Knowledge

Retinal implant

Source 📝

315:"State-of-the-art" retinal implants incorporate 60-100 channels, sufficient for basic object discrimination and recognition tasks. However, simulations of the resultant pixelated images assume that all electrodes on the implant are in contact with the desired retinal cell; in reality the expected spatial resolution is lower, as a few of the electrodes may not function optimally. Tests of reading performance indicated that a 60-channel implant is sufficient to restore some reading ability, but only with significantly enlarged text. Similar experiments evaluating room navigation ability with pixelated images demonstrated that 60 channels were sufficient for experienced subjects, while naïve subjects required 256 channels. This experiment, therefore, not only demonstrated the functionality provided by low resolution 332:
low resolution, retinal implants are potentially useful in providing crude vision to individuals who otherwise would not have any visual sensation. However, clinical testing in implanted subjects is somewhat limited and the majority of spatial resolution simulation experiments have been conducted in normal controls. It remains unclear whether the low level vision provided by current retinal implants is sufficient to balance the risks associated with the surgical procedure, especially for subjects with intact peripheral vision. Several other aspects of retinal implants need to be addressed in future research, including the long term stability of the implants and the possibility of retinal
17: 183:
and hence they rely on external camera for capturing the visual information. Therefore, unlike natural vision, eye movements do not shift the transmitted image on the retina, which creates a perception of the moving object when person with such an implant changes the direction of gaze. Therefore, patients with such implants are asked to not move their eyes, but rather scan the visual field with their head. Additionally, encoding visual information at the ganglion cell layer requires very sophisticated image processing techniques in order to account for various types of the retinal ganglion cells encoding different features of the image.
77:. The first application of an implantable stimulator for vision restoration was developed by Drs. Brindley and Lewin in 1968. This experiment demonstrated the viability of creating visual percepts using direct electrical stimulation, and it motivated the development of several other implantable devices for stimulation of the visual pathway, including retinal implants. Retinal stimulation devices, in particular, have become a focus of research as approximately half of all cases of blindness are caused by retinal damage. The development of retinal implants has also been motivated in part by the advancement and success of 296:, and that five of the eight subjects reported various implant-mediated visual perceptions in daily life. One had optic nerve damage and did not perceive stimulation. The Boston Subretinal Implant Project has also developed several iterations of a functional subretinal implant, and focused on short term analysis of implant function. Results from all clinical trials to date indicate that patients receiving subretinal implants report perception of phosphenes, with some gaining the ability to perform basic visual tasks, such as shape recognition and motion detection. 256:
array associated with an epiretinal implant. The subretinal placement is also more straightforward, as it places the stimulating array directly adjacent to the damaged photoreceptors. By relying on the function of the remaining retinal layers, subretinal implants allow for normal inner retinal processing, including amplification, thus resulting in an overall lower threshold for a visual response. Additionally, subretinal implants enable subjects to use normal eye movements to shift their gaze. The
319:, but also the ability for subjects to adapt and improve over time. However, these experiments are based merely on simulations of low resolution vision in normal subjects, rather than clinical testing of implanted subjects. The number of electrodes necessary for reading or room navigation may differ in implanted subjects, and further testing needs to be conducted within this clinical population to determine the required spatial resolution for specific visual tasks. 274:
imposes significant size constraints on the implant. The close proximity between the implant and the retina also increases the possibility of thermal damage to the retina from heat generated by the implant. Subretinal implants require intact inner and middle retinal layers, and therefore are not beneficial for retinal diseases extending beyond the outer photoreceptor layer. Additionally, photoreceptor loss can result in the formation of a
121:. Other factors, including the amount of residual vision, overall health, and family commitment to rehabilitation, are also considered when determining candidates for retinal implants. In subjects with age-related macular degeneration, who may have intact peripheral vision, retinal implants could result in a hybrid form of vision. In this case the implant would supplement the remaining peripheral vision with central vision information. 1868: 192:
function of some patients improving significantly over time. Future versions of the ARGUS device are being developed with increasingly dense electrode arrays, allowing for improved spatial resolution. The most recent ARGUS II device contains 60 electrodes, and a 200 electrode device is under development by ophthalmologists and engineers at the USC Eye Institute. The
323:
remaining small enough to implant, to restore sufficient visual function for those tasks. It is worth to note high-density stimulation is not equal to high visual acuity (resolution), which requires a lot of factors in both hardware (electrodes and coatings) and software (stimulation strategies based on surgical results).
