Knowledge

Porosity sealing

Source 📝

316:. Plating operations typically involve submerging the parts in acid solutions. After plating, residual acid internal to the part can promote corrosion and/or preclude an acceptable plating finish. The solution to this problem is to seal the internal voids prior to plating. As explained above, the porosity is saturated with monomer and is then rinsed completely clear of the surface. The resin cures to a durable polymer. Thus, the exposed surface metal is free to be plated while the interior spaces are sealed dry. 25: 214:. Secondary machine operations, such as drilling, tapping, or cutting, are only marginally successful because voids between the particles cause tool chatter, reducing tool life and finish quality. Vacuum impregnation stabilizes and supports the individual powdered metal granules during machining. Vacuum impregnation improves machinability by making it more efficient, eliminating tool chatter, and improving the machined finish. 136:, porosity is typically considered any void found in the casting. Casting porosity can be caused by gas formation or solidification while the metal is being moved from a liquid state to a solid state. This porosity can range in size, from sub-micron to voids greater than 10 mm, depending on the casting. 280:
commonly contain internal porosity. This porosity is generally localized to the deepest cross-sections of the part and does not extend to the outer skin. However, if the part is also machined, the internal porosity will be exposed and the part will leak if pressurized. Machined die castings that need
155:
MIL-I-17563C and MIL-STD-276A as well as numerous proprietary and customer specifications. MIL-I-17563 tests the impregnation sealant. MIL-I-17563C demonstrates a sealant is compatible with the application and that the sealant will not degrade or fail over the life of the part. MIL-STD-276A tests the
304:
The first is that PM parts are sealed to prevent fluids or gases from leaking under pressure. PM applications for compressed air, fuel handling or hydraulic housings are common and effective; however, they must be sealed first. If not sealed, then fluids or gases will leak from the part. Sealing the
319:
Powder metal is also impregnated to enhance maintainability. PM parts are generally difficult to machine and some compositions may not be machinable without ruining the cutting tool. Secondary machine operations, such as drilling, tapping, or cutting, are impaired as the voids between the particles
169:
Impregnation Chamber: The operator would seal the chamber and draw a vacuum. This would remove air in the porosity and leak path in the casting wall. Parts would then be covered with sealant, and positive pressure applied. More energy would be required to penetrate the porosity with sealant than to
289:
In these parts, metal pins and wires are embedded in the plastic housing. When the parts experience heat during manufacturing or normal use, the plastic and metal expand at different rates. This expansion creates microscopic voids between the materials. While these leak paths are unavoidable, they
243:
parts. An additive manufacturing part is not as dense — and thus not as strong — as a part made from traditional manufacturing processes. Vacuum impregnation can be used to strengthen the material. As the vacuum impregnation sealant cures within the perforations, it creates a bond between the part
230:
The porosity may absorb oils, fluids, deburring fluids, pre-plating cleaners, and acids. If not sealed, then any gases or fluids may affect the finish by outgassing or bleeding out. Sealing the leak paths before secondary finishes will eliminate any failure mode that could develop from outgassing,
201:
This is the main reason why vacuum impregnation is used on any material-die cast, powder metal, plastic, wire harnesses. Vacuum impregnation prevents fluids or gases from leaking by sealing the porosity and leak paths. If the leak paths are not sealed, then fluids or gases may leak from the part.
323:
Powder metal porosity absorbs oils, fluids, deburring fluids, pre-plating cleaners, and acids. If the porosity is not sealed, fluids may bleed out and negatively affect the finish. Sealing the porosity before secondary finishes will eliminate any failure mode that could develop from bleed out of
128:
and leak paths in metal castings, sintered metal parts and electrical castings that form during the casting or molding process. Vacuum impregnation stops casting porosity (a phenomenon that occurs in the die-cast manufacturing process and allows manufacturers to use parts that would otherwise be
183:
Vacuum impregnation should be done prior to final assembly. Specifically for metal castings, vacuum impregnation should be done after final machining. Final machining may expose any porosity, creating a leak path. These paths can cause fluids and gases to leak from the casting, causing it to be
320:
cause tool chatter, reducing tool life and degrading the finish quality. Vacuum impregnation stabilizes and supports the individual powdered metal granules during machining. This improves machinability by making it more efficient, eliminating tool chatter, and improving the machined finish.
