Knowledge

Rossby-gravity waves

Source đź“ť

655:
10,000 km), vertical wavelengths of 4–8 km, and upward group velocity. Similarly, westward-propagating mixed waves were also found in the Atlantic Ocean by Weisberg et al. (1979) with periods of 31 days, horizontal wavelengths of 1200 km, vertical wavelengths of 1 km, and downward group velocity. Also, the vertically propagating gravity wave component was found in the stratosphere with periods of 35 hours, horizontal wavelengths of 2400 km, and vertical wavelengths of 5 km.
1102: 1990: 2011: 1091: 2000: 614:, the equatorially trapped Rossby wave and the mixed Rossby-gravity wave (which has some of the characteristics of the former two) . Equatorial gravity waves can be either westward- or eastward-propagating, and correspond to n=1 (same as for the equatorially trapped Rossby wave) on a dispersion relation diagram ("w-k" diagram). At 634:
As previously stated, the mixed Rossby-gravity waves are equatorially trapped waves unless the buoyancy frequency remains constant, introducing an additional vertical wave number to complement the zonal wave number and angular frequency. If this Brunt–Vaisala frequency does not change, then these
600: 654:
These vertically propagating mixed Rossby-gravity waves were first observed in the stratosphere as westward-propagating mixed waves by M. Yanai. They had the following characteristics: 4–5 days, horizontal wavenumbers of 4 (four waves circling the earth, corresponding to wavelengths of
238: 651: = 1 (gravity or Rossby waves) curves and would increase in the direction of increasing angular frequency. Typical group velocities for each component are the following: 1 cm/s for gravity waves and 2 mm/s for planetary (Rossby) waves. 626:), the solution appears to be a Rossby wave (hence the term Rossby-gravity waves). As mentioned earlier, the group velocity (or energy packet/dispersion) is always directed toward the east with a maximum for short waves (gravity waves). 412: 325: 438: 134: 115: 611: 420:
These three equations can be separated and solved using solutions in the form of zonally propagating waves, which are analogous to exponential solutions with a dependence on
342: 255: 607: 610:
is formulated in terms of ω, the angular frequency, the problem can be solved with three distinct solutions. These three solutions correspond to the
1730: 595:{\displaystyle {\begin{Bmatrix}u,v,\phi \end{Bmatrix}}={\begin{Bmatrix}{\hat {u}}(y),{\hat {v}}(y),{\hat {\phi }}(y)\end{Bmatrix}}e^{i(kx-\omega t)}} 1720: 779: 42:
The eastward speed of propagation of these waves can be derived for an inviscid slowly moving layer of fluid of uniform depth H. Because the
618: = 0 on a dispersion relation diagram, the mixed Rossby-gravity waves can be found where for large, positive zonal wave numbers (+ 751:
Yanai, M. and T. Maruyama, 1966: Stratospheric wave disturbances propagating over the equatorial pacific. J. Met. Soc. Japan, 44, 291–194.
233:{\displaystyle {\frac {\partial \phi }{\partial t}}+c^{2}\left({\frac {\partial v}{\partial y}}+{\frac {\partial u}{\partial x}}\right)=0} 125:
the continuity equation (accounting for the effects of horizontal convergence and divergence and written with geopotential height):
58:
of the earth, 7.2921 × 10 rad/s, and θ is latitude) vanishes at 0 degrees latitude (equator), the “equatorial
1636: 34:. They always carry energy eastward, but their 'crests' and 'troughs' may propagate westward if their periods are long enough. 2003: 1051: 819: 77: 30:
does not remain constant). These waves have the same trapping scale as Kelvin waves, more commonly known as the equatorial
1283: 726:
Zhang, Dalin, 2008: Personal Communication, “Waves in Rotating, Homogeneous Fluids,” University of Maryland, College Park.