204:. Another epiretinal device, the Learning Retinal Implant, has been developed by IIP technologies GmbH, and has begun to be evaluated in clinical trials. A third epiretinal device, EPI-RET, has been developed and progressed to clinical testing in six patients. The EPI-RET device contains 25 electrodes and requires the 331:
Clinical reports to date have demonstrated mixed success, with all patients report at least some sensation of light from the electrodes, and a smaller proportion gaining more detailed visual function, such as identifying patterns of light and dark areas. The clinical reports indicate that, even with
273:
The main disadvantage of subretinal implants is the lack of sufficient incident light to enable the microphotodiodes to generate adequate current. Thus, subretinal implants often incorporate an external power source to amplify the effect of incident light. The compact nature of the subretinal space
260:
stimulation from subretinal implants is inherently more accurate, as the pattern of incident light on the microphotodiodes is a direct reflection of the desired image. Subretinal implants require minimal fixation, as the subretinal space is mechanically constrained and the retinal pigment epithelium
182:
Since the nerve fiber layer has similar stimulation threshold to that of the retinal ganglion cells, axons passing under the epiretinal electrodes are stimulated, creating arcuate percepts, and thereby distorting the retinotopic map. So far, none of the epiretinal implants had light-sensitive pixels,
147:
Epiretinal implants are placed on top of the retinal surface, above the nerve fiber layer, directly stimulating ganglion cells and bypassing all other retinal layers. Array of electrodes is stabilized on the retina using micro tacks which penetrate into the sclera. Typically, external video camera on
286:
Optobionics was the first company to develop a subretinal implant and evaluate the design in a clinical trial. Initial reports indicated that the implantation procedure was safe, and all subjects reported some perception of light and mild improvement in visual function. The current version of this
291:
in Germany has also developed a subretinal implant, which has undergone clinical testing in nine patients. Trial was put on hold due to repeated failures. The Retina Implant AG device contains 1500 microphotodiodes, allowing for increased spatial resolution, but requires an external power source.
255:
A subretinal implant is advantageous over an epiretinal implant in part because of its simpler design. The light acquisition, processing, and stimulation are all carried out by microphotodiodes mounted onto a single chip, as opposed to the external camera, processing chip, and implanted electrode
92:
received market approval in the US in Feb 2013 and in Europe in Feb 2011, becoming the first approved implant. The device may help adults with RP who have lost the ability to perceive shapes and movement to be more mobile and to perform day-to-day activities. The epiretinal device is known as the
246:
cells, leading to a visual perception representative of the original incident image. In principle, subretinal implants do not require any external hardware beyond the implanted microphotodiodes array. However, some subretinal implants require power from external circuitry to enhance the image
160:
lasers. The real-time image processing involves reducing the resolution, enhancing contrast, detecting the edges in the image and converting it into a spatio-temporal pattern of stimulation delivered to the electrode array on the retina. The majority of electronics can be incorporated into the
221:
Subretinal implants sit on the outer surface of the retina, between the photoreceptor layer and the retinal pigment epithelium, directly stimulating retinal cells and relying on the normal processing of the inner and middle retinal layers. Adhering a subretinal implant in place is relatively
191:
The first epiretinal implant, the ARGUS device, included a silicon platinum array with 16 electrodes. The Phase I clinical trial of ARGUS began in 2002 by implanting six participants with the device. All patients reported gaining a perception of light and discrete phosphenes, with the visual
322:
Simulation results indicate that 600-1000 electrodes would be required to enable subjects to perform a wide variety of tasks, including reading, face recognition, and navigating around rooms. Thus, the available spatial resolution of retinal implants needs to increase by a factor of 10, while
61:(between the choroid and the sclera). The implants introduce visual information into the retina by electrically stimulating the surviving retinal neurons. So far, elicited percepts had rather low resolution, and may be suitable for light perception and recognition of simple objects. 20:
Diagram of the eye, the retina, and location of the various retinal implants. Retinal layers, from bottom to top: retinal pigment epithelium (RPE), photoreceptors (PR), horizontal cells (HC), bipolar cells (BC), amacrine cells (AC), ganglion cells (RGC), nerve fiber layer
343:
in patients with severe Age Related Macular Degeneration. These results are very impressive as it appears that the patients integrate the residual vision and the artificial vision. It potentially opens the use of retinal implants to millions of patients with AMD.
173:
Epiretinal implants directly stimulate the retinal ganglion cells, thereby bypassing all other retinal layers. Therefore, in principle, epiretinal implants could provide visual perception to individuals even if all other retinal layers have been damaged.