281:
to hold fluids (intake manifolds, coolant connectors, transmission cases, pump housings and fluid power components) are routinely sealed for life using acrylic resins. Because the sealant is internal to the part, the exterior dimensions and appearance of the part are unchanged.
192:
Porosity is inherent to most manufacturing processes. Porosity is only considered a defect if it is interconnected and creates a leak path can affect the part's structural integrity and performance. Vacuum impregnation seals porosity and leak paths for the following reasons.
264:
process are susceptible to the same porosity that plagues those created through more traditional methods. The porosity is inherent to the properties of the material and technology. The two primary materials that vacuum impregnation seals are plastic and sintered metal.
142:
caused by porosity can affect the part’s structural integrity, creating a failure point. Porosity can also prevent the part from being pressure tight. This will impact performance if the part is designed to hold gases or fluids.
164:
The vacuum impregnation process seals internal leak paths to make it leak free and suitable for use. In the course of sealing castings against porosity, the parts would be processed through the following four stations:
390: 222:
Plating operations submerge the parts in acid solutions. The residual acid can seep into the porosity, which causes corrosion. Sealing the components before plating eliminates corrosion.
501: 412: 341: 89: 483: 366: 61: 458: 176:
Wash/Rinse Station: The operator would wash residual sealant from the part's internal passages, taps, pockets and features.
156:
impregnation process. MIL-STD-276A provides the standards for processing to seal parts and testing process effectiveness.
68: 108: 42: 531: 440: 75: 173:
Excess Sealant Recovery: The operator would remove excess sealant through gravity, rotation or centrifugal force.
152: 46: 124:
is done through the process of vacuum impregnation. Vacuum impregnation is a preferred OEM process that seals
57: 35: 277: 133: 82: 8: 391:"Testing Vacuum Impregnation Sealant Compatibility vs Impregnation Process Effectiveness" 298: 211: 179:
Cure Station: The operator would polymerize the impregnated sealant in the leak path.
170:
evacuate the air. The operator would then release the pressure and drain the chamber.
305:
parts will not change the component's dimensional or functional characteristics.
139: 525: 273: 261: 240: 313: 24: 125: 309: 132:
Porosity occurs naturally and is found in most materials. In
484:"Three Reasons to Seal Electronics with Vacuum Impregnation" 239:
Vacuum impregnation can be used to part the integrity of
231:
chemical compatibility, or bleed out of pretreatments.
244:
layers. This enhances the part by increasing density.
367:"What Size of Porosity Can Vacuum Impregnation Seal?" 413:"Continuing Advances in Vacuum Impregnation Systems" 49:. Unsourced material may be challenged and removed. 459:"Guide to Sealing Additive Manufacturing Porosity" 301:(PM) components are sealed for four main reasons. 210:Impregnation is used to improve machinability on 523: 225: 290:can cause a field failure if not sealed. 502:"Four Reasons to Seal Powder Metal Parts" 255: 234: 109:Learn how and when to remove this message 205: 524: 187: 217: 441:"When to Vacuum Impregnate Castings" 293: 146: 47:adding citations to reliable sources 18: 420:Foundry Management & Technology 250: 151:Vacuum impregnation is governed by 13: 339: 196: 14: 543: 410: 16:Step in the metal casting process 364: 23: 342:"Basics of Vacuum Impregnation" 268: 34:needs additional citations for 494: 476: 451: 433: 404: 383: 358: 333: 284: 1: 327: 308:PM parts are sealed prior to 184:non-conforming and unusable. 