Knowledge

Single-cell analysis

Source đź“ť

373:
enough material for analysis. Another approach, single cell proteomics by mass spectrometry (SCoPE-MS) has quantified thousands of proteins in mammalian cells with typical cell sizes (diameter of 10-15 ÎĽm) by combining carrier-cells and single-cell barcoding. The second generation, SCoPE2, increased the throughput by automated and miniaturized sample preparation; It also improved quantitative reliability and proteome coverage by data-driven optimization of LC-MS/MS and peptide identification. The sensitivity and consistency of these methods have been further improved by prioritization, and massively parallel sample preparation in nanoliter size droplets. Another direction for single-cell protein analysis is based on a scalable framework of multiplexed data-independent acquisition (plexDIA) enables time saving by parallel analysis of both peptide ions and protein samples, thereby realizing multiplicative gains in throughput.
345:. Since different colored quantum dots or unique fluorophores are attached to each antibody it is possible to identify multiple different proteins in a single cell. Quantum dots can be washed off of the antibodies without damaging the sample, making it possible to do multiple rounds of protein quantification using this method on the same sample. For the methods based on organic fluorophores, the fluorescent tags are attached by a reversible linkage such as a DNA-hybrid (that can be melted/dissociated under low-salt conditions) or chemically inactivated, allowing multiple cycles of analysis, with 3-5 targets quantified per cycle. These approaches have been used for quantifying protein abundance in patient biopsy samples (e.g. cancer) to map variable protein expression in tissues and/or tumors, and to measure changes in protein expression and cell signaling in response to cancer treatment. 66:(FACS) allow the precise isolation of selected single cells from complex samples, while high throughput single cell partitioning technologies, enable the simultaneous molecular analysis of hundreds or thousands of single unsorted cells; this is particularly useful for the analysis of transcriptome variation in genotypically identical cells, allowing the definition of otherwise undetectable cell subtypes. The development of new technologies is increasing our ability to analyze the genome and transcriptome of single cells, as well as to quantify their proteome and 133:
acoustic. There is a need to explore the insights of SCA in the cell's natural state and development of these techniques is highly essential for that study. Researchers have highlighted the vast potential field that needs to be explored to develop biochip devices to suit market/researcher demands. Hydrodynamic microfluidics facilitates the development of passive lab-on-chip applications. A latest review gives an account of the recent advances in this field, along with their mechanisms, methods and applications.
564:
method utilizing capillary microsampling combined with mass spectrometry with ion mobility separation has been demonstrated to enhance the molecular coverage and ion separation for single cell metabolomics. Researchers are trying to develop a technique that can fulfil what current techniques are lacking: high throughput, higher sensitivity for metabolites that have a lower abundance or that have low ionization efficiencies, good replicability and that allow quantification of metabolites.
161:
uses oil-filled channels to hold separated aqueous droplets. This allows the single cell to be contained and isolated from the inside the oil based channels. Pneumatic membrane valves use the manipulation of air pressure, to isolate individual cells by membrane deflection. The manipulation of the pressure source allows the opening or closing of channels in a microfluidic network. Typically, the system requires an operator and is limited in throughput.
364:
antibodies are then modified to have single stranded DNA connected to them that are complementary. When the two antibodies bind to a protein the complementary strands will anneal and produce a double stranded segment of DNA that can then be amplified using PCR. Each pair of antibodies designed for one protein is tagged with a different DNA sequence. The DNA amplified from PCR can then be sequenced, and the protein levels quantified.
176:
acoustic. There is a need to explore the insights of SCA in the cell's natural state, and development of these techniques is highly essential for that study. Researchers have highlighted the need to develop biochip devices to suit market and researcher demands. Hydrodynamic microfluidics facilitate the development of passive lab-on-chip applications.
238:(MALBAC). Bias in this system is reduced by only copying off the original DNA strand instead of making copies of copies. The main draw backs to using MALBA, is it has reduced accuracy compared to DOP-PCR and MDA due to the enzyme used to copy the DNA. Once amplified using any of the above techniques, the DNA can be sequenced using Sanger or 234:, to accomplish the amplification of larger fragments and greater genome coverage than DOP-PCR. Despite these improvement MDA still has a sequence dependent bias (certain parts of the genome are amplified more than others because of their sequence). The method shown to largely avoid the bias seen in DOP-PCR and MDA is 251:
cell sequencing. The second major application is to study the genetic evolution of cancer. Since cancer cells are constantly mutating it is of great interest to see how cancers evolve at the genetic level. These patterns of somatic mutations and copy number aberration can be observed using single cell sequencing.
210:
The Adapter Linker PCR WGA is reported in many comparative studies to be best performing for diploid single cell mutation analysis, thanks to its very low Allelic Dropout effect, and for copy number variation profiling due to its low noise, both with aCGH and with NGS low Pass Sequencing. This method
175:
The development of hydrodynamic-based microfluidic biochips has been increasing over the years. In this technique, the cells are trapped in a particular region for single cell analysis (SCA). This usually occurs without any application of external force fields such as optical, electrical, magnetic or
160:
Microfluidics allows for the isolation of individual cells for further analyses. The following principles outline the various microfluidic processes for single-cell separation: droplet-in-oil based isolation, pneumatic membrane valving, and hydrodynamic cell traps. Droplet-in-oil based microfluidics
149:
The Laser Capture Microdissection technique utilizes a laser to dissect and separate individual cells, or sections, from tissue samples of interest. The methods involve the observation of a cell under a microscope, so that a section for analysis can be identified and labeled so that the laser can cut
141:
Dielectrophoretic digital sorting method utilizes a semiconductor controlled array of electrodes in a microfluidic chip to trap single cells in Dielectrophoretic (DEP) cages. Cell identification is ensured by the combination of fluorescent markers with image observation. Precision delivery is ensured
132:
The development of hydrodynamic-based microfluidic biochips has been increasing over the years. In this technique, the cells or particles are trapped in a particular region for single cell analysis (SCA) usually without any application of external force fields such as optical, electrical, magnetic or
61:
at the single cell level. The concept of single-cell analysis originated in the 1970s. Before the discovery of heterogeneity, single-cell analysis mainly referred to the analysis or manipulation of an individual cell in a bulk population of cells at a particular condition using optical or electronic
372:
In mass spectroscopy based proteomics there are three major steps needed for peptide identification: sample preparation, separation of peptides, and identification of peptides. Several groups have focused on oocytes or very early cleavage-stage cells since these cells are unusually large and provide
413:
A huge variety of ionization techniques can be used to analyze single cells. The choice of ionization method is crucial for analyte detection. It can be decisive which type of compounds are ionizable and in which state they appear, e.g., charge and possible fragmentation of the ions. A few examples
581:
Single-cell transcriptomic assays have allowed reconstruction development trajectories. Branching of these trajectories describes cell differentiation. Various methods have been developed for reconstructing branching developmental trajectories from single-cell transcriptomic data. They use various
292:
There are three major reasons gene expression has been studied using this technique: to study gene dynamics, RNA splicing, and cell typing. Gene dynamics are usually studied to determine what changes in gene expression affect different cell characteristics. For example, this type of transcriptomic
250:
There are two major applications to studying the genome at the single cell level. One application is to track the changes that occur in bacterial populations, where phenotypic differences are often seen. These differences are missed by bulk sequencing of a population, but can be observed in single
563:
range. Similar to the methods discussed in proteomics, there has also been success in combining mass spectroscopy with separation techniques such as capillary electrophoresis to quantify metabolites. This method is also capable of detecting metabolites present in femtomole concentrations. Another
554:
biosensors, and mass spectroscopy. The first three methods listed use fluorescence microscopy to detect molecules in a cell. Usually these assays use small fluorescent tags attached to molecules of interest, however this has been shown be too invasive for single cell metabolomics, and alters the
363:
Antibody-DNA quantification: another antibody-based method converts protein levels to DNA levels. The conversion to DNA makes it possible to amplify protein levels and use NGS to quantify proteins. In one such approach, two antibodies are selected for each protein needed to be quantified. The two
120:
The Dielectrophoretic digital sorting method utilizes a semiconductor controlled array of electrodes in a microfluidic chip to trap single cells in Dielectrophoretic (DEP) cages. Cell identification is ensured by the combination of fluorescent markers with image observation. Precision delivery is
22: 532:
The purpose of studying the proteome is to better understand the activity of cells at the single cells level. Since proteins are responsible for determining how the cell acts, understanding the proteome of single cell gives the best understanding of how a cell operates, and how gene expression
400:
which are used to identify which cell a certain protein came from (proteins coming from each cell have a different label) while others use not labels (quantify cells individually). The mass spectroscopy data is then analyzed by running data through databases that convert the information about
128:
combines microfluidics with MEMS on a CMOS chip to provide individual control over a large number of print nozzles, using the same technology as home inkjet printing. IJP allows for the adjustment of shear force to the sample ejection, greatly improving cell survivability. This approach, when
279:
so that the contents of the cell can be sequenced using NGS methods as was done in genomics. Once converted, there is not enough cDNA to be sequenced so the same DNA amplification techniques discussed in single cell genomics are applied to the cDNA to make sequencing possible. Alternately,
572:
The purpose of single cell metabolomics is to gain a better understanding at the molecular level of major biological topics such as: cancer, stem cells, aging, as well as the development of drug resistance. In general the focus of metabolomics is mostly on understanding how cells deal with
70:. Mass spectrometry techniques have become important analytical tools for proteomic and metabolomic analysis of single cells. Recent advances have enabled quantifying thousands of protein across hundreds of single cells, and thus make possible new types of analysis. In situ sequencing and 304:
RNA expression can serve as a proxy for protein abundance. However, protein abundance is governed by the complex interplay between RNA expression and post-transcriptional processes. While more challenging technically, translation can be monitored by ribosome profiling in single cells.