226:, which generate signals directly from the incoming light. Incident light passing through the retina generates currents within the microphotodiodes, which directly inject the resultant current into the underlying retinal cells via 222:
simple, as the implant is mechanically constrained by the minimal distance between the outer retina and the retinal pigment epithelium. A subretinal implant consists of a silicon wafer containing light sensitive
129:
There are two main types of retinal implants by placement. Epiretinal implants are placed in the internal surface of the retina, while subretinal implants are placed between the outer retinal layer and the
1055:
S. Klauke; M. Goertz; S. Rein; D. Hoehl; U. Thomas; R. Eckhorn; F. Bremmer; T. Wachtler (2011). "Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans".
1125:
J. Rizzo III; J. Wyatt Jr.; J. Lowenstein; S. Kelly; D. Shire (2003). "Perceptual efficacy of electrical stimulation of human retina with micro electrode array during short- term surgical trials".
196:
in February 2011 (CE Mark demonstrating safety and performance), and it is available in Germany, France, Italy, and UK. Interim results on 30 patients long term trials were published in
1006:
Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel JA, Stanga PE, Cideciyan AV, Duncan JL, Eliott D, Filley E, Ho AC, Santos A, Safran AB, Arditi A, Del Priore LV, Greenberg RJ (2012).
971:
M. Humayun; J. Weiland; G. Fujii; R. Greenberg; R. Williamson; J. Little; et al. (2003). "Visual perception in a blind subject with a chronic microelectronic retinal prosthesis".
776:
S. Kim; S. Sadda; J. Pearlman; M. Humayun; E. deJuan Jr.; B. Melia; et al. (2002). "Morphometric analysis of the macula in eyes with disciform age-related macular degeneration".
733:
S. Kim; S. Sadda; M. Humayun; E. deJuan Jr.; B. Melia; W. Green (2002). "Morphometric analysis of the macula in eyes with geographic atrophy due to age-related macular degeneration".
109:
Optimal candidates for retinal implants have retinal diseases, such as retinitis pigmentosa or age-related macular degeneration. These diseases cause blindness by affecting the
671:
A. Santos; M. Humayun; E. deJuan Jr.; R. Greenburg; M. Marsh; I. Klock; et al. (1997). "Preservation of the inner retina in retinitis pigmentosa: A morphometric analysis".
292:
Retina implant AG reported 12 months results on the Alpha IMS study in February 2013 showing that six out of nine patients had a device failure in the nine months post implant
1090:
A. Chow; V. Chow; K. Packo; J. Pollack; G. Peyman; R. Schuchard (2004). "The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa".
636:
J. Stone; W. Barlow; M. Humayun; E. deJuan Jr.; A. Milam (1992). "Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa".
161:
associated external components, allowing for a smaller implant and simpler upgrades without additional surgery. The external electronics provides full control over the
928:
W. Liu; K. Vichienchom; M. Clements; C. Demarco; C. Hughes; C. McGucken; et al. (2000). "A neurostimulus chip with telemetry unit for retinal prosthesis device".
208:
to be replaced with a receiver chip. All subjects have demonstrated the ability to discriminate between different spatial and temporal patterns of stimulation.
1528: 287:
device has been implanted in 10 patients, who have each reported improvements in the perception of visual details, including contrast, shape, and movement.
33:
for restoration of sight to patients blinded by retinal degeneration. The system is meant to partially restore useful vision to those who have lost their
288: 94: 1401: 1211:
G. Dagnelie; P. Keane; V. Narla; L. Yang; J. Weiland; M. Humayun (2007). "Real and virtual mobility performance in simulated prosthetic vision".
45:(AMD). Retinal implants are being developed by a number of private companies and research institutions, and three types are in clinical trials: 293: 339:
The Manchester Royal Infirmary and Prof Paulo E Stanga announced on July 22, 2015, the first successful implantation of Second Sight's
113:
in the outer layer of the retina, while leaving the inner and middle retinal layers intact. Minimally, a patient must have an intact
1426: 887:
G. Chader; J. Weiland; M. Humayun (2009). "Artificial vision: Needs, functioning, and testing of a retinal electronic prosthesis".
1496: 1454: 193: 1722: 1352: 821:"Visual acuity and perimacular retinal layers detected by optical coherence tomography in patients with retinitis pigmentosa" 1615: 1811: 1474: 1394: 706:
M. Humayun (1999). "Morphometric analysis of the extra- macular retina from post mortem eyes with retinitis pigmentosa".
1332: 904: 278:
at the boundary of the damaged photoreceptors, which can impede stimulation and increase the stimulation threshold.