7: 226:Enhance Secondary Finishing 10: 548: 260:Parts created through the 159: 532:Casting (manufacturing) 400:: 8-10. September 2019. 312:and to reduce internal 278:permanent mold castings 262:additive manufacturing 256:Additive Manufacturing 241:additive manufacturing 235:Improve Part Integrity 206:Improve Machinability 445:Production Machining 398:Die Casting Engineer 43:improve this article 447:. 18 December 2018. 188:Common Applications 218:Prohibit Corrosion 58:"Porosity sealing" 299:Powder metallurgy 294:Powder metallurgy 212:powder metallurgy 153:Military Standard 147:Process Standards 119: 118: 111: 93: 539: 517: 516: 514: 512: 506:Forging Magazine 498: 492: 491: 480: 474: 473: 471: 469: 455: 449: 448: 437: 431: 430: 428: 426: 417: 408: 402: 401: 395: 387: 381: 380: 378: 377: 365:Ralf, Versmold. 362: 356: 355: 353: 351: 346: 337: 251:Common Materials 122:Porosity sealing 114: 107: 103: 100: 94: 92: 51: 27: 19: 547: 546: 542: 541: 540: 538: 537: 536: 522: 521: 520: 510: 508: 500: 499: 495: 488:godfreywing.com 482: 481: 477: 467: 465: 463:Spotlight Metal 457: 456: 452: 439: 438: 434: 424: 422: 415: 409: 405: 393: 389: 388: 384: 375: 373: 371:Spotlight Metal 363: 359: 349: 347: 344: 338: 334: 330: 324:pretreatments. 296: 287: 271: 258: 253: 247: 237: 228: 220: 208: 199: 197:Seal Leak Paths 190: 162: 149: 140:Casting defects 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 545: 535: 534: 519: 518: 493: 475: 450: 432: 403: 382: 357: 331: 329: 326: 295: 292: 286: 283: 270: 267: 257: 254: 252: 249: 236: 233: 227: 224: 219: 216: 207: 204: 198: 195: 189: 186: 181: 180: 177: 174: 171: 161: 158: 148: 145: 134:metal castings 117: 116: 99:September 2007 31: 29: 22: 15: 9: 6: 4: 3: 2: 544: 533: 530: 529: 527: 507: 503: 497: 489: 485: 479: 464: 460: 454: 446: 442: 436: 421: 414: 411:Marin, Andy. 407: 399: 392: 386: 372: 368: 361: 343: 340:Shantz, Tom. 336: 332: 325: 321: 317: 315: 311: 306: 302: 300: 291: 282: 279: 275: 266: 263: 248: 245: 242: 232: 223: 215: 213: 203: 194: 185: 178: 175: 172: 168: 167: 166: 157: 154: 144: 141: 137: 135: 130: 129:scrapped.) 127: 123: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 509:. Retrieved 505: 496: 487: 478: 466:. Retrieved 462: 453: 444: 435: 423:. Retrieved 419: 406: 397: 385: 374:. Retrieved 370: 360: 348:. Retrieved 335: 322: 318: 307: 303: 297: 288: 274:Die castings 272: 269:Die Castings 259: 246: 238: 229: 221: 209: 200: 191: 182: 163: 150: 138: 131: 121: 120: 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 285:Electronics 376:2018-09-14 350:1 November 328:References 69:newspapers 314:corrosion 526:Category 425:16 March 126:porosity 468:7 April 310:plating 160:Process 83:scholar 85:  78:  71:  64:  56:  511:3 May 416:(PDF) 394:(PDF) 345:(PDF) 90:JSTOR 76:books 513:2020 470:2020 427:2018 352:2012 276:and 62:news 45:by 528:: 504:. 486:. 461:. 443:. 418:. 396:. 369:. 515:. 490:. 472:. 429:. 379:. 354:. 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Porosity sealing"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
porosity
metal castings
Casting defects
Military Standard
powder metallurgy
additive manufacturing
additive manufacturing
Die castings
permanent mold castings
Powder metallurgy
plating
corrosion
"Basics of Vacuum Impregnation"
"What Size of Porosity Can Vacuum Impregnation Seal?"
"Testing Vacuum Impregnation Sealant Compatibility vs Impregnation Process Effectiveness"
"Continuing Advances in Vacuum Impregnation Systems"
"When to Vacuum Impregnate Castings"
"Guide to Sealing Additive Manufacturing Porosity"
"Three Reasons to Seal Electronics with Vacuum Impregnation"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.