. 2977:. 2973:. 2950:. 2942:. 2928:. 2924:. 2901:. 2893:. 2885:. 2871:. 2867:. 2844:. 2834:. 2826:. 2818:. 2806:. 2802:. 2779:. 2767:. 2763:. 2751:^ 2737:. 2729:. 2721:. 2709:. 2705:. 2689:^ 2675:. 2665:. 2657:. 2645:. 2641:. 2619:^ 2605:. 2597:. 2589:. 2577:. 2573:. 2550:. 2540:. 2532:. 2518:. 2514:. 2491:. 2483:. 2473:40 2471:. 2467:. 2444:. 2434:. 2424:13 2422:. 2418:. 2406:^ 2392:. 2382:76 2380:. 2376:. 2364:^ 2343:, 2331:, 2308:. 2300:. 2286:. 2282:. 2259:. 2249:. 2241:. 2229:. 2225:. 2202:. 2194:. 2186:. 2178:. 2168:39 2166:. 2162:. 2150:^ 2136:. 2128:. 2116:. 2101:^ 2087:. 2077:. 2069:. 2057:. 2053:. 2041:^ 2027:. 2017:. 2009:. 1997:. 1993:. 1981:^ 1967:. 1959:. 1951:. 1939:. 1935:. 1923:^ 1909:. 1901:. 1891:44 1889:. 1877:^ 1863:. 1855:. 1845:53 1843:. 1839:. 1817:^ 1803:. 1795:. 1783:30 1781:. 1777:. 1759:^ 1745:. 1737:. 1729:. 1717:. 1713:. 1699:^ 1685:. 1677:. 1669:. 1657:. 1653:. 1635:^ 1621:. 1611:. 1603:. 1593:61 1591:. 1587:. 1564:. 1556:. 1548:. 1538:21 1536:. 1532:. 1520:^ 1508:}} 1504:{{ 1477:. 1467:. 1459:. 1447:. 1443:. 1420:. 1412:. 1400:. 1375:. 1342:. 1334:. 1324:45 1322:. 1305:64 1303:. 1258:. 1250:. 1242:. 1230:. 1226:. 1203:. 1195:. 1187:. 1179:. 1167:. 1147:. 1122:. 1114:. 1106:. 1096:25 1094:. 1071:. 1063:. 1055:. 1045:23 1043:. 1039:. 1013:. 1005:. 997:. 989:. 977:. 954:. 946:. 938:. 926:. 903:. 895:. 887:. 875:. 861:^ 847:. 837:. 829:. 819:20 817:. 794:. 786:. 774:. 762:^ 748:. 740:. 730:31 728:. 701:31 699:. 695:. 672:. 664:. 656:. 644:. 524:. 447:. 353:. 330:. 318:, 314:, 184:, 172:. 146:, 49:. 3407:. 3333:. 3301:: 3274:. 3242:: 3215:. 3203:: 3195:: 3172:. 3158:: 3150:: 3120:. 3088:: 3080:: 3074:6 3046:. 3025:. 2993:: 2985:: 2958:. 2936:: 2909:. 2879:: 2852:. 2814:: 2787:. 2775:: 2745:. 2725:: 2717:: 2683:. 2653:: 2613:. 2593:: 2585:: 2558:. 2526:: 2520:4 2499:. 2479:: 2452:. 2430:: 2400:. 2339:: 2316:. 2294:: 2267:. 2237:: 2210:. 2182:: 2174:: 2144:. 2132:: 2124:: 2095:. 2065:: 2035:. 2005:: 1975:. 1947:: 1917:. 1897:: 1871:. 1851:: 1811:. 1789:: 1753:. 1733:: 1725:: 1693:. 1665:: 1629:. 1599:: 1572:. 1552:: 1544:: 1514:) 1485:. 1455:: 1449:7 1428:. 1408:: 1402:9 1383:. 1350:. 1330:: 1272:. 1246:: 1238:: 1211:. 1183:: 1175:: 1130:. 1110:: 1102:: 1079:. 1059:: 1051:: 1021:. 993:: 985:: 962:. 942:: 934:: 928:8 911:. 883:: 855:. 841:: 833:: 825:: 802:. 790:: 782:: 756:. 744:: 736:: 713:. 707:: 680:. 660:: 652:: 266:( 250:( 142:/ 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 43:.

Index


references
primary sources
secondary or tertiary sources
"Plant communication"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
soil microbes
volatile organic compounds
fatty acid
phenylpropanoids
benzenoids
amino acid
terpenoids
hydrophobic
herbivore
Venus Fly Trap
phytosemiotics
parasitic plant
Cuscuta pentagona
tomato
Spodoptera littoralis
green leaf volatile

terpenoid
verbenone

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