1894: 1536: 148:
eyeglasses acquires images and transmits processed video information to the stimulating electrodes via wireless
1598: 1576: 1387: 1369: 1872: 1838: 89: 1904: 1675: 1638: 610: 118: 16: 1909: 1843: 1779: 131: 1899: 1826: 1786: 153: 1929: 1521: 85: 117:
layer in order to be a candidate for a retinal implant. This can be assessed non-invasively using
1791: 1764: 1516: 1449: 308:
of the implant. Current prototypes of retinal implants are capable of providing low resolution,
230:. The pattern of microphotodiodes activated by incident light therefore stimulates a pattern of 81:, which has demonstrated that humans can regain significant sensory function with limited input. 1801: 1796: 1769: 1643: 1610: 1312: 235: 1727: 1511: 1410: 243: 114: 1924: 1774: 1737: 1717: 1556: 1437: 1220: 937: 519: 471: 353: 239: 227: 42: 38: 8: 1831: 1806: 1566: 1541: 1459: 684: 649: 231: 1224: 941: 523: 1914: 1848: 1484: 1469: 1442: 1290: 1263: 1244: 1188: 1161: 1032: 1007: 953: 845: 820: 801: 758: 587: 562: 543: 418: 393: 305: 110: 34: 984: 896: 304:
The quality of vision expected from a retinal implant is largely based on the maximum
262: 1685: 1593: 1546: 1295: 1236: 1193: 1142: 1107: 1072: 1037: 988: 910: 900: 850: 793: 789: 750: 746: 715: 688: 653: 592: 535: 475: 423: 101:
in 2013, making it the first wireless epiretinal electronic device to gain approval.
30: 1248: 1232: 957: 805: 762: 1816: 1732: 1665: 1658: 1633: 1571: 1551: 1506: 1501: 1285: 1275: 1228: 1183: 1173: 1134: 1099: 1064: 1027: 1019: 980: 945: 892: 840: 832: 785: 742: 680: 645: 582: 574: 547: 527: 467: 413: 409: 405: 373:
O. Foerster (1929). "Beitrage zur Pathophysiologie der Sehbahn und der Sehsphare".
316: 162: 78: 1349: 1008:"Interim results from the international trial of Second Sight's visual prosthesis" 1692: 1373: 1356: 1023: 333: 152:. An external transmitter is also required to provide power to the implant via 1821: 1648: 1464: 1103: 578: 205: 70: 1888: 1853: 1670: 1653: 1603: 1178: 1124: 611:"FDA approves first retinal implant for adults with rare genetic eye disease" 1361: 836: 670: 531: 1919: 1757: 1625: 1479: 1324: 1299: 1240: 1197: 1146: 1111: 1076: 1041: 992: 914: 854: 797: 754: 596: 539: 479: 309: 719: 692: 657: 427: 1752: 1747: 1491: 1138: 1068: 927: 97:. It completed a multi-centre clinical trial in Europe and was awarded a 1379: 970: 635: 1712: 1280: 394:"The sensation produced by electrical stimulation of the visual cortex" 275: 257: 223: 98: 200:
in 2012. Argus II received approval from the US FDA on April 14, 2013
69:
Foerster was the first to discover that electrical stimulation of the
1742: 949: 732: 149: 74: 1159: 1586: 1561: 1366: 775: 340: 157: 1210: 201: 1054: 891:. Progress in Brain Research. Vol. 175. pp. 0079–6123. 1089: 889:
Neurotherapy: Progress in Restorative Neuroscience and Neurology
50: 1262:
Zeng, Q.; Zhao, S.; Yang, H.; Zhang, Y.; Wu, T. (2019-06-22).
1581: 886: 458:
J. Weiland; T. Liu; M. Humayun (2005). "Retinal prosthesis".
510:
E. Zrenner (2002). "Will retinal implants restore vision?".
1264:"Micro/Nano Technologies for High-Density Retinal Implant" 1005: 457: 93:
Retina Implant and was originally developed in Germany by
326: 617:. U.S. Food and Drug Administration. 14 February 2013 818: 391: 1261: 1160:A. Fornos; J. Sommerhalder; M. Pelizzone (2011). 1886: 73:cortex could be used to create visual percepts, 1127:Investigative Ophthalmology and Visual Science 1057:Investigative Ophthalmology and Visual Science 825:Investigative Ophthalmology and Visual Science 708:Investigative Ophthalmology and Visual Science 1395: 1162:"Reading with a simulated 60-channel implant" 1362:- The Retinal Implant Project - rle.mit.edu 882: 880: 878: 876: 874: 872: 870: 868: 866: 864: 372: 194:ARGUS II device received marketing approval 1867: 1402: 1388: 1204: 705: 509: 505: 503: 501: 499: 497: 495: 493: 491: 489: 453: 451: 449: 447: 445: 443: 441: 439: 437: 119:optical coherence tomography (OCT) imaging 1409: 1376:of the National Institutes of Heath (NIH) 1289: 1279: 1187: 1177: 1031: 964: 844: 586: 417: 1153: 1048: 861: 812: 385: 366: 15: 1497:Carbon nanotube field-effect transistor 1455:Applications of artificial intelligence 1118: 699: 560: 486: 460:Annual Review of Biomedical Engineering 434: 1887: 1723:Differential technological development 1083: 664: 472:10.1146/annurev.bioeng.7.060804.100435 375:Journal für Psychologie und Neurologie 336:in response to prolonged stimulation. 327:Current status and future developments 216: 211: 137: 1383: 921: 769: 629: 299: 1616:Three-dimensional integrated circuit 930:IEEE Journal of Solid-State Circuits 726: 685:10.1001/archopht.1997.01100150513011 650:10.1001/archopht.1992.01080230134038 554: 142: 1812:Future-oriented technology analysis 1475:Progress in artificial intelligence 281: 13: 294:Proceedings of the royal society B 268: 14: 1941: 1343: 1274:(6). Micromachines (Basel): 419. 186: 1866: 1335:from the original on 2023-06-27. 1325:"Bionic eye implant world first" 790:10.1097/00006982-200208000-00012 747:10.1097/00006982-200208000-00011 177: 43:age-related macular degeneration 37:due to retinal diseases such as 1512:Fourth-generation optical discs 1317: 1306: 1255: 999: 819:T. Matsuo; N. Morimoto (2007). 250: 603: 410:10.1113/jphysiol.1968.sp008519 392:G. Brindley; W. Lewin (1968). 1: 1839:Technology in science fiction 1350:Japan Retinal Implant Project 1213:Journal of Neural Engineering 985:10.1016/s0042-6989(03)00457-7 897:10.1016/s0079-6123(09)17522-2 563:"Trends in cochlear implants" 359: 265:within the subretinal space. 168: 104: 90:Second Sight Medical Products 1024:10.1016/j.ophtha.2011.09.028 7: 347: 10: 1946: 1844:Technology readiness level 1780:Technological unemployment 1104:10.1001/archopht.122.4.460 579:10.1177/108471380400800102 132:retinal pigment epithelium 64: 1862: 1827:Technological singularity 1787:Technological convergence 1705: 1624: 1424: 1417: 1233:10.1088/1741-2560/4/1/s11 1166:Frontiers in Neuroscience 1092:Archives of Ophthalmology 673:Archives of Ophthalmology 638:Archives of Ophthalmology 228:arrays of microelectrodes 154:radio-frequency induction 57:(behind the retina), and 1639:Brain–computer interface 1522:Holographic data storage 1179:10.3389/fnins.2011.00057 124: 86:Argus II retinal implant 1792:Technological evolution 1765:Exploratory engineering 1517:3D optical data storage 1450:Artificial intelligence 837:10.1136/bjo.2007.114538 567:Trends in Amplification 532:10.1126/science.1067996 1895:Biomedical engineering 1802:Technology forecasting 1797:Technological paradigm 1770:Proactionary principle 1644:Electroencephalography 1611:Software-defined