772: 1173: 1878: 1305: 1193: 1725: 996: 1183: 1143: 1913: 899: 2036: 1993: 1586: 765: 1041: 31: 27: 1101: 1238: 1773: 1178: 1138: 26:), meaning that they rapidly decay as their distance increases away from the equator (so long as the 1903: 1278: 1268: 1208: 844: 814: 1940: 1923: 1760: 1253: 1118: 1056: 1046: 939: 74:
is the distance from the equator and β is the variation of the Coriolis parameter with latitude,
622:), the solution behaves like a gravity wave; but for large, negative zonal wave numbers (− 2041: 1935: 1873: 1300: 986: 669: 407:{\displaystyle {\frac {\partial v}{\partial t}}+u\beta y=-{\frac {\partial \phi }{\partial y}}} 320:{\displaystyle {\frac {\partial u}{\partial t}}-v\beta y=-{\frac {\partial \phi }{\partial x}}} 1768: 1750: 1258: 1153: 788: 1955: 1788: 1491: 1348: 1213: 643:" dispersion diagram, the group velocity (energy) would be directed at right angles to the 8: 1950: 1835: 1830: 1556: 1228: 1188: 904: 118: 1893: 1606: 1596: 1561: 1461: 1446: 1343: 43: 1975: 1965: 1908: 1888: 1571: 1536: 1471: 1451: 1441: 1323: 1011: 869: 1930: 1898: 1868: 1677: 1662: 1531: 1466: 1358: 1273: 1203: 1128: 909: 879: 809: 804: 55: 1735: 1631: 1581: 1546: 1506: 1398: 1368: 1218: 1168: 1078: 1036: 969: 894: 854: 1845: 1840: 1745: 1740: 1576: 1516: 1511: 1243: 1133: 954: 889: 864: 1090: 2030: 2015: 1863: 1783: 1672: 1591: 1566: 1501: 1431: 1338: 1233: 1110: 1031: 991: 964: 874: 824: 1970: 1918: 1858: 1809: 1687: 1682: 1657: 1641: 1616: 1333: 1223: 1163: 949: 859: 834: 23: 1960: 1692: 1621: 1486: 1426: 1393: 1383: 1378: 1263: 1198: 1158: 1148: 1123: 1006: 979: 959: 919: 884: 664: 757: 1778: 1626: 1601: 1496: 1476: 1403: 1388: 1373: 1363: 1328: 1248: 1068: 1063: 1026: 1021: 1016: 914: 59: 2010: 1850: 1712: 1697: 1611: 1456: 1295: 1290: 1073: 1001: 929: 849: 839: 796: 1945: 1667: 1526: 1418: 1408: 1353: 829: 712:
International Geophysics Series, Volume 30, Academic Press, 662 pp.
1814: 1804: 974: 944: 1521: 934: 635:
waves become vertically propagating solutions. On a typical "
629: 62:” approximation must be made. This approximation states that 1883: 1702: 1481: 1436: 1315: 428:
and the inclusion of structure functions that vary in the
110:{\displaystyle {\frac {\partial f}{\partial y}}=\beta } 481: 447: 16:
Equatorially trapped waves that carry energy eastwards
742:
Elsevier Academic Press, Burlington, MA, pp. 394–400.
441: 345: 258: 137: 80: 333:
the V-momentum equation (meridional wind component):
594: 406: 319: 232: 109: 1731:North West Shelf Operational Oceanographic System 117:. With the inclusion of this approximation, the 2028: 647: = 0 (mixed Rossby-gravity waves) and 1721:Deep-ocean Assessment and Reporting of Tsunamis 246:the U-momentum equation (zonal wind component): 773: 630:Vertically propagating Rossby-gravity waves 780: 766: 22:are equatorially trapped waves (much like 787: 734: 732: 740:An Introduction to Dynamic Meteorology. 