Knowledge

Postural Control

Source 📝

223:, and the right posterior cingulate cortex. There was increased engagement of higher cortical structures noted with increase in demands of locomotor tasks. Using FMRI, Jahn et al. 2004 studied the activation pattern with three imagined conditions and found that standing was associated with activation of the thalamus, basal ganglia, and cerebellar vermis. Using FNIRS, Mihara M et al. 2008 studied activation related to external perturbation and suggested prefrontal cortex to be involved in adequate allocation of visuospatial attention. Zwergal A et al. 2012 studied role of aging on activation pattern in standing and found more activation in bilateral insula, superior and middle temporal gyrus, inferior frontal gyrus, middle occipital gyrus and postcentral gyrus suggesting decreased reciprocal inhibition of these areas. 22: 167:
In some cases, a resistance reflex is reversed in certain contexts, becoming an ‘assistance reflex’ - causing movement in the same direction as the perturbation. For example, in the crayfish, perturbation of the leg causes a resistance reflex when the animal is standing, but an assistance reflex when
103:
or dynamic activity for the regulation of stability and orientation. The interaction of the individual with the task and the environment develops postural control. Stability refers to maintenance of the center of mass within the base of support while orientation refers to maintenance of relationship
676:
Ackermann, H., Diener, H. C., & Dichgans, J. (1987). Changes in sensorimotor functions after spinal lesions evaluated in terms of long-latency reflexes. J Neurol Neurosurg Psychiatry, 50(12), 1647-1654; Jacobs, J. V., & Horak, F. B. (2007). Cortical control of postural responses. Journal of
185:
An initial postural reaction on exposure to an external perturbations was shown to be generated by the brainstem and spinal cord in animal and human studies (short latency mono or polysynaptic spinal loop 40-65ms) followed by the later part of the reaction which is modified by direct transcortical
86:
systems. While the ability to regulate posture in vertebrates was previously thought to be a mostly automatic task, controlled by circuits in the spinal cord and brainstem, it is now clear that cortical areas are also involved, updating motor commands based on the state of the body and environment.
116:
postural control respectively in order to maintain stability during various circumstances. Feed forward postural control refers to the postural adjustments made in response to the anticipation of a voluntary or a self-generated movement that may be destabilizing, while feedback postural control
657:
Diener, H. C., Dichgans, J., Bootz, F., & Bacher, M. (1984). Early stabilization of human posture after a sudden disturbance: influence of rate and amplitude of displacement. Experimental Brain Research, 56(1), 126-134; Keck, M. E., Pijnappels, M., Schubert, M., Colombo, G., Curt, A., &
163:
that aid in postural control. One of the most widespread feedback systems in limb postural control is the resistance reflex in arthropods and stretch reflex in vertebrates. These feedback loops consist of sensory neurons that detect external perturbations and activate motor neurons that produce
176:
Traditionally postural control was regarded an automatic response to sensory stimuli generated by subcortical structures such as the brainstem and spinal circuits. Since postural responses are generated quickly, without voluntary intent and with less variability than cued, voluntary movements,
218:
in maintenance of standing posture and further suggested involvement of the visual association cortex in controlling postural equilibrium while standing. Mauloin et al. 2003 using PET studied motor imagery of locomotion under four conditions and confirmed supraspinal control in locomotion by
117:
refer to the postural adjustments made in reaction to sensory stimuli from the externally generated perturbation. Furthermore, these strategies may involve either a fixed-support or a change-in-support response depending on the intensity of the perturbation.
177:
cerebral cortex was not considered to be involved in postural control. However, current evolving evidence from numerous neurophysiological and neuroimaging studies (as given below) suggest cortical involvement in postural control and maintenance of balance.
104:
within the body segments and between body and the environment for the task. These stability and orientation challenges necessitate change in the task and environment, thereby making postural control the most essential prerequisite for most of the tasks.