radio 1367:National Eye Institute 22: 1728:Disruptive innovation 1411:Emerging technologies 398:Journal of Physiology 19: 1775:Technological change 1718:Collingridge dilemma 1438:Ambient intelligence 1139:10.1167/iovs.02-0817 1069:10.1167/iovs.09-4410 354:Retinal regeneration 39:retinitis pigmentosa 1905:Implants (medicine) 1832:Technology scouting 1807:Accelerating change 1460:Machine translation 1225:2007JNEng...4S..92D 942:2000IJSSC..35.1487L 524:2002Sci...295.1022Z 212:Subretinal implants 138:Epiretinal implants 111:photoreceptor cells 1849:Technology roadmap 1485:Speech recognition 1470:Mobile translation 1443:Internet of things 1372:2011-12-08 at the 1355:2008-10-19 at the 1281:10.3390/mi10060419 306:spatial resolution 300:Spatial resolution 165:for each patient. 88:, manufactured by 23: 1910:Artificial organs 1882: 1881: 1701: 1700: 1686:Visual prosthesis 1594:Optical computing 1133:(12): 5362–5369. 334:neuron plasticity 289:Retina Implant AG 263:negative pressure 217:Design principles 143:Design principles 95:Retina Implant AG 79:cochlear implants 31:visual prosthesis 1937: 1900:Neuroprosthetics 1870: 1869: 1817:Horizon scanning 1733:Ephemeralization 1666:Neuroprosthetics 1659:Neuroinformatics 1634:Artificial brain 1572:Racetrack memory 1507:Extended reality 1502:Cybermethodology 1422: 1421: 1404: 1397: 1390: 1381: 1380: 1337: 1336: 1331:. 21 July 2015. 1321: 1315: 1313:Article in Times 1310: 1304: 1303: 1293: 1283: 1259: 1253: 1252: 1208: 1202: 1201: 1191: 1181: 1157: 1151: 1150: 1122: 1116: 1115: 1087: 1081: 1080: 1052: 1046: 1045: 1035: 1003: 997: 996: 968: 962: 961: 950:10.1109/4.871327 925: 919: 918: 884: 859: 858: 848: 816: 810: 809: 773: 767: 766: 730: 724: 723: 703: 697: 696: 668: 662: 661: 633: 627: 626: 624: 622: 607: 601: 600: 590: 561:F. Zeng (2004). 558: 552: 551: 518:(5557): 1022–5. 507: 484: 483: 455: 432: 431: 421: 389: 383: 382: 370: 282:Clinical studies 224:microphotodiodes 206:crystalline lens 163:image processing 1945: 1944: 1940: 1939: 1938: 1936: 1935: 1934: 1930:Medical devices 1885: 1884: 1883: 1878: 1858: 1697: 1693:Neurotechnology 1681:Retinal implant 1620: 1431: 1428: 1427:Information and 1413: 1408: 1374:Wayback Machine 1357:Wayback Machine 1346: 1341: 1340: 1323: 1322: 1318: 1311: 1307: 1260: 1256: 1209: 1205: 1158: 1154: 1123: 1119: 1088: 1084: 1053: 1049: 1004: 1000: 979:(24): 2573–81. 973:Vision Research 969: 965: 936:(10): 1487–97. 926: 922: 907: 885: 862: 817: 813: 774: 770: 731: 727: 704: 700: 669: 665: 634: 630: 620: 618: 609: 608: 604: 559: 555: 508: 487: 456: 435: 390: 386: 371: 367: 362: 350: 329: 317:visual feedback 302: 284: 271: 253: 219: 214: 189: 180: 171: 145: 140: 127: 107: 67: 27:retinal implant 12: 11: 5: 1943: 1933: 1932: 1927: 1922: 1917: 1912: 1907: 1902: 1897: 1880: 1879: 1877: 1876: 1863: 1860: 1859: 1857: 1856: 1851: 1846: 1841: 1836: 1835: 1834: 1829: 1824: 1819: 1814: 1809: 1799: 1794: 1789: 1784: 1783: 1782: 1772: 1767: 1762: 1761: 1760: 1755: 1750: 1745: 1735: 1730: 1725: 1720: 1715: 1709: 1707: 1703: 1702: 1699: 1698: 1696: 1695: 1690: 1689: 1688: 1683: 1678: 1673: 1663: 1662: 1661: 1656: 1649:Mind uploading 1646: 1641: 1636: 1630: 1628: 1622: 1621: 1619: 1618: 1613: 1608: 1607: 1606: 1596: 1591: 1590: 1589: 1584: 1579: 1574: 1569: 1564: 1559: 1554: 1549: 1544: 1539: 1531: 1526: 1525: 1524: 1519: 1509: 1504: 1499: 1494: 1489: 1488: 1487: 1482: 1477: 1472: 1467: 1465:Machine vision 1462: 1457: 1447: 1446: 1445: 1434: 1432: 1429:communications 1425: 1419: 1415: 1414: 1407: 1406: 1399: 1392: 1384: 1378: 1377: 1364: 1359: 1345: 1344:External links 1342: 1339: 1338: 1316: 1305: 1254: 1219:(1): S92-101. 