722: 720: 718: 2029: 1052:one-dimensional Saint-Venant equations 704: 702: 700: 698: 696: 694: 692: 690: 688: 761: 729: 1999: 715: 685: 13: 1879:National Oceanographic Data Center 1306:World Ocean Circulation Experiment 1194:Global Ocean Data Analysis Project 395: 387: 357: 349: 308: 300: 270: 262: 210: 202: 187: 179: 149: 141: 92: 84: 14: 2053: 1726:Global Sea Level Observing System 612:equatorially trapped gravity wave 2009: 1998: 1989: 1988: 1184:Geochemical Ocean Sections Study 1100: 1089: 1914:Ocean thermal energy conversion 1637:Vine–Matthews–Morley hypothesis 745: 587: 569: 550: 544: 538: 526: 520: 514: 502: 496: 490: 121:become (neglecting friction): 1: 678: 37: 1174:El Niño–Southern Oscillation 1144:Craik–Leibovich vortex force 900:Luke's variational principle 7: 658: 66:is approximately equal to β 10: 2058: 1239:Ocean dynamical thermostat 1087: 710:Atmosphere-Ocean Dynamics, 1984: 1823: 1797: 1774:Ocean acoustic tomography 1759: 1711: 1650: 1587:MohoroviÄŤić discontinuity 1545: 1417: 1314: 1179:General circulation model 1109: 815:Benjamin–Feir instability 795: 50: = 2Ω sin( 32:Rossby deformation radius 1904:Ocean surface topography 1279:Thermohaline circulation 1269:Subsurface ocean current 1209:Hydrothermal circulation 1042:Wave–current interaction 820:Boussinesq approximation 738:Holton, James R., 2004: 1941:Sea surface temperature 1924:Outline of oceanography 1119:Atmospheric circulation 1057:shallow water equations 1047:Waves and shallow water 940:Significant wave height 708:Gill, Adrian E., 1982: 28:Brunt–Vaisala frequency 1936:Sea surface microlayer 1301:Wind generated current 670:Equatorial Rossby wave 596: 408: 321: 234: 111: 2037:Physical oceanography 1769:Deep scattering layer 1751:World Geodetic System 1259:Princeton Ocean Model 1139:Coriolis–Stokes force 789:Physical oceanography 597: 409: 322: 235: 112: 1789:Underwater acoustics 1349:Perigean spring tide 1214:Langmuir circulation 925:Rossby-gravity waves 439: 343: 256: 135: 78: 20:Rossby-gravity waves 1951:Science On a Sphere 1557:Convergent boundary 1229:Modular Ocean Model 1189:Geostrophic current 905:Mild-slope equation 119:primitive equations 1607:Seafloor spreading 1597:Outer trench swell 1562:Divergent boundary 1462:Continental margin 1447:Carbonate platform 1344:Lunitidal interval 608:frequency relation 592: 555: 467: 404: 317: 230: 107: 44:Coriolis parameter 2024: 2023: 2016:Oceans portal 1976:World Ocean Atlas 1966:Underwater glider 1909:Ocean temperature 1572:Hydrothermal vent 1537:Submarine volcano 1472:Continental shelf 1452:Coastal geography 1442:Bathymetric chart 1324:Amphidromic point 1012:Wave nonlinearity 870:Infragravity wave 541: 517: 493: 402: 364: 315: 277: 217: 194: 156: 99: 54:) where Ω is the 2049: 2014: 2013: 2002: 2001: 1992: 1991: 1931:Pelagic sediment 1869:Marine pollution 1663:Deep ocean water 1532:Submarine canyon 1467:Continental rise 1359:Rule of twelfths 1274:Sverdrup balance 1204:Humboldt Current 1129:Boundary current 1104: 1093: 910:Radiation stress 880:Iribarren number 855:Equatorial waves 810:Ballantine scale 805:Airy wave theory 782: 775: 768: 759: 758: 752: 749: 743: 736: 727: 724: 713: 706: 601: 599: 598: 593: 591: 590: 560: 559: 543: 542: 534: 519: 518: 510: 495: 494: 486: 472: 471: 413: 411: 410: 405: 403: 401: 393: 385: 365: 363: 355: 347: 326: 324: 323: 318: 316: 314: 306: 298: 278: 