647:
Sherrington, C. S. (1910). Flexion‐reflex of the limb, crossed extension‐reflex, and reflex stepping and standing. The Journal of physiology, 40(1-2), 28-121; Magnus, R. (1926). The physiology of posture: Cameron Lectures. Lancet, 211(53),
667:
Bove, M., Nardone, A., & Schieppati, M. (2003). Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans. J Physiol, 550(Pt 2), 617-630. doi:10.1113/jphysiol.2003.043331
686:
Graydon, F. X., Friston, K. J., Thomas, C. G., Brooks, V. B., & Menon, R. S. (2005). Learning-related fMRI activation associated with a rotational visuo-motor transformation. Brain Res Cogn Brain Res, 22(3), 373-383.
723:
Jahn, K., Deutschländer, A., Stephan, T., Strupp, M., Wiesmann, M., & Brandt, T. (2004). Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage, 22(4),
46: 214:
have been used to elucidate cortical control in static and dynamic postures. Using PET, Ouchi Y et al. 1999 evaluated mechanisms involved in bipedal standing and confirmed the pivotal contribution of
714:
Malouin, F., Richards, C. L., Jackson, P. L., Dumas, F., & Doyon, J. (2003). Brain activations during motor imagery of locomotor‐related tasks: A PET study. Human Brain Mapping, 19(1), 47-62
742:
Zwergal, A., Linn, J., Xiong, G., Brandt, T., Strupp, M., & Jahn, K. (2012). Aging of human supraspinal locomotor and postural control in fMRI. Neurobiology of aging, 33(6), 1073-1084
125:
Postural control involves a complex interaction of multiple systems in order to maintain stability and orientation. Multi-components of the conceptual model of postural control include:
658:
Dietz, V. (1998). Stumbling reactions in man: influence of corticospinal input. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 109(3), 215-223
190:
via cerebellum which helps in adapting by using prior experience or via basal ganglia which helps generating a response based on the current context, modifies the postural response.
705:
Ouchi, Y., Okada, H., Yoshikawa, E., Nobezawa, S., & Futatsubashi, M. (1999). Brain activation during maintenance of standing postures in humans. Brain, 122(2), 329-338
361:
Pollock AS1, Durward BR, Rowe PJ, Paul JP (2000). “What is balance?” Clinical rehabilitation 14(4):402-6; Anne Shumway Cook, Wollcott (2007) Motor control, 3rd edition
733:
Mihara, M., Miyai, I., Hatakenaka, M., Kubota, K., & Sakoda, S. (2008). Role of the prefrontal cortex in human balance control. Neuroimage, 43(2), 329-336
168:
the animal is walking.  This phenomenon is called ‘reflex reversal’, where the reflex response to a stimulus changes given the state of the animal.
74:
interprets sensory input to produce motor output that maintains upright posture. Sensory information used for postural control largely comes from
612: 696:
Jacobs, J. V., & Horak, F. B. (2007). Cortical control of postural responses. Journal of neural transmission, 114(10), 1339-1348
219:
demonstrating activation in the dorsal premotor cortex and precuneus bilaterally, the left dorsolateral prefrontal cortex, the left
758: 207: 203: 36: 632: 112:
There are two types of postural control strategies: predictive and reactive, which utilize the feed forward and
211: 388:
Pollock AS1, Durward BR, Rowe PJ, Paul JP (2000). “What is balance?” Clinical rehabilitation 14(4):402-6
220: 557:"Neural mechanisms of reflex reversal in coxo-basipodite depressor motor neurons of the crayfish" 509: 199: 151:
The functional task and the environment define the precise organization of the postural systems.
71: 305: 624: 239:
Massion, J. (1994). Postural control system. Current Opinion in Neurobiology, 4(6), 877-887
304:
Lephart, Scott M.; Pincivero, Danny M.; Giraido, Jorge L.; Fu, Freddie H. (January 1997).
8: 510:"Inhibitory Component of the Resistance Reflex in the Locomotor Network of the Crayfish" 594: 490: 435: 341: 286: 51: 470: 415: 306:"The Role of Proprioception in the Management and Rehabilitation of Athletic Injuries" 628: 586: 578: 537: 529: 482: 474: 427: 419: 333: 325: 278: 270: 215: 96: 83: 598: 494: 439: 290: 763: 620: 568: 521: 466: 454: 411: 399: 345: 317: 262: 32: 187: 321: 250: 100: 79: 573: 556: 266: 752: 582: 533: 478: 423: 329: 274: 75: 541: 486: 431: 282: 590: 525: 337: 95:
Postural control is defined as achievement, maintenance or regulation of
70:
Postural control refers to the maintenance of body posture in space. The
135:
Individual sensory systems: visual, vestibular and somatosensory system
41: 113: 21: 453:
Clarac, François; Cattaert, Daniel; Le Ray, Didier (May 2000).