519:
that is capable of absorbing energy from a laser. Similar to SIMS, ionization happens in vacuum. Laser irradiation ablates the matrix material from the surface and results in charged gas phase matrix particles, the analyte molecules are ionized from this charged chemical matrix. Liu
288:
The purpose of single cell transcriptomics is to determine what genes are being expressed in each cell. The transcriptome is often used to quantify the gene expression instead of the proteome because of the difficulty currently associated with amplifying protein levels.
447:
directs the solvent with extracted molecules to the MS inlet. Nano-DESI mass spectrometry (MS) enables sensitive molecular profiling and quantification of endogenous species as small as a few hundred fmol-s  in single cells in a higher throughput manner. Lanekoff
129:
combined with optical inspection and AI driven image recognition, not only guarantees single cell dispensing into the wellplate or other medium but also can qualify the cell sample for quality of sample, rejecting defective cells, debris and fragments.
558:
Mass spectroscopy is becoming the most frequently used method for single cell metabolomics. Its advantages are that there is no need to develop fluorescent proteins for all molecules of interest, and is capable of detecting metabolites in the
297:. Single cell transcriptomics has also been used for cell typing, where the genes expressed in a cell are used to identify types of cells. The main goal in cell typing is to find a way to determine the identity of cells that don't have known 3724:
Bourceau P, Geier B, Suerdieck V, Bien T, Soltwisch J, Dreisewerd K, et al. (October 2023). "Visualization of metabolites and microbes at high spatial resolution using MALDI mass spectrometry imaging and in situ fluorescence labeling".
62:
microscope. To date, due to the heterogeneity seen in both eukaryotic and prokaryotic cell populations, analyzing a single cell makes it possible to discover mechanisms not seen when studying a bulk population of cells. Technologies such as
2715:"Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS)" 145:
Hydrodynamic traps allow for the isolation of an individual cell in a "trap" at a single given time by passive microfluidic transport. The number of isolated cells can be manipulated based on the number of traps in the system.
438:
are set up in a V-shaped form, closing an angle of approx. 85 degrees. The two capillaries are touching therefore a liquid bridge can be formed between them and enable the sampling of surfaces as small as a single cell. The
3530:
Taylor MJ, Liyu A, Vertes A, Anderton CR (September 2021). "Ambient Single-Cell Analysis and Native Tissue Imaging Using Laser-Ablation Electrospray Ionization Mass Spectrometry with Increased Spatial Resolution".
533:
changes in a cell due to different environmental stimuli. Although transcriptomics has the same purpose as proteomics it is not as accurate at determining gene expression in cells as it does not take into account
3688:
Xie W, Gao D, Jin F, Jiang Y, Liu H (July 2015). "Study of Phospholipids in Single Cells Using an Integrated Microfluidic Device Combined with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry".
1987:
Normand E, Qdaisat S, Bi W, Shaw C, Van den Veyver I, Beaudet A, et al. (September 2016). "Comparison of three whole genome amplification methods for detection of genomic aberrations in single cells".
3168:
Huffman RG, Leduc A, Wichmann C, di Gioia M, Borriello F, Specht H, et al. (2022-03-18). "Prioritized single-cell proteomics reveals molecular and functional polarization across primary macrophages".
3449: 326:
The antibody based methods use designed antibodies to bind to proteins of interest, allowing the relative abundance of multiple individual targets to be identified by one of several different techniques.
555:
activity of the metabolites. The current solution to this problem is to use fluorescent proteins which will act as metabolite detectors, fluorescing when ever they bind to a metabolite of interest.
495:. As they hit the surface, molecules are emitted from the surface and ionized. The choice of primary ions determines the size of the beam and also the extent of ionization and fragmentation. Pareek 464:(LAESI) a laser is used to ablate the surface of the sample and the emitted molecules are ionized in the gas phase by charged droplets from electrospray. Similar to DESI the ionization happens in 360:
for simultaneous and sensitive identification of proteins. These techniques can be highly multiplexed for simultaneous quantification of many targets (panels of up to 38 markers) in single cells.
280:
fluorescent compounds attached to RNA hybridization probes are used to identify specific sequences and sequential application of different RNA probes will build up a comprehensive transcriptome.
82:
Many single-cell analysis techniques require the isolation of individual cells. Methods currently used for single cell isolation include: Dielectrophoretic digital sorting, enzymatic digestion,
214:
One widely adopted WGA techniques is called degenerate oligonucleotide–primed polymerase chain reaction (DOP-PCR). This method uses the well established DNA amplification method
537:. Transcriptomics is still important as studying the difference between RNA levels and protein levels could give insight on which genes are post-transcriptionally regulated. 4290:
Ding L, Radfar P, Rezaei M, Warkiani ME (July 2021). "An easy-to-operate method for single-cell isolation and retrieval using a microfluidic static droplet array".
192:
is heavily dependent on increasing the copies of DNA found in the cell so there is enough to be sequenced. This has led to the development of strategies for
318:
There are three major approaches to single-cell proteomics: antibody based methods, fluorescent protein based methods, and mass-spectroscopy based methods.
2771:"Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content" 3867:"In situ metabolic analysis of single plant cells by capillary microsampling and electrospray ionization mass spectrometry with ion mobility separation" 586:
to principal graphs. Some software libraries for reconstruction and visualization of lineage differentiation trajectories are freely available online.
2879:
Budnik B, Levy E, Slavov N (2017-03-15). "Mass-spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation".
2555: 524:
used MALDI-MS to detect eight phospholipids from single A549 cells. MALDI MS imaging can be used for spatial metabolomics and single cell analysis.
550:
There are four major methods used to quantify the metabolome of single cells, they are: fluorescence–based detection, fluorescence biosensors,
4010:
Setty M, et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637–645 (2016).
423: 293:
analysis has often been used to study embryonic development. RNA splicing studies are focused on understanding the regulation of different
1726:
Faria EC, Gardner P (January 2012). "Analysis of Single Eukaryotic Cells Using Raman Tweezers". In Lindström S, Andersson-Svahn H (eds.).
512: 385: 803:"Automated profiling of individual cell-cell interactions from high-throughput time-lapse imaging microscopy in nanowell grids (TIMING)" 1687:"Energy Charge, Redox State, and Metabolite Turnover in Single Human Hepatocytes Revealed by Capillary Microsampling Mass Spectrometry" 850:
Loo J, Ho H, Kong S, Wang T, Ho Y (September 2019). "Technological Advances in Multiscale Analysis of Single Cells in Biomedicine".
2620:"Simple Method To Prepare Oligonucleotide-Conjugated Antibodies and Its Application in Multiplex Protein Detection in Single Cells" 105:
Manual single cell picking is a method where cells in a suspension are viewed under a microscope, and individually picked using a
153:
Manual single cell picking is a method where cells in a suspension are viewed under a microscope and individually picked using a
461: 2455:"Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes" 2033:"STR profiling and Copy Number Variation analysis on single, preserved cells using current Whole Genome Amplification methods" 3459: 2181: 1743: 91: 2453:
Lin JR, Izar B, Wang S, Yapp C, Mei S, Shah PM, et al. (July 2018). Chakraborty AK, Raj A, Marr C, Horváth P (eds.).