276: 268: 260: 239: 237: 236: 231: 223: 219: 218: 216: 208: 200: 195: 193: 185: 177: 170: 169: 157: 155: 147: 139: 116: 114: 113: 108: 100: 98: 90: 82: 56:angular velocity 2057: 2056: 2052: 2051: 2050: 2048: 2047: 2046: 2027: 2026: 2025: 2020: 2008: 1980: 1819: 1793: 1755: 1736:Sea-level curve 1707: 1646: 1632:Transform fault 1582:Mid-ocean ridge 1548: 1541: 1507:Oceanic plateau 1413: 1399:Tidal resonance 1369:Theory of tides 1310: 1219:Longshore drift 1169:Ekman transport 1105: 1099: 1098: 1097: 1096: 1095: 1094: 1085: 1037:Wave turbulence 970:Trochoidal wave 895:Longshore drift 791: 786: 756: 755: 750: 746: 737: 730: 725: 716: 707: 686: 681: 675: 661: 632: 565: 561: 554: 553: 533: 532: 509: 508: 485: 484: 477: 476: 466: 465: 443: 442: 440: 437: 436: 394: 386: 384: 356: 348: 346: 344: 341: 340: 307: 299: 297: 269: 261: 259: 257: 254: 253: 209: 201: 199: 186: 178: 176: 175: 171: 165: 161: 148: 140: 138: 136: 133: 132: 91: 83: 81: 79: 76: 75: 40: 17: 12: 11: 5: 2055: 2045: 2044: 2039: 2022: 2021: 2019: 2018: 2006: 1996: 1985: 1982: 1981: 1979: 1978: 1973: 1968: 1963: 1958: 1956:Stratification 1953: 1948: 1943: 1938: 1933: 1928: 1927: 1926: 1916: 1911: 1906: 1901: 1896: 1891: 1886: 1881: 1876: 1871: 1866: 1861: 1856: 1848: 1846:Color of water 1843: 1841:Benthic lander 1838: 1833: 1827: 1825: 1821: 1820: 1818: 1817: 1812: 1807: 1801: 1799: 1795: 1794: 1792: 1791: 1786: 1781: 1776: 1771: 1765: 1763: 1757: 1756: 1754: 1753: 1748: 1746:Sea level rise 1743: 1741:Sea level drop 1738: 1733: 1728: 1723: 1717: 1715: 1709: 1708: 1706: 1705: 1700: 1695: 1690: 1685: 1680: 1675: 1670: 1665: 1660: 1654: 1652: 1648: 1647: 1645: 1644: 1639: 1634: 1629: 1624: 1619: 1614: 1609: 1604: 1599: 1594: 1589: 1584: 1579: 1577:Marine geology 1574: 1569: 1564: 1559: 1553: 1551: 1543: 1542: 1540: 1539: 1534: 1529: 1524: 1519: 1517:Passive margin 1514: 1512:Oceanic trench 1509: 1504: 1499: 1494: 1489: 1484: 1479: 1474: 1469: 1464: 1459: 1454: 1449: 1444: 1439: 1434: 1429: 1423: 1421: 1415: 1414: 1412: 1411: 1406: 1401: 1396: 1391: 1386: 1381: 1376: 1371: 1366: 1361: 1356: 1351: 1346: 1341: 1336: 1331: 1326: 1320: 1318: 1312: 1311: 1309: 1308: 1303: 1298: 1293: 1288: 1287: 1286: 1276: 1271: 1266: 1261: 1256: 1251: 1246: 1244:Ocean dynamics 1241: 1236: 1231: 1226: 1221: 1216: 1211: 1206: 1201: 1196: 1191: 1186: 1181: 1176: 1171: 1166: 1161: 1156: 1151: 1146: 1141: 1136: 1134:Coriolis force 1131: 1126: 1121: 1115: 1113: 1107: 1106: 1088: 1086: 1084: 1083: 1082: 1081: 1071: 1066: 1061: 1060: 1059: 1054: 1044: 1039: 1034: 1029: 1024: 1019: 1014: 1009: 1004: 999: 994: 989: 984: 983: 982: 972: 967: 962: 957: 955:Stokes problem 952: 947: 942: 937: 932: 927: 922: 917: 912: 907: 902: 897: 892: 890:Kinematic wave 887: 882: 877: 872: 867: 862: 857: 852: 847: 842: 837: 832: 827: 822: 817: 812: 807: 801: 799: 793: 792: 785: 784: 777: 770: 762: 754: 753: 744: 728: 714: 683: 682: 680: 677: 673: 672: 667: 660: 657: 631: 628: 604: 603: 589: 586: 583: 580: 577: 574: 571: 568: 564: 558: 552: 549: 546: 540: 537: 531: 528: 525: 522: 516: 513: 507: 504: 501: 498: 492: 489: 483: 482: 480: 475: 470: 464: 461: 458: 455: 452: 449: 