1203: 1152: 1117: 1082: 1047: 998: 963: 920: 905: 860: 811: 784:(4): 471–477. 768: 725: 698: 663: 644:(11): 1634–9. 628: 602: 553: 485: 433: 384: 364: 363: 361: 358: 357: 356: 349: 346: 328: 325: 301: 298: 283: 280: 270: 267: 252: 249: 218: 215: 213: 210: 188: 187:Clinical study 185: 179: 176: 170: 167: 144: 141: 139: 136: 126: 123: 106: 103: 66: 63: 59:suprachoroidal 35:photoreceptors 9: 6: 4: 3: 2: 1942: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1892: 1890: 1875: 1874: 1865: 1864: 1861: 1855: 1854:Transhumanism 1852: 1850: 1847: 1845: 1842: 1840: 1837: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1804: 1803: 1800: 1798: 1795: 1793: 1790: 1788: 1785: 1781: 1778: 1777: 1776: 1773: 1771: 1768: 1766: 1763: 1759: 1756: 1754: 1751: 1749: 1746: 1744: 1741: 1740: 1739: 1736: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1714: 1711: 1710: 1708: 1704: 1694: 1691: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1671:Brain implant 1669: 1668: 1667: 1664: 1660: 1657: 1655: 1654:Brain-reading 1652: 1651: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1631: 1629: 1627: 1623: 1617: 1614: 1612: 1609: 1605: 1604:Chipless RFID 1602: 1601: 1600: 1597: 1595: 1592: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1534: 1532: 1530: 1527: 1523: 1520: 1518: 1515: 1514: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1452: 1451: 1448: 1444: 1441: 1440: 1439: 1436: 1435: 1433: 1430: 1423: 1420: 1416: 1412: 1405: 1400: 1398: 1393: 1391: 1386: 1385: 1382: 1375: 1371: 1368: 1365: 1363: 1360: 1358: 1354: 1351: 1348: 1347: 1334: 1330: 1326: 1320: 1314: 1309: 1301: 1297: 1292: 1287: 1282: 1277: 1273: 1269: 1268:Micromachines 1265: 1258: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1207: 1199: 1195: 1190: 1185: 1180: 1175: 1171: 1167: 1163: 1156: 1148: 1144: 1140: 1136: 1132: 1128: 1121: 1113: 1109: 1105: 1101: 1098:(4): 1156–7. 1097: 1093: 1086: 1078: 1074: 1070: 1066: 1063:(1): 449–55. 1062: 1058: 1051: 1043: 1039: 1034: 1029: 1025: 1021: 1018:(4): 779–88. 1017: 1013: 1012:Ophthalmology 1009: 1002: 994: 990: 986: 982: 978: 974: 967: 959: 955: 951: 947: 943: 939: 935: 931: 924: 916: 912: 908: 906:9780123745118 902: 898: 894: 890: 883: 881: 879: 877: 875: 873: 871: 869: 867: 865: 856: 852: 847: 842: 838: 834: 831:(7): 888–90. 830: 826: 822: 815: 807: 803: 799: 795: 791: 787: 783: 779: 772: 764: 760: 756: 752: 748: 744: 740: 736: 729: 721: 717: 713: 709: 702: 694: 690: 686: 682: 678: 674: 667: 659: 655: 651: 647: 643: 639: 632: 616: 612: 606: 598: 594: 589: 584: 580: 576: 572: 568: 564: 557: 549: 545: 541: 537: 533: 529: 525: 521: 517: 513: 506: 504: 502: 500: 498: 496: 494: 492: 490: 481: 477: 473: 469: 465: 461: 454: 452: 450: 448: 446: 444: 442: 440: 438: 429: 425: 420: 415: 411: 407: 404:(2): 479–93. 403: 399: 395: 388: 380: 376: 369: 365: 355: 352: 351: 345: 342: 337: 335: 324: 320: 318: 313: 311: 307: 297: 295: 290: 279: 277: 269:Disadvantages 266: 264: 259: 248: 245: 241: 237: 233: 229: 225: 209: 207: 203: 199: 198:Ophthalmology 195: 184: 178:Disadvantages 175: 166: 164: 159: 155: 151: 135: 133: 122: 120: 116: 115:ganglion cell 112: 102: 100: 96: 91: 87: 82: 80: 76: 72: 62: 60: 56: 52: 48: 44: 40: 36: 32: 28: 18: 1871: 1758:Robot ethics 1680: 1626:Neuroscience 1480:Semantic Web 1328: 1319: 1308: 1271: 1267: 1257: 1216: 1212: 1206: 1169: 1165: 1155: 1130: 1126: 1120: 1095: 1091: 1085: 1060: 1056: 1050: 1015: 1011: 1001: 976: 972: 966: 933: 929: 923: 888: 828: 824: 814: 781: 777: 771: 738: 734: 728: 714:(1): 143–8. 711: 707: 701: 679:(4): 511–5. 