160: 379:
Anne Shumway Cook, Wollcott (2007) Motor control, 3rd edition
455:"Central control components of a 'simple' stretch reflex" 303: 617:
The Oxford Dictionary of Sports Science & Medicine
120: 508:
Le Bon-Jego, Morgane; Cattaert, Daniel (2002-11-01).
452: 251:"Sensorimotor Integration in Human Postural Control" 507: 750: 400:"Control of a 'simple' stretch reflex in humans" 554: 171: 107: 180: 164:movements that counter the imposed movement. 154: 186:loops (long latency loops, ~132 ms). 572: 677:neural transmission, 114(10), 1339-1348 555:Le Ray, D.; Cattaert, D. (April 1997). 397: 310:The American Journal of Sports Medicine 248: 193: 751: 687:doi:10.1016/j.cogbrainres.2004.09.007 208:Functional magnetic resonance imaging 204:Functional near-infrared spectroscopy 625:10.1093/acref/9780198568506.001.0001 375: 373: 371: 369: 367: 357: 355: 15: 121:Systems involved in posture control 13: 398:Capaday, Charles (November 2000). 14: 775: 619:. Oxford University Press. 2007. 364: 352: 20: 736: 727: 717: 708: 699: 690: 680: 670: 661: 651: 641: 605: 548: 501: 446: 391: 382: 297: 242: 233: 1: 759:Postural awareness techniques 471:10.1016/s0166-2236(99)01535-0 416:10.1016/s0166-2236(00)01664-7 249:Peterka, R. J. (2002-09-01). 226: 90: 613:"reflex-reversal phenomenon" 212:Positron emission tomography 7: 172:Cortical control of posture 108:Postural control strategies 10: 780: 561:Journal of Neurophysiology 514:Journal of Neurophysiology 322:10.1177/036354659702500126 255:Journal of Neurophysiology 181:Neurophysiological studies 129:Musculoskeletal components 574:10.1152/jn.1997.77.4.1963 267:10.1152/jn.2002.88.3.1097 155:Postural control reflexes 221:inferior parietal lobule 147:Internal representations 132:Neuro muscular synergies 459:Trends in Neurosciences 404:Trends in Neurosciences 200:functional neuroimaging 141:Anticipatory mechanisms 35:, as no other articles 72:central nervous system 526:10.1152/jn.00178.2002 194:Neuroimaging studies 202:techniques such as 144:Adaptive mechanisms 159:Many animals have 138:Sensory strategies 99:during any static 54:for suggestions. 44:to this page from 216:cerebellar vermis 68: 67: 771: 743: 740: 734: 731: 725: 721: 715: 712: 706: 703: 697: 694: 688: 684: 678: 674: 668: 665: 659: 655: 649: 645: 639: 638: 609: 603: 602: 576: 567:(4): 1963–1978. 552: 546: 545: 520:(5): 2575–2588. 505: 499: 498: 450: 444: 443: 395: 389: 386: 380: 377: 362: 359: 350: 349: 301: 295: 294: 261:(3): 1097–1118. 246: 240: 237: 63: 60: 49: 47:related articles 24: 16: 779: 778: 774: 773: 772: 770: 769: 768: 749: 748: 747: 746: 741: 737: 732: 728: 722: 718: 713: 709: 704: 700: 695: 691: 685: 681: 675: 671: 666: 662: 656: 652: 646: 642: 635: 611: 610: 606: 553: 549: 506: 502: 451: 447: 410:(11): 528–529. 396: 392: 387: 383: 378: 365: 360: 353: 302: 298: 247: 243: 238: 234: 229: 196: 188:Cerebral cortex 183: 174: 157: 123: 110: 93: 64: 58: 55: 45: 42:introduce links 25: 12: 11: 5: 777: 767: 766: 761: 745: 744: 735: 726: 716: 707: 698: 689: 679: 669: 660: 650: 640: 633: 604: 547: 500: 465:(5): 199–208. 