448: 446: 418: 417: 416: 415: 400: 397: 392: 389: 383: 380: 377: 374: 371: 368: 362: 359: 354: 351: 335: 334: 330: 329: 328: 327: 313: 310: 305: 302: 296: 293: 290: 287: 284: 281: 275: 272: 267: 264: 248: 247: 243: 242: 241: 240: 229: 226: 222: 215: 212: 207: 204: 198: 192: 189: 184: 181: 174: 168: 164: 160: 154: 151: 146: 143: 127: 126: 106: 103: 97: 94: 89: 86: 39: 36: 15: 9: 6: 4: 3: 2: 2054: 2043: 2042:Gravity waves 2040: 2038: 2035: 2034: 2032: 2017: 2012: 2007: 2005: 1997: 1995: 1987: 1986: 1983: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1925: 1922: 1921: 1920: 1917: 1915: 1912: 1910: 1907: 1905: 1902: 1900: 1897: 1895: 1892: 1890: 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1864:Marine energy 1862: 1860: 1857: 1855: 1854: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1831:Acidification 1829: 1828: 1826: 1822: 1816: 1813: 1811: 1808: 1806: 1803: 1802: 1800: 1796: 1790: 1787: 1785: 1784:SOFAR channel 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1766: 1764: 1762: 1758: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1724: 1722: 1719: 1718: 1716: 1714: 1710: 1704: 1701: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1655: 1653: 1649: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1592:Oceanic crust 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1567:Fracture zone 1565: 1563: 1560: 1558: 1555: 1554: 1552: 1550: 1544: 1538: 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1502:Oceanic basin 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1432:Abyssal plain 1430: 1428: 1425: 1424: 1422: 1420: 1416: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1339:Internal tide 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1321: 1319: 1317: 1313: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1285: 1282: 1281: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1234:Ocean current 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1116: 1114: 1112: 1108: 1103: 1092: 1080: 1077: 1076: 1075: 1072: 1070: 1067: 1065: 1062: 1058: 1055: 1053: 1050: 1049: 1048: 1045: 1043: 1040: 1038: 1035: 1033: 1032:Wave shoaling 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 998: 995: 993: 992:Ursell number 990: 988: 985: 981: 978: 977: 976: 973: 971: 968: 966: 963: 961: 958: 956: 953: 951: 948: 946: 943: 941: 938: 936: 933: 931: 928: 926: 923: 921: 918: 916: 913: 911: 908: 906: 903: 901: 898: 896: 893: 891: 888: 886: 883: 881: 878: 876: 875:Internal wave 873: 871: 868: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 841: 838: 836: 833: 831: 828: 826: 825:Breaking wave 823: 821: 818: 816: 813: 811: 808: 806: 803: 802: 800: 798: 794: 790: 783: 778: 776: 771: 769: 764: 763: 760: 748: 741: 735: 733: 723: 721: 719: 711: 705: 703: 701: 699: 697: 695: 693: 691: 689: 684: 676: 671: 668: 666: 663: 662: 656: 652: 650: 646: 642: 638: 627: 625: 621: 617: 613: 609: 584: 581: 578: 575: 572: 566: 562: 556: 547: 535: 529: 523: 511: 505: 499: 487: 478: 473: 468: 462: 459: 456: 453: 450: 444: 435: 434: 433: 431: 427: 423: 398: 390: 381: 378: 375: 372: 369: 366: 360: 352: 339: 338: 337: 336: 332: 331: 311: 303: 294: 291: 288: 285: 