676: 672: 666: 641: 637: 631: 619:. Retrieved 614: 605: 570: 566: 556: 515: 511: 463: 459: 401: 397: 387: 378: 374: 368: 338: 330: 321: 314: 303: 285: 272: 254: 220: 202:FDA Approval 197: 190: 181: 172: 146: 128: 108: 83: 68: 58: 54: 46: 26: 24: 1925:Prosthetics 1822:Moore's law 1753:Neuroethics 1748:Cyberethics 1492:Atomtronics 741:(4): 4–10. 573:(1): 1–34. 466:: 361–401. 258:retinotopic 1889:Categories 1713:Automation 360:References 251:Advantages 236:horizontal 169:Advantages 105:Candidates 75:phosphenes 55:subretinal 47:epiretinal 1915:Blindness 1743:Bioethics 1676:Exocortex 1552:Millipede 381:: 463–85. 310:pixelated 156:coils or 150:telemetry 71:occipital 1587:UltraRAM 1370:Archived 1353:Archived 1333:Archived 1329:BBC News 1300:31234507 1249:28397414 1241:17325421 1198:21625622 1147:14638739 1112:15078662 1077:20861492 1042:22244176 993:13129543 958:32093349 915:19660665 855:17314147 806:25004245 798:12172115 763:42400320 755:12172114 621:14 March 597:15247993 540:11834821 480:16004575 348:See also 341:Argus II 312:images. 276:membrane 261:creates 247:signal. 244:ganglion 240:amacrine 158:infrared 49:(on the 41:(RP) or 1533:Memory 1291:6630275 1221:Bibcode 1189:3089939 1033:3319859 938:Bibcode 846:1955635 720:9888437 693:9109761 658:1444925 615:fda.gov 588:4111484 548:1561668 520:Bibcode 512:Science 428:4871047 419:1351724 232:bipolar 99:CE Mark 65:History 21:(RNFL). 1738:Ethics 1706:Topics 1418:Fields 1298:  1288:  1247:  1239:  1196:  1186:  1172:: 57. 1145:  1110:  1075:  1040:  1030:  991:  956:  913:  903:  853:  843:  804:  796:  778:Retina 761:  753:  735:Retina 718:  691:  656:  595:  585:  546:  538:  478:  426:  416:  242:, and 51:retina 1582:SONOS 1542:ECRAM 1537:CBRAM 1529:GPGPU 1245:S2CID 954:S2CID 802:S2CID 759:S2CID 544:S2CID 125:Types 29:is a 1873:List 1599:RFID 1577:RRAM 1567:PRAM 1562:NRAM 1557:MRAM 1547:FRAM 1296:PMID 1237:PMID 1194:PMID 1143:PMID 1108:PMID 1073:PMID 1038:PMID 989:PMID 911:PMID 901:ISBN 851:PMID 794:PMID 751:PMID 716:PMID 689:PMID 654:PMID 623:2015 593:PMID 536:PMID 476:PMID 424:PMID 84:The 1920:Eye 1286:PMC 1276:doi 1229:doi 1184:PMC 1174:doi 1135:doi 1100:doi 1096:122 1065:doi 1028:PMC 1020:doi 1016:119 981:doi 946:doi 893:doi 841:PMC 833:doi 786:doi 743:doi 681:doi 677:115 646:doi 642:110 583:PMC 575:doi 528:doi 516:295 468:doi 414:PMC 406:doi 402:196 53:), 1891:: 1327:. 1294:. 1284:. 1272:10 1270:. 1266:. 1243:. 1235:. 1227:. 1215:. 1192:. 1182:. 1168:. 1164:. 1141:. 1131:44 1129:. 1106:. 1094:. 1071:. 1061:52 1059:. 1036:. 1026:. 1014:. 1010:. 987:. 977:43 975:. 952:. 944:. 934:35 932:. 909:. 899:. 863:^ 849:. 839:. 829:91 827:. 823:. 800:. 792:. 782:47 780:. 757:. 749:. 739:46 737:. 712:40 710:. 687:. 675:. 652:. 640:. 613:. 591:. 581:. 569:. 565:. 542:. 534:. 526:. 514:. 488:^ 474:. 462:. 436:^ 422:. 412:. 400:. 396:. 379:39 377:. 238:, 234:, 134:. 25:A 1403:e 1396:t 1389:v 1302:. 1278:: 1251:. 1231:: 1223:: 1217:4 1200:. 1176:: 1170:5 1149:. 1137:: 1114:. 1102:: 1079:. 1067:: 1044:. 1022:: 995:. 983:: 960:. 948:: 940:: 917:. 895:: 857:. 835:: 808:. 788:: 765:. 745:: 722:. 695:. 683:: 660:. 648:: 625:. 599:. 577:: 571:8 550:. 530:: 522:: 482:. 470:: 464:7 430:. 408::

Index


visual prosthesis
photoreceptors
retinitis pigmentosa
age-related macular degeneration
retina
occipital
phosphenes
cochlear implants
Argus II retinal implant
Second Sight Medical Products
Retina Implant AG
CE Mark
photoreceptor cells
ganglion cell
optical coherence tomography (OCT) imaging
retinal pigment epithelium
telemetry
radio-frequency induction
infrared
image processing
ARGUS II device received marketing approval
FDA Approval
crystalline lens
microphotodiodes
arrays of microelectrodes
bipolar
horizontal
amacrine
ganglion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.