445: 390: 381: 363: 351: 316:(1): 130–137. 296: 241: 231: 230: 228: 225: 195: 192: 182: 179: 173: 170: 156: 153: 149: 148: 145: 142: 139: 136: 133: 130: 122: 119: 109: 106: 92: 89: 80:proprioceptive 66: 65: 52:Find link tool 28: 26: 19: 9: 6: 4: 3: 2: 776: 765: 762: 760: 757: 756: 754: 739: 730: 720: 711: 702: 693: 683: 673: 664: 654: 644: 636: 634:9780191727788 630: 626: 622: 618: 614: 608: 600: 596: 592: 588: 584: 580: 575: 570: 566: 562: 558: 551: 543: 539: 535: 531: 527: 523: 519: 515: 511: 504: 496: 492: 488: 484: 480: 476: 472: 468: 464: 460: 456: 449: 441: 437: 433: 429: 425: 421: 417: 413: 409: 405: 401: 394: 385: 376: 374: 372: 370: 368: 358: 356: 347: 343: 339: 335: 331: 327: 323: 319: 315: 311: 307: 300: 292: 288: 284: 280: 276: 272: 268: 264: 260: 256: 252: 245: 236: 232: 224: 222: 217: 213: 209: 205: 201: 191: 189: 178: 169: 165: 162: 152: 146: 143: 140: 137: 134: 131: 128: 127: 126: 118: 115: 105: 102: 98: 88: 85: 81: 77: 73: 62: 59:February 2024 53: 48: 43: 39: 38: 34: 29:This article 27: 23: 18: 17: 738: 729: 719: 710: 701: 692: 682: 672: 663: 653: 643: 616: 607: 564: 560: 550: 517: 513: 503: 462: 458: 448: 407: 403: 393: 384: 313: 309: 299: 258: 254: 244: 235: 197: 184: 175: 166: 158: 150: 124: 111: 94: 69: 56: 30: 753:Categories 227:References 91:Definition 84:vestibular 50:; try the 37:link to it 724:1722-1731 583:0022-3077 534:0022-3077 479:0166-2236 424:0166-2236 330:0363-5465 275:0022-3077 40:. Please 599:15322398 542:12424295 495:10113723 487:10782125 440:19227924 432:11185390 291:14674302 283:12205132 198:Various 161:reflexes 114:feedback 764:Posture 591:9114248 346:8912431 338:9006708 101:posture 97:balance 631:  597:  589:  581:  540:  532:  493:  485:  477:  438:  430:  422:  344:  336:  328:  289:  281:  273:  210:, and 82:, and 76:visual 33:orphan 31:is an 648:1-536 595:S2CID 491:S2CID 436:S2CID 342:S2CID 287:S2CID 629:ISBN 587:PMID 579:ISSN 538:PMID 530:ISSN 483:PMID 475:ISSN 428:PMID 420:ISSN 334:PMID 326:ISSN 279:PMID 271:ISSN 621:doi 569:doi 522:doi 467:doi 412:doi 318:doi 263:doi 755:: 627:. 615:. 593:. 585:. 577:. 565:77 563:. 559:. 536:. 528:. 518:88 516:. 512:. 489:. 481:. 473:. 463:23 461:. 457:. 434:. 426:. 418:. 408:23 406:. 402:. 366:^ 354:^ 340:. 332:. 324:. 314:25 312:. 308:. 285:. 277:. 269:. 259:88 257:. 253:. 206:, 78:, 637:. 623:: 601:. 571:: 544:. 524:: 497:. 469:: 442:. 414:: 348:. 320:: 293:. 265:: 61:) 57:(

Index


orphan
link to it
introduce links
related articles
Find link tool
central nervous system
visual
proprioceptive
vestibular
balance
posture
feedback
reflexes
Cerebral cortex
functional neuroimaging
Functional near-infrared spectroscopy
Functional magnetic resonance imaging
Positron emission tomography
cerebellar vermis
inferior parietal lobule
"Sensorimotor Integration in Human Postural Control"
doi
10.1152/jn.2002.88.3.1097
ISSN
0022-3077
PMID
12205132
S2CID
14674302

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