282: 279: 273: 265: 252: 251: 250: 249: 245: 244: 227: 224: 220: 213: 205: 196: 190: 182: 172: 166: 162: 158: 152: 144: 131: 130: 129: 128: 124: 123: 122: 120: 104: 101: 95: 87: 73: 69: 65: 61: 57: 53: 49: 45: 35: 33: 29: 25: 21: 1971:Water column 1919:Oceanography 1894:Observations 1889:Explorations 1859:Marginal sea 1852: 1810:OSTM/Jason-2 1642:Volcanic arc 1617:Slab suction 1334:Head of tide 1224:Loop Current 1164:Ekman spiral 950:Stokes drift 924: 860:Gravity wave 835:Cnoidal wave 747: 739: 709: 674: 653: 648: 644: 640: 636: 633: 623: 619: 615: 605: 432:-direction: 429: 425: 421: 419: 71: 67: 63: 51: 47: 41: 24:Kelvin waves 19: 18: 1961:Thermocline 1678:Mesopelagic 1651:Ocean zones 1622:Slab window 1487:Hydrography 1427:Abyssal fan 1394:Tidal range 1384:Tidal power 1379:Tidal force 1264:Rip current 1199:Gulf Stream 1159:Ekman layer 1149:Downwelling 1124:Baroclinity 1111:Circulation 1007:Wave height 997:Wave action 980:megatsunami 960:Stokes wave 920:Rossby wave 885:Kelvin wave 865:Green's law 665:Rossby wave 2031:Categories 1899:Reanalysis 1798:Satellites 1779:Sofar bomb 1627:Subduction 1602:Ridge push 1497:Ocean bank 1477:Contourite 1404:Tide gauge 1389:Tidal race 1374:Tidal bore 1364:Slack tide 1329:Earth tide 1249:Ocean gyre 1069:Wind setup 1064:Wind fetch 1027:Wave setup 1022:Wave radar 1017:Wave power 915:Rogue wave 845:Dispersion 679:References 60:beta plane 38:Derivation 1761:Acoustics 1713:Sea level 1612:Slab pull 1549:tectonics 1457:Cold seep 1419:Landforms 1296:Whirlpool 1291:Upwelling 1074:Wind wave 1002:Wave base 930:Sea state 850:Edge wave 840:Cross sea 606:Once the 582:ω 579:− 539:^ 536:ϕ 515:^ 491:^ 463:ϕ 396:∂ 391:ϕ 388:∂ 382:− 373:β 358:∂ 350:∂ 309:∂ 304:ϕ 301:∂ 295:− 286:β 280:− 271:∂ 263:∂ 211:∂ 203:∂ 188:∂ 180:∂ 150:∂ 145:ϕ 142:∂ 105:β 93:∂ 85:∂ 1994:Category 1946:Seawater 1673:Littoral 1668:Deep sea 1527:Seamount 1409:Tideline 1354:Rip tide 1284:shutdown 1254:Overflow 987:Undertow 830:Clapotis 659:See also 70:, where 2004:Commons 1874:Mooring 1824:Related 1815:Jason-3 1805:Jason-1 1688:Pelagic 1683:Oceanic 1658:Benthic 975:Tsunami 945:Soliton 1693:Photic 1522:Seabed 935:Seiche 1884:Ocean 1853:Alvin 1703:Swash 1547:Plate 1492:Knoll 1482:Guyot 1437:Atoll 1316:Tides 1079:model 965:Swell 797:Waves 1851:DSV 1836:Argo 1698:Surf 1154:Eddy 424:and 2033:: 731:^ 717:^ 687:^ 781:e 774:t 767:v 649:n 645:n 641:k 639:, 637:m 624:k 620:k 616:n 602:. 588:) 585:t 576:x 573:k 570:( 567:i 563:e 557:} 551:) 548:y 545:( 530:, 527:) 524:y 521:( 512:v 506:, 503:) 500:y 497:( 488:u 479:{ 474:= 469:} 460:, 457:v 454:, 451:u 445:{ 430:y 426:t 422:x 414:. 399:y 379:= 376:y 370:u 367:+ 361:t 353:v 312:x 292:= 289:y 283:v 274:t 266:u 228:0 225:= 221:) 214:x 206:u 197:+ 191:y 183:v 173:( 167:2 163:c 159:+ 153:t 102:= 96:y 88:f 72:y 68:y 64:f 52:θ 48:f 46:(

Index

Kelvin waves
Brunt–Vaisala frequency
Rossby deformation radius
Coriolis parameter
angular velocity
beta plane
primitive equations
frequency relation
equatorially trapped gravity wave
Rossby wave
Equatorial Rossby wave














v
t
e
Physical oceanography
Waves

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