551: 356:
rare metal isotopes, not normally found in cells or tissues, can be attached to the individual antibodies and detected by
3423: 583: 223: 503:
and used isotope labeling and SIMS imaging to directly observe hotspots of metabolic activity within frozen HeLa cells.
611: 427: 268: 83: 71: 26: 3343:
Derks J, Slavov N (2022-11-05). "Strategies for increasing the depth and throughput of protein analysis by plexDIA".
2902:"SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation" 2506:"Mass cytometry as a platform for the discovery of cellular biomarkers to guide effective rheumatic disease therapy" 1832:"Comparative study of whole genome amplification and next generation sequencing performance of single cancer cells" 4372:"Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy" 4025:"Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming" 472:. used this ionization technique coupled to a Fourier transform mass spectrometer to analyzed 200 single cells of 452:
identified 14 amino acids, 6 metabolites, and several lipid molecules from single cheek cells using nano-DESI MS.
534: 484: 4445: 4440: 573:
environmental stresses at the molecular level, and to give a more dynamic understanding of cellular functions.
4425: 222:. Although simple, this method has been shown to have very low genome coverage. An improvement on DOP-PCR is 87: 2395:"Single-cell barcode analysis provides a rapid readout of cellular signaling pathways in clinical specimens" 1101:"Single-Cell Gene Network Analysis and Transcriptional Landscape of MYCN-Amplified Neuroblastoma Cell Lines" 995:"Miniaturization Technologies for Efficient Single-Cell Library Preparation for Next-Generation Sequencing" 487:(SIMS) is a technique similar to DESI, but while DESI is an ambient ionization technique, SIMS happens in 401:
peptides identified to quantification of protein levels. These methods are very similar to those used to
264: 3451:
Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation
434:
that enables the sampling of small surfaces, therefore suitable for single-cell analysis. In nano-DESI,
392:(MS/MS). The major difference between quantification methods is some use labels on the peptides such as 1299:"Categorizing Cells on the Basis of their Chemical Profiles: Progress in Single-Cell Mass Spectrometry" 219: 3376:"Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs" 2661:"Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs" 2393:
Giedt RJ, Pathania D, Carlson JC, McFarland PJ, Del Castillo AF, Juric D, et al. (October 2018).
641:
Siuzdak G (September 2023). "Subcellular quantitative imaging of metabolites at the organelle level".
74:(FISH) do not require that cells be isolated and are increasingly being used for analysis of tissues. 2031:
Vander Plaetsen AS, Deleye L, Cornelis S, Tilleman L, Van Nieuwerburgh F, Deforce D (December 2017).
1879:
Binder V, Bartenhagen C, Okpanyi V, Gombert M, Moehlendick B, Behrens B, et al. (October 2014).
594: 377: 215: 58: 1792: 1793:"Microfluidic hydrodynamic trapping for single cell analysis: mechanisms, methods and applications" 389: 993:
Mora-Castilla S, To C, Vaezeslami S, Morey R, Srinivasan S, Dumdie JN, et al. (August 2016).
4023:
Schiebinger G, Shu J, Tabaka M, Cleary B, Subramanian V, Solomon A, et al. (February 2019).
616: 342: 3768:
Rappez L, Stadler M, Triana S, Gathungu RM, Ovchinnikova K, Phapale P, et al. (July 2021).
3866: 3633:"Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells" 3374:
Smits AH, Lindeboom RG, Perino M, van Heeringen SJ, Veenstra GJ, Vermeulen M (September 2014).
2659:
Smits AH, Lindeboom RG, Perino M, van Heeringen SJ, Veenstra GJ, Vermeulen M (September 2014).
189: 3822:
Zenobi R (December 2013). "Single-cell metabolomics: analytical and biological perspectives".
2980:
Specht H, Emmott E, Petelski AA, Huffman RG, Perlman DH, Serra M, et al. (January 2021).
4435: 4430: 4136:"Inference of cell state transitions and cell fate plasticity from single-cell with MARGARET" 3865:
Zhang L, Foreman DP, Grant PA, Shrestha B, Moody SA, Villiers F, et al. (October 2014).
2953:"High-throughput single-cell proteomics quantifies the emergence of macrophage heterogeneity" 2549: 1265: 408: 276: 4077:"Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM" 3031:
Specht H, Harmange G, Perlman DH, Emmott E, Niziolek Z, Budnik B, et al. (2018-08-25).
2982:"Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2" 1930:"Comparison of whole genome amplification techniques for human single cell exome sequencing" 231: 4088: 3925: 3878: 3644: 3488: 3122: 2880: 2825:"Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes" 2406: 2245: 2044: 1941: 1830:
Babayan A, Alawi M, Gormley M, MĂĽller V, Wikman H, McMullin RP, et al. (August 2017).
1538: 1055: 755: 388:
is also known as LC-MS). This step gives order to the peptides before quantification using
294: 1099:
Mercatelli D, Balboni N, Palma A, Aleo E, Sanna PP, Perini G, et al. (January 2021).
1042:
Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. (January 2017).
8: 1218: 801:
Merouane A, Rey-Villamizar N, Lu Y, Liadi I, Romain G, Lu J, et al. (October 2015).
560: 4092: 3929: 3882: 3648: 3492: 3126: 2410: 2266: 2249: 2233: 2048: 1945: 1542: 1205:
Wu AR, Wang J, Streets AM, Huang Y (June 2017). "Single-Cell Transcriptional Analysis".
1171: 1154: 1059: 759: 4398: 4371: 4353: 4329:"Single nucleus multi-omics identifies human cortical cell regulatory genome diversity" 4328: 4315: 4273: 4246: 4228: 4201: 4160: 4135: 4111: 4076: 4075:
Chen H, Albergante L, Hsu JY, Lareau CA, Lo Bosco G, Guan J, et al. (April 2019).
4049: 4024: 3993: 3847: 3794: 3769: 3750: 3665: 3632: 3613: 3564: 3400: 3375: 3356: 3320: 3295: 3294:
Derks J, Leduc A, Wallmann G, Huffman RG, Willetts M, Khan S, et al. (July 2022).
3276: 3228: 3201: 3182: 3145: 3110: 3086: 3061: 3008: 2981: 2928: 2901: 2851: 2824: 2795: 2770: 2741: 2714: 2685: 2660: 2595: 2570: 2532: 2505: 2481: 2454: 2427: 2394: 2367: 2342: 2318: 2293: 2209: 2157: 2132: 2113: 2065: 2032: 2013: 1964: 1929: 1910: 1856: 1831: 1659: 1632: 1608: 1583: 1559: 1526: 1499: 1474: 1455: 1442: 1411: 1399: 1380: 1323: 1298: 1274: 1249: 1230: 1184: 1127: 1100: 1076: 1043: 1019: 994: 970: 943: 919: 894: 875: 827: 802: 778: 743: 719: 694: 666: 165: 110: 2343:"Multicolor multicycle molecular profiling with quantum dots for single-cell analysis" 4403: 4358: 4319: 4307: 4278: 4233: 4165: 4116: 4054: 3985: 3943: 3894: 3839: 3799: 3754: 3742: 3706: 3670: 3617: 3605: 3568: 3556: 3548: 3512: 3504: 3455: 3405: 3360: 3325: 3280: 3268: 3233: 3186: 3150: 3091: 3013: 2933: 2856: 2800: 2746: 2690: 2641: 2600: 2537: 2486: 2432: 2372: 2323: 2271: 2214: 2162: 2105: 2070: 2005: 1969: 1902: 1861: 1812: 1749: 1739: 1708: 1664: 1613: 1564: 1504: 1459: 1447: 1429: 1372: 1328: 1279: 1222: 1176: 1155:"Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications" 1132: 1081: 1024: 975: 924: 879: 867: 832: 783: 724: 670: 658: 397: 357: 272: 267:
uses sequencing techniques similar to single cell genomics or direct detection using
29:, which are all steps researchers are interested to quantify (DNA, RNA, and Protein). 3851: 2636: 2619: 1914: 1234: 1188: 818: 4393: 4383: 4348: 4340: 4299: 4268: 4258: 4223: 4213: 4155: 4147: 4106: 4096: 4044: 4036: 3997: 3977: 3933: 3886: 3831: 3789: 3781: 3734: 3698: 3660: 3652: 3595: 3540: 3496: 3477:"Profiling and quantifying endogenous molecules in single cells using nano-DESI MS" 3395: 3387: 3348: 3315: 3307: 3260: 3223: 3213: 3174: 3140: 3130: 3081: 3073: 3040: 3003: 2993: 2960: 2923: 2913: 2846: 2836: 2790: 2782: 2736: 2726: 2680: 2672: 2631: 2618:
Gong H, Holcomb I, Ooi A, Wang X, Majonis D, Unger MA, et al. (January 2016).
2590: 2582: 2527: 2517: 2476: 2466: 2422: 2414: 2362: 2354: 2313: 2305: 2261: 2253: 2204: 2196: 2182:"RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells" 2152: 2144: 2117: 2097: 2060: 2052: 2017: 1997: 1959: 1949: 1892: 1851: 1843: 1804: 1731: 1698: 1654: 1644: 1603: 1595: 1554: 1546: 1494: 1486: 1437: 1421: 1384: 1362: 1318: 1310: 1269: 1261: 1214: 1166: 1122: 1112: 1071: 1063: 1014: 1006: 965: 955: 914: 906: 859: 822: 814: 773: 763: 744:"Computation and measurement of cell decision making errors using single cell data" 714: 706: 650: 169: 114: 95: 34: 3077: 1490: 710: 3702: 3600: 3583: 3135: 2786: 2769:
Sun L, Dubiak KM, Peuchen EH, Zhang Z, Zhu G, Huber PW, et al. (July 2016).
1954: 1735: 1703: 1686: 1599: 768: 393: 125: 99: 4327:
Luo C, Liu H, Xie F, Armand EJ, Siletti K, Bakken TE, et al. (March 2022).
3962: 1631:
Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P (July 2015).
443:
delivers the solvent to the sample surface where the extraction happens and the
4344: 4303: 4263: 4101: 4040: 3785: 3738: 3311: 3264: 3218: 2998: 2586: 2504:
Nair N, Mei HE, Chen SY, Hale M, Nolan GP, Maecker HT, et al. (May 2015).
2418: 2257: 2232:
Ozadam H, Tonn T, Han CM, Segura A, Hoskins I, Rao S, et al. (June 2023).
2056: 1425: 910: 742:
Habibi I, Cheong R, Lipniacki T, Levchenko A, Emamian ES, Abdi A (April 2017).
654: 381: 348: 298: 239: 63: 3352: 3178: 2918: 2522: 1847: 1730:. Methods in Molecular Biology. Vol. 853. Humana Press. pp. 151–67. 121:
ensured by the semiconductor controlled motion of DEP cages in the flow cell.
4419: 3508: 2234:"Single-cell quantification of ribosome occupancy in early mouse development" 1816: 1433: 1010: 960: 46: 4218: 4202:"Single-Cell Analysis of Circulating Tumor Cells: Why Heterogeneity Matters" 3835: 3656: 2841: 2731: 2200: 1550: 1351:"Single-Cell Mass Spectrometry Approaches to Explore Cellular Heterogeneity" 4407: 4362: 4311: 4282: 4237: 4169: 4120: 4058: 3989: 3947: 3898: 3843: 3803: 3746: 3710: 3674: 3609: 3560: 3516: 3409: 3329: 3272: 3237: 3154: 3095: 3017: 2937: 2860: 2804: 2750: 2694: 2645: 2604: 2541: 2490: 2436: 2376: 2358: 2327: 2275: 2218: 2166: 2109: 2074: 2009: 1973: 1906: 1865: 1753: 1712: 1668: 1617: 1568: 1508: 1451: 1376: 1367: 1350: 1332: 1283: 1226: 1180: 1136: 1085: 1028: 979: 928: 871: 863: 836: 787: 728: 662: 606: 54: 4245:
Zhou WM, Yan YY, Guo QR, Ji H, Wang H, Xu TT, et al. (October 2021).
4151: 3544: 2101: 1649: 409:
Ionization techniques used in mass spectrometry-based single-cell analysis
376:
The separation of differently sized proteins can be accomplished by using
4388: 3391: 3202:"Exploring functional protein covariation across single cells using nPOP" 3033:"Automated sample preparation for high-throughput single-cell proteomics" 2676: 1314: 1117: 338: 334: 2471: 2309: 1067: 4247:"Microfluidics applications for high-throughput single cell sequencing" 3981: 3938: 3913: 3890: 3500: 3476: 2148: 1897: 1880: 1808: 500: 402: 271:. The first step in quantifying the transcriptome is to convert RNA to 67: 50: 3961:
Haghverdi L, BĂĽttner M, Wolf FA, Buettner F, Theis FJ (October 2016).
3552: 1520: 1518: 1044:"Massively parallel digital transcriptional profiling of single cells" 196:(WGA). Currently WGA strategies can be grouped into three categories: 142:
by the semiconductor controlled motion of DEP cages in the flow cell.
2030: 1790: 2001: 491:. The solid sample surface is bombarded by a highly focused beam of 3045: 3032: 2965: 2952: 2885: 1791:
Narayanamurthy V, Nagarajan S, Samsuri F, Sridhar TM (2017-06-30).
1515: 1416: 621: 499:
performed metabolomics to trace how purines are synthesized within
422:
One of the possible ways to measure the content of single cells is
42: 21: 3251:"Framework for multiplicative scaling of single-cell proteomics". 3200:
Leduc A, Huffman RG, Cantlon J, Khan S, Slavov N (December 2022).
2180:
Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X (April 2015).
1881:"A new workflow for whole-genome sequencing of single human cells" 405:, with modifications to accommodate the very small sample volume. 3373: 2822: 2658: 2131:
Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L (April 2014).
1928:
Borgström E, Paterlini M, Mold JE, Frisen J, Lundeberg J (2017).
200:
Controlled priming and PCR Amplification: Adapter-Linker PCR WGA
154: 106: 4183: 3584:"Single-cell metabolomics: where are we and where are we going?" 1767: 16:
Testbg biochemical processes and reactions in an individual cell
2823:
Virant-Klun I, Leicht S, Hughes C, Krijgsveld J (August 2016).
2133:"Single-cell in situ RNA profiling by sequential hybridization" 1878: 488: 235: 227: 3963:"Diffusion pseudotime robustly reconstructs lineage branching" 3914:"Advances in mass spectrometry based single-cell metabolomics" 3296:"Increasing the throughput of sensitive proteomics by plexDIA" 3062:"DO-MS: Data-Driven Optimization of Mass Spectrometry Methods" 1630: 992: 741: 4184:
Single-Cell Trajectory Reconstruction Exploration and Mapping
2392: 800: 3960: 3167: 2712: 2130: 1927: 576: 3767: 3030: 2979: 2713:
Lombard-Banek C, Reddy S, Moody SA, Nemes P (August 2016).
895:"Cellular heterogeneity: do differences make a difference?" 211:
is only applicable to human cells, both fixed and unfixed.
4022: 3723: 3630: 2088:
Kalisky T, Quake SR (April 2011). "Single-cell genomics".
1098: 226:(MDA), which uses random primers and a high fidelity  218:
to try and amplify the entire genome using a large set of
3864: 3424:"SCoPE-MS -- We can finally do single cell proteomics!!!" 3293: 1829: 1475:"Transformative Opportunities for Single-Cell Proteomics" 1041: 333:
Antibodies can be bound to fluorescent molecules such as
236:
Multiple Annealing and Looping–Based Amplification Cycles
117:, which uses a laser beam to trap, and manipulate cells. 4289: 3631:
Pareek V, Tian H, Winograd N, Benkovic SJ (April 2020).
3529: 3454:(4th ed.). John Wiley & Sons, 2007. p. 8. 2950: 2899: 2179: 597:
are characterized by stable and transient interactions.
515:
and ionization (MALDI), the sample is incorporated in a
150:
the cell. Then, the cell can be extracted for analysis.
4074: 3199: 3059: 2900:
Budnik B, Levy E, Harmange G, Slavov N (October 2018).
1297:
Comi TJ, Do TD, Rubakhin SS, Sweedler JV (March 2017).
426:(nanospray desorption electrospray ionization). Unlike 172:, which use a laser beam to trap and manipulate cells. 3911: 3109:
Chen AT, Franks A, Slavov N (July 2019). Cox J (ed.).
1296: 1254:
Annual Review of Chemical and Biomolecular Engineering
1247: 3581: 3533:
Journal of the American Society for Mass Spectrometry
2951:
Specht H, Emmott E, Koller T, Slavov N (2019-07-09).
2768: 414:
of ionization are mentioned in the paragraphs below.
203:
Random priming and PCR Amplification: DOP-PCR, MALBAC
3060:
Huffman RG, Chen A, Specht H, Slavov N (June 2019).
1986: 4369: 2231: 1400:"Single-cell protein analysis by mass spectrometry" 695:"Single cell analysis: the new frontier in 'omics'" 4018: 4016: 3912:Duncan KD, Fyrestam J, Lanekoff I (January 2019). 2617: 2340: 2294:"Single cell protein analysis for systems biology" 1204: 430:, which is a desorption technique, nano-DESI is a 367: 3770:"SpaceM reveals metabolic states of single cells" 3111:"DART-ID increases single-cell proteome coverage" 1584:"De Novo Gene Expression Reconstruction in Space" 4417: 4370:Descamps L, Le Roy D, Deman AL (February 2022). 3108: 2878: 1248:Tsioris K, Torres AJ, Douce TB, Love JC (2014). 1152: 206:Random priming and isothermal amplification: MDA 4326: 4013: 3474: 2503: 2452: 1153:Huang L, Ma F, Chapman A, Lu S, Xie XS (2015). 3687: 3582:Lanekoff I, Sharma VV, Marques C (June 2022). 3447: 3416: 2341:Zrazhevskiy P, True LD, Gao X (October 2013). 941: 164:The technique Raman tweezers combines the use 2571:"Mass Cytometry: Single Cells, Many Features" 2554:: CS1 maint: DOI inactive as of March 2024 ( 849: 39:single-cell analysis and subcellular analysis 4244: 2568: 2225: 2087: 1725: 1472: 1159:Annual Review of Genomics and Human Genetics 892: 692: 386:liquid chromatography with mass spectroscopy 109:. Raman tweezers is a technique where   4376:International Journal of Molecular Sciences 4133: 4070: 4068: 3342: 3024: 2874: 2872: 2870: 1684: 1637:International Journal of Molecular Sciences 1348: 948:Frontiers in Cell and Developmental Biology 942:Hu P, Zhang W, Xin H, Deng G (2016-10-25). 4127: 2291: 1250:"A new toolbox for assessing single cells" 136: 25:This single cell shows the process of the 4397: 4387: 4352: 4272: 4262: 4227: 4217: 4199: 4159: 4110: 4100: 4048: 3937: 3793: 3664: 3599: 3399: 3319: 3227: 3217: 3144: 3134: 3085: 3044: 3007: 2997: 2964: 2927: 2917: 2884: 2850: 2840: 2794: 2740: 2730: 2684: 2635: 2594: 2531: 2521: 2480: 2470: 2426: 2366: 2317: 2265: 2208: 2156: 2064: 1963: 1953: 1896: 1855: 1702: 1658: 1648: 1607: 1558: 1498: 1441: 1415: 1366: 1322: 1273: 1170: 1126: 1116: 1075: 1018: 969: 959: 918: 826: 777: 767: 718: 577:Reconstructing developmental trajectories 321: 4065: 2867: 1633:"Technologies for Single-Cell Isolation" 1527:"Unpicking the proteome in single cells" 1303:Journal of the American Chemical Society 1266:10.1146/annurev-chembioeng-060713-035958 589: 476:(red onion) in high spatial resolution. 77: 20: 4200:Lim SB, Lim CT, Lim WT (October 2019). 3448:Watson JT, Sparkman OD (October 2007). 640: 4418: 3821: 1680: 1678: 1524: 1397: 1344: 1342: 462:Laser ablation electrospray ionization 3817: 3815: 3813: 2818: 2816: 2814: 2764: 2762: 2760: 2708: 2706: 2704: 2448: 2446: 2388: 2386: 2287: 2285: 1207:Annual Review of Analytical Chemistry 1200: 1198: 1148: 1146: 1219:10.1146/annurev-anchem-061516-045228 944:"Single Cell Isolation and Analysis" 688: 686: 684: 682: 680: 582:advanced mathematical concepts from 3858: 2829:Molecular & Cellular Proteomics 2719:Molecular & Cellular Proteomics 1675: 1581: 1404:Current Opinion in Chemical Biology 1339: 1290: 1172:10.1146/annurev-genom-090413-025352 403:quantify the proteome of bulk cells 224:Multiple displacement amplification 64:fluorescence-activated cell sorting 13: 4192: 3810: 2811: 2757: 2701: 2443: 2383: 2282: 1685:Zhang L, Vertes A (October 2015). 1473:Specht H, Slavov N (August 2018). 1195: 1143: 612:Micro-arrays for mass spectrometry 428:desorption electrospray ionization 269:fluorescence in situ hybridization 254: 72:fluorescence in situ hybridization 27:central dogma of molecular biology 14: 4457: 4134:Pandey K, Zafar H (August 2022). 2569:Spitzer MH, Nolan GP (May 2016). 2292:Levy E, Slavov N (October 2018). 893:Altschuler SJ, Wu LF (May 2010). 677: 3588:Current Opinion in Biotechnology 2510:Arthritis Research & Therapy 1349:Zhang L, Vertes A (April 2018). 999:Journal of Laboratory Automation 693:Wang D, Bodovitz S (June 2010). 513:matrix-assisted laser desorption 4176: 4004: 3954: 3905: 3761: 3717: 3681: 3624: 3575: 3523: 3475:Bergman HM, Lanekoff I (2017). 3468: 3441: 3367: 3336: 3287: 3244: 3193: 3161: 3102: 3053: 2973: 2944: 2893: 2652: 2637:10.1021/acs.bioconjchem.5b00613 2611: 2562: 2497: 2334: 2173: 2124: 2081: 2024: 1980: 1921: 1872: 1823: 1784: 1760: 1719: 1624: 1575: 1466: 1391: 1241: 1092: 545: 540: 535:post-transcriptional regulation 485:Secondary ion mass spectrometry 368:Mass spectrometry–based methods 313: 259: 1035: 986: 935: 886: 843: 794: 735: 634: 1: 3078:10.1021/acs.jproteome.9b00039 1491:10.1021/acs.jproteome.8b00257 819:10.1093/bioinformatics/btv355 711:10.1016/j.tibtech.2010.03.002 627: 308: 184: 88:laser capture microdissection 4251:Journal of Nanobiotechnology 3703:10.1021/acs.analchem.5b00010 3601:10.1016/j.copbio.2022.102693 3136:10.1371/journal.pcbi.1007082 3066:Journal of Proteome Research 2787:10.1021/acs.analchem.6b01921 1955:10.1371/journal.pone.0171566 1736:10.1007/978-1-61779-567-1_12 1704:10.1021/acs.analchem.5b02502 1600:10.1016/j.molmed.2017.05.004 1588:Trends in Molecular Medicine 1479:Journal of Proteome Research 769:10.1371/journal.pcbi.1005436 567: 527: 436:two fused silica capillaries 417: 283: 7: 3428:News in Proteomics Research 600: 432:liquid extraction technique 265:Single-cell transcriptomics 179: 10: 4462: 4345:10.1016/j.xgen.2022.100107 4304:10.1007/s00604-021-04897-9 4264:10.1186/s12951-021-01045-6 4102:10.1038/s41467-019-09670-4 4041:10.1016/j.cell.2019.01.006 3786:10.1038/s41592-021-01198-0 3739:10.1038/s41596-023-00864-1 3312:10.1038/s41587-022-01389-w 3265:10.1038/s41587-022-01411-1 3219:10.1186/s13059-022-02817-5 3115:PLOS Computational Biology 2999:10.1186/s13059-021-02267-5 2587:10.1016/j.cell.2016.04.019 2419:10.1038/s41467-018-07002-6 2258:10.1038/s41586-023-06228-9 2057:10.1038/s41598-017-17525-5 1426:10.1016/j.cbpa.2020.04.018 911:10.1016/j.cell.2010.04.033 748:PLOS Computational Biology 655:10.1038/s42255-023-00882-z 245: 240:next-generation sequencing 194:whole genome amplification 94:, Inkjet Printing or IJP, 3353:10.1101/2022.11.05.515287 3179:10.1101/2022.03.16.484655 2919:10.1186/s13059-018-1547-5 2523:10.1186/s13075-015-0644-z 1848:10.18632/oncotarget.10701 1525:Slavov N (January 2020). 378:capillary electrophoresis 1011:10.1177/2211068216630741 961:10.3389/fcell.2016.00116 506: 455: 390:tandem mass-spectroscopy 4219:10.3390/cancers11101595 3836:10.1126/science.1243259 3657:10.1126/science.aaz6465 3259:(1): 23–24. July 2022. 2842:10.1074/mcp.M115.056887 2732:10.1074/mcp.M115.057760 2526:(inactive 2024-03-30). 2201:10.1126/science.aaa6090 1551:10.1126/science.aaz6695 699:Trends in Biotechnology 617:Single-cell variability 479: 343:fluorescence microscopy 337:or tagged with organic 137:Associated Technologies 4140:Nucleic Acids Research 3380:Nucleic Acids Research 2665:Nucleic Acids Research 2624:Bioconjugate Chemistry 2359:10.1038/nprot.2013.112 2298:Essays in Biochemistry 1398:Slavov N (June 2020). 1368:10.1002/anie.201709719 864:10.1002/adbi.201900138 595:Cell–cell interactions 584:optimal transportation 322:Antibody–based methods 102:, and Raman tweezers. 86:, hydrodynamic traps, 59:cell–cell interactions 30: 4446:Scientific techniques 4441:Laboratory techniques 4081:Nature Communications 3545:10.1021/jasms.1c00149 3347:: 2022.11.05.515287. 3173:: 2022.03.16.484655. 2399:Nature Communications 2102:10.1038/nmeth0411-311 1650:10.3390/ijms160816897 1048:Nature Communications 590:Cell–cell interaction 382:liquid chromatography 277:reverse transcriptase 78:Single-cell isolation 33:In the field of  24: 4426:Analytical chemistry 4389:10.3390/ijms23041981 3691:Analytical Chemistry 3300:Nature Biotechnology 3253:Nature Biotechnology 2775:Analytical Chemistry 1728:Single-Cell Analysis 1691:Analytical Chemistry 1582:Lee JH (July 2017). 1315:10.1021/jacs.6b12822 1118:10.3390/biom11020177 190:Single-cell genomics 4152:10.1093/nar/gkac412 4093:2019NatCo..10.1903C 3930:2019Ana...144..782D 3883:2014Ana...139.5079Z 3649:2020Sci...368..283P 3493:2017Ana...142.3639B 3127:2019PLSCB..15E7082C 2472:10.7554/eLife.31657 2411:2018NatCo...9.4550G 2310:10.1042/EBC20180014 2250:2023Natur.618.1057O 2244:(7967): 1057–1064. 2049:2017NatSR...717189V 1946:2017PLoSO..1271566B 1842:(34): 56066–56080. 1543:2020Sci...367..512S 1068:10.1038/ncomms14049 1060:2017NatCo...814049Z 852:Advanced Biosystems 760:2017PLSCB..13E5436H 445:secondary capillary 295:transcript isoforms 4035:(4): 928–943.e22. 3982:10.1038/nmeth.3971 3939:10.1039/C8AN01581C 3891:10.1039/C4AN01018C 3501:10.1039/C7AN00885F 3392:10.1093/nar/gku661 2677:10.1093/nar/gku661 2149:10.1038/nmeth.2892 2037:Scientific Reports 1990:Prenatal Diagnosis 1898:10.1002/humu.22625 1809:10.1039/C7AY00656J 1797:Analytical Methods 466:ambient conditions 232:Φ29 DNA polymerase 166:Raman spectroscopy 111:Raman spectroscopy 90:, manual picking, 31: 4292:Mikrochimica Acta 3830:(6163): 1243259. 3733:(10): 3050–3079. 3697:(14): 7052–7059. 3643:(6488): 283–290. 3487:(19): 3639–3647. 3461:978-0-470-51634-8 2781:(13): 6653–6657. 2671:(15): 9880–9891. 2195:(6233): aaa6090. 1803:(25): 3751–3772. 1745:978-1-61779-566-4 1697:(20): 10397–405. 1537:(6477): 512–513. 1361:(17): 4466–4477. 1355:Angewandte Chemie 1309:(11): 3920–3929. 643:Nature Metabolism 441:primary capillary 358:mass spectrometry 341:for detection by 113:is combined with 96:micromanipulation 4453: 4411: 4401: 4391: 4366: 4356: 4323: 4286: 4276: 4266: 4241: 4231: 4221: 4186: 4180: 4174: 4173: 4163: 4131: 4125: 4124: 4114: 4104: 4072: 4063: 4062: 4052: 4020: 4011: 4008: 4002: 4001: 3967: 3958: 3952: 3951: 3941: 3909: 3903: 3902: 3862: 3856: 3855: 3819: 3808: 3807: 3797: 3765: 3759: 3758: 3727:Nature Protocols 3721: 3715: 3714: 3685: 3679: 3678: 3668: 3628: 3622: 3621: 3603: 3579: 3573: 3572: 3539:(9): 2490–2494. 3527: 3521: 3520: 3472: 3466: 3465: 3445: 3439: 3438: 3436: 3435: 3420: 3414: 3413: 3403: 3371: 3365: 3364: 3340: 3334: 3333: 3323: 3291: 3285: 3284: 3248: 3242: 3241: 3231: 3221: 3197: 3191: 3190: 3165: 3159: 3158: 3148: 3138: 3106: 3100: 3099: 3089: 3072:(6): 2493–2500. 3057: 3051: 3050: 3048: 3028: 3022: 3021: 3011: 3001: 2977: 2971: 2970: 2968: 2948: 2942: 2941: 2931: 2921: 2897: 2891: 2890: 2888: 2876: 2865: 2864: 2854: 2844: 2835:(8): 2616–2627. 2820: 2809: 2808: 2798: 2766: 2755: 2754: 2744: 2734: 2725:(8): 2756–2768. 2710: 2699: 2698: 2688: 2656: 2650: 2649: 2639: 2615: 2609: 2608: 2598: 2566: 2560: 2559: 2553: 2545: 2535: 2525: 2501: 2495: 2494: 2484: 2474: 2450: 2441: 2440: 2430: 2390: 2381: 2380: 2370: 2347:Nature Protocols 2338: 2332: 2331: 2321: 2289: 2280: 2279: 2269: 2229: 2223: 2222: 2212: 2186: 2177: 2171: 2170: 2160: 2128: 2122: 2121: 2085: 2079: 2078: 2068: 2028: 2022: 2021: 1984: 1978: 1977: 1967: 1957: 1925: 1919: 1918: 1900: 1876: 1870: 1869: 1859: 1827: 1821: 1820: 1788: 1782: 1781: 1779: 1778: 1764: 1758: 1757: 1723: 1717: 1716: 1706: 1682: 1673: 1672: 1662: 1652: 1643:(8): 16897–919. 1628: 1622: 1621: 1611: 1579: 1573: 1572: 1562: 1522: 1513: 1512: 1502: 1485:(8): 2565–2571. 1470: 1464: 1463: 1445: 1419: 1395: 1389: 1388: 1370: 1346: 1337: 1336: 1326: 1294: 1288: 1287: 1277: 1245: 1239: 1238: 1202: 1193: 1192: 1174: 1150: 1141: 1140: 1130: 1120: 1096: 1090: 1089: 1079: 1039: 1033: 1032: 1022: 990: 984: 983: 973: 963: 939: 933: 932: 922: 890: 884: 883: 858:(11): e1900138. 847: 841: 840: 830: 798: 792: 791: 781: 771: 739: 733: 732: 722: 690: 675: 674: 649:(9): 1446–1448. 638: 394:tandem mass tags 170:optical tweezers 115:optical tweezers 41:is the study of 35:cellular biology 4461: 4460: 4456: 4455: 4454: 4452: 4451: 4450: 4416: 4415: 4414: 4195: 4193:Further reading 4190: 4189: 4181: 4177: 4132: 4128: 4073: 4066: 4021: 4014: 4009: 4005: 3965: 3959: 3955: 3910: 3906: 3877:(20): 5079–85. 3863: 3859: 3820: 3811: 3766: 3762: 3722: 3718: 3686: 3682: 3629: 3625: 3580: 3576: 3528: 3524: 3473: 3469: 3462: 3446: 3442: 3433: 3431: 3422: 3421: 3417: 3386:(15): 9880–91. 3372: 3368: 3341: 3337: 3292: 3288: 3250: 3249: 3245: 3198: 3194: 3166: 3162: 3121:(7): e1007082. 3107: 3103: 3058: 3054: 3029: 3025: 2978: 2974: 2949: 2945: 2898: 2894: 2877: 2868: 2821: 2812: 2767: 2758: 2711: 2702: 2657: 2653: 2616: 2612: 2567: 2563: 2547: 2546: 2502: 2498: 2451: 2444: 2391: 2384: 2353:(10): 1852–69. 2339: 2335: 2290: 2283: 2230: 2226: 2184: 2178: 2174: 2129: 2125: 2086: 2082: 2029: 2025: 2002:10.1002/pd.4866 1985: 1981: 1940:(2): e0171566. 1926: 1922: 1891:(10): 1260–70. 1877: 1873: 1828: 1824: 1789: 1785: 1776: 1774: 1766: 1765: 1761: 1746: 1724: 1720: 1683: 1676: 1629: 1625: 1580: 1576: 1523: 1516: 1471: 1467: 1396: 1392: 1347: 1340: 1295: 1291: 1246: 1242: 1203: 1196: 1151: 1144: 1097: 1093: 1040: 1036: 991: 987: 940: 936: 891: 887: 848: 844: 813:(19): 3189–97. 799: 795: 754:(4): e1005436. 740: 736: 691: 678: 639: 635: 630: 603: 592: 579: 570: 548: 543: 530: 517:chemical matrix 509: 482: 458: 420: 411: 398:dimethyl labels 370: 324: 316: 311: 299:genetic markers 286: 262: 257: 255:Transcriptomics 248: 230:, usually  187: 182: 139: 100:serial dilution 80: 47:transcriptomics 17: 12: 11: 5: 4459: 4449: 4448: 4443: 4438: 4433: 4428: 4413: 4412: 4367: 4324: 4287: 4242: 4196: 4194: 4191: 4188: 4187: 4175: 4126: 4064: 4012: 4003: 3970:Nature Methods 3953: 3924:(3): 782–793. 3904: 3857: 3809: 3780:(7): 799–805. 3774:Nature Methods 3760: 3716: 3680: 3623: 3574: 3522: 3467: 3460: 3440: 3415: 3366: 3335: 3286: 3243: 3206:Genome Biology 3192: 3160: 3101: 3052: 3046:10.1101/399774 3023: 2986:Genome Biology 2972: 2966:10.1101/665307 2943: 2906:Genome Biology 2892: 2886:10.1101/102681 2866: 2810: 2756: 2700: 2651: 2610: 2561: 2496: 2442: 2382: 2333: 2304:(4): 595–605. 2281: 2224: 2172: 2137:Nature Methods 2123: 2090:Nature Methods 2080: 2023: 1979: 1920: 1885:Human Mutation 1871: 1822: 1783: 1759: 1744: 1718: 1674: 1623: 1594:(7): 583–593. 1574: 1514: 1465: 1390: 1338: 1289: 1240: 1213:(1): 439–462. 1194: 1142: 1091: 1034: 985: 934: 885: 842: 807:Bioinformatics 793: 734: 676: 632: 631: 629: 626: 625: 624: 619: 614: 609: 602: 599: 591: 588: 578: 575: 569: 566: 547: 544: 542: 539: 529: 526: 508: 505: 481: 478: 457: 454: 419: 416: 410: 407: 369: 366: 350:Mass Cytometry 323: 320: 315: 312: 310: 307: 285: 282: 261: 258: 256: 253: 247: 244: 208: 207: 204: 201: 186: 183: 181: 178: 138: 135: 126:nkjet Printing 79: 76: 15: 9: 6: 4: 3: 2: 4458: 4447: 4444: 4442: 4439: 4437: 4434: 4432: 4429: 4427: 4424: 4423: 4421: 4409: 4405: 4400: 4395: 4390: 4385: 4381: 4377: 4373: 4368: 4364: 4360: 4355: 4350: 4346: 4342: 4339:(3): 100107. 4338: 4334: 4333:Cell Genomics 4330: 4325: 4321: 4317: 4313: 4309: 4305: 4301: 4297: 4293: 4288: 4284: 4280: 4275: 4270: 4265: 4260: 4256: 4252: 4248: 4243: 4239: 4235: 4230: 4225: 4220: 4215: 4211: 4207: 4203: 4198: 4197: 4185: 4182:Pinello Lab. 4179: 4171: 4167: 4162: 4157: 4153: 4149: 4145: 4141: 4137: 4130: 4122: 4118: 4113: 4108: 4103: 4098: 4094: 4090: 4086: 4082: 4078: 4071: 4069: 4060: 4056: 4051: 4046: 4042: 4038: 4034: 4030: 4026: 4019: 4017: 4007: 3999: 3995: 3991: 3987: 3983: 3979: 3976:(10): 845–8. 3975: 3971: 3964: 3957: 3949: 3945: 3940: 3935: 3931: 3927: 3923: 3919: 3915: 3908: 3900: 3896: 3892: 3888: 3884: 3880: 3876: 3872: 3868: 3861: 3853: 3849: 3845: 3841: 3837: 3833: 3829: 3825: 3818: 3816: 3814: 3805: 3801: 3796: 3791: 3787: 3783: 3779: 3775: 3771: 3764: 3756: 3752: 3748: 3744: 3740: 3736: 3732: 3728: 3720: 3712: 3708: 3704: 3700: 3696: 3692: 3684: 3676: 3672: 3667: 3662: 3658: 3654: 3650: 3646: 3642: 3638: 3634: 3627: 3619: 3615: 3611: 3607: 3602: 3597: 3593: 3589: 3585: 3578: 3570: 3566: 3562: 3558: 3554: 3550: 3546: 3542: 3538: 3534: 3526: 3518: 3514: 3510: 3506: 3502: 3498: 3494: 3490: 3486: 3482: 3478: 3471: 3463: 3457: 3453: 3452: 3444: 3429: 3425: 3419: 3411: 3407: 3402: 3397: 3393: 3389: 3385: 3381: 3377: 3370: 3362: 3358: 3354: 3350: 3346: 3339: 3331: 3327: 3322: 3317: 3313: 3309: 3305: 3301: 3297: 3290: 3282: 3278: 3274: 3270: 3266: 3262: 3258: 3254: 3247: 3239: 3235: 3230: 3225: 3220: 3215: 3211: 3207: 3203: 3196: 3188: 3184: 3180: 3176: 3172: 3164: 3156: 3152: 3147: 3142: 3137: 3132: 3128: 3124: 3120: 3116: 3112: 3105: 3097: 3093: 3088: 3083: 3079: 3075: 3071: 3067: 3063: 3056: 3047: 3042: 3038: 3034: 3027: 3019: 3015: 3010: 3005: 3000: 2995: 2991: 2987: 2983: 2976: 2967: 2962: 2958: 2954: 2947: 2939: 2935: 2930: 2925: 2920: 2915: 2911: 2907: 2903: 2896: 2887: 2882: 2875: 2873: 2871: 2862: 2858: 2853: 2848: 2843: 2838: 2834: 2830: 2826: 2819: 2817: 2815: 2806: 2802: 2797: 2792: 2788: 2784: 2780: 2776: 2772: 2765: 2763: 2761: 2752: 2748: 2743: 2738: 2733: 2728: 2724: 2720: 2716: 2709: 2707: 2705: 2696: 2692: 2687: 2682: 2678: 2674: 2670: 2666: 2662: 2655: 2647: 2643: 2638: 2633: 2630:(1): 217–25. 2629: 2625: 2621: 2614: 2606: 2602: 2597: 2592: 2588: 2584: 2581:(4): 780–91. 2580: 2576: 2572: 2565: 2557: 2551: 2543: 2539: 2534: 2529: 2524: 2519: 2515: 2511: 2507: 2500: 2492: 2488: 2483: 2478: 2473: 2468: 2464: 2460: 2456: 2449: 2447: 2438: 2434: 2429: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2396: 2389: 2387: 2378: 2374: 2369: 2364: 2360: 2356: 2352: 2348: 2344: 2337: 2329: 2325: 2320: 2315: 2311: 2307: 2303: 2299: 2295: 2288: 2286: 2277: 2273: 2268: 2263: 2259: 2255: 2251: 2247: 2243: 2239: 2235: 2228: 2220: 2216: 2211: 2206: 2202: 2198: 2194: 2190: 2183: 2176: 2168: 2164: 2159: 2154: 2150: 2146: 2142: 2138: 2134: 2127: 2119: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2084: 2076: 2072: 2067: 2062: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2027: 2019: 2015: 2011: 2007: 2003: 1999: 1996:(9): 823–30. 1995: 1991: 1983: 1975: 1971: 1966: 1961: 1956: 1951: 1947: 1943: 1939: 1935: 1931: 1924: 1916: 1912: 1908: 1904: 1899: 1894: 1890: 1886: 1882: 1875: 1867: 1863: 1858: 1853: 1849: 1845: 1841: 1837: 1833: 1826: 1818: 1814: 1810: 1806: 1802: 1798: 1794: 1787: 1773: 1769: 1763: 1755: 1751: 1747: 1741: 1737: 1733: 1729: 1722: 1714: 1710: 1705: 1700: 1696: 1692: 1688: 1681: 1679: 1670: 1666: 1661: 1656: 1651: 1646: 1642: 1638: 1634: 1627: 1619: 1615: 1610: 1605: 1601: 1597: 1593: 1589: 1585: 1578: 1570: 1566: 1561: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1521: 1519: 1510: 1506: 1501: 1496: 1492: 1488: 1484: 1480: 1476: 1469: 1461: 1457: 1453: 1449: 1444: 1439: 1435: 1431: 1427: 1423: 1418: 1413: 1409: 1405: 1401: 1394: 1386: 1382: 1378: 1374: 1369: 1364: 1360: 1356: 1352: 1345: 1343: 1334: 1330: 1325: 1320: 1316: 1312: 1308: 1304: 1300: 1293: 1285: 1281: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1244: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1208: 1201: 1199: 1190: 1186: 1182: 1178: 1173: 1168: 1165:(1): 79–102. 1164: 1160: 1156: 1149: 1147: 1138: 1134: 1129: 1124: 1119: 1114: 1110: 1106: 1102: 1095: 1087: 1083: 1078: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1038: 1030: 1026: 1021: 1016: 1012: 1008: 1005:(4): 557–67. 1004: 1000: 996: 989: 981: 977: 972: 967: 962: 957: 953: 949: 945: 938: 930: 926: 921: 916: 912: 908: 905:(4): 559–63. 904: 900: 896: 889: 881: 877: 873: 869: 865: 861: 857: 853: 846: 838: 834: 829: 824: 820: 816: 812: 808: 804: 797: 789: 785: 780: 775: 770: 765: 761: 757: 753: 749: 745: 738: 730: 726: 721: 716: 712: 708: 705:(6): 281–90. 704: 700: 696: 689: 687: 685: 683: 681: 672: 668: 664: 660: 656: 652: 648: 644: 637: 633: 623: 620: 618: 615: 613: 610: 608: 605: 604: 598: 596: 587: 585: 574: 565: 562: 556: 553: 538: 536: 525: 523: 518: 514: 504: 502: 498: 494: 490: 486: 477: 475: 471: 467: 463: 453: 451: 446: 442: 437: 433: 429: 425: 415: 406: 404: 399: 395: 391: 387: 383: 379: 374: 365: 361: 359: 355: 352: 351: 346: 344: 340: 336: 332: 328: 319: 306: 302: 300: 296: 290: 281: 278: 274: 270: 266: 252: 243: 241: 237: 233: 229: 225: 221: 217: 212: 205: 202: 199: 198: 197: 195: 191: 177: 173: 171: 167: 162: 158: 156: 151: 147: 143: 134: 130: 127: 122: 118: 116: 112: 108: 103: 101: 97: 93: 92:microfluidics 89: 85: 75: 73: 69: 65: 60: 56: 52: 48: 44: 40: 36: 28: 23: 19: 4436:Cell biology 4431:Biochemistry 4379: 4375: 4336: 4332: 4295: 4291: 4254: 4250: 4212:(10): 1595. 4209: 4205: 4178: 4143: 4139: 4129: 4084: 4080: 4032: 4028: 4006: 3973: 3969: 3956: 3921: 3917: 3907: 3874: 3870: 3860: 3827: 3823: 3777: 3773: 3763: 3730: 3726: 3719: 3694: 3690: 3683: 3640: 3636: 3626: 3591: 3587: 3577: 3536: 3532: 3525: 3484: 3480: 3470: 3450: 3443: 3432:. Retrieved 3430:. 2017-03-09 3427: 3418: 3383: 3379: 3369: 3344: 3338: 3306:(1): 50–59. 3303: 3299: 3289: 3256: 3252: 3246: 3209: 3205: 3195: 3170: 3163: 3118: 3114: 3104: 3069: 3065: 3055: 3036: 3026: 2989: 2985: 2975: 2956: 2946: 2909: 2905: 2895: 2832: 2828: 2778: 2774: 2722: 2718: 2668: 2664: 2654: 2627: 2623: 2613: 2578: 2574: 2564: 2550:cite journal 2513: 2509: 2499: 2462: 2458: 2402: 2398: 2350: 2346: 2336: 2301: 2297: 2241: 2237: 2227: 2192: 2188: 2175: 2143:(4): 360–1. 2140: 2136: 2126: 2096:(4): 311–4. 2093: 2089: 2083: 2043:(1): 17189. 2040: 2036: 2026: 1993: 1989: 1982: 1937: 1933: 1923: 1888: 1884: 1874: 1839: 1835: 1825: 1800: 1796: 1786: 1775:. Retrieved 1771: 1762: 1727: 1721: 1694: 1690: 1640: 1636: 1626: 1591: 1587: 1577: 1534: 1530: 1482: 1478: 1468: 1407: 1403: 1393: 1358: 1354: 1306: 1302: 1292: 1257: 1253: 1243: 1210: 1206: 1162: 1158: 1108: 1105:Biomolecules 1104: 1094: 1051: 1047: 1037: 1002: 998: 988: 951: 947: 937: 902: 898: 888: 855: 851: 845: 810: 806: 796: 751: 747: 737: 702: 698: 646: 642: 636: 607:Cell sorting 593: 580: 571: 557: 549: 541:Metabolomics 531: 521: 516: 510: 496: 493:primary ions 492: 483: 473: 469: 465: 459: 449: 444: 440: 435: 431: 421: 412: 384:(LC) (using 375: 371: 362: 353: 349: 347: 339:fluorophores 335:quantum dots 330: 329: 325: 317: 303: 291: 287: 263: 249: 213: 209: 193: 188: 174: 163: 159: 155:micropipette 152: 148: 144: 140: 131: 123: 119: 107:micropipette 104: 81: 55:metabolomics 38: 32: 18: 4382:(4): 1981. 4146:(15): e86. 4087:(1): 1903. 3918:The Analyst 3871:The Analyst 3481:The Analyst 2405:(1): 4550. 501:purinosomes 474:Allium cepa 468:. Anderton 4420:Categories 4298:(8): 242. 4257:(1): 312. 3594:: 102693. 3434:2017-06-28 3212:(1): 261. 3039:: 399774. 2912:(1): 161. 2516:(1): 127. 2465:: e31657. 1836:Oncotarget 1777:2024-05-15 1417:2004.02069 1260:: 455–77. 1111:(2): 177. 628:References 546:Techniques 314:Techniques 309:Proteomics 260:Techniques 185:Techniques 68:metabolome 51:proteomics 4320:235738076 3755:261580460 3618:246773056 3569:236968123 3509:0003-2654 3361:253399025 3281:250642572 3187:247599981 2992:(1): 50. 1817:1759-9679 1460:219966629 1434:1367-5931 1054:: 14049. 880:203101696 671:261607846 561:femtomole 424:nano-DESI 418:Nano-DESI 396:(TMT) or 380:(CE) or 4408:35216097 4363:35419551 4312:34226955 4283:34635104 4238:31635038 4170:35639499 4121:31015418 4059:30712874 3990:27571553 3948:30426983 3899:25109271 3852:21381091 3844:24311695 3804:34226721 3747:37674095 3711:26110742 3675:32299949 3610:35151979 3561:34374553 3517:28835951 3410:25056316 3330:35835881 3273:35851377 3238:36527135 3155:31260443 3096:31081635 3018:33504367 2938:30343672 2861:27215607 2805:27314579 2751:27317400 2695:25056316 2646:26689321 2605:27153492 2542:25981462 2491:29993362 2437:30382095 2377:24008381 2328:30072488 2276:37344592 2267:10307641 2219:25858977 2167:24681720 2110:21451520 2075:29215049 2010:27368744 1974:28207771 1934:PLOS ONE 1915:27392899 1907:25066732 1866:28915574 1754:22323146 1713:26398405 1669:26213926 1618:28571832 1569:32001644 1509:29945450 1452:32599342 1377:29218763 1333:28135079 1284:24910919 1235:40069109 1227:28301747 1189:12987987 1181:26077818 1137:33525507 1086:28091601 1029:26891732 980:27826548 929:20478246 872:32648696 837:26059718 788:28379950 729:20434785 663:37679555 622:CITE-Seq 601:See also 331:Imaging: 180:Genomics 43:genomics 4399:8875744 4354:9004682 4274:8507141 4229:6826423 4206:Cancers 4161:9410915 4112:6478907 4089:Bibcode 4050:6402800 3998:3594049 3926:Bibcode 3879:Bibcode 3824:Science 3795:7611214 3666:7494208 3645:Bibcode 3637:Science 3553:1824325 3489:Bibcode 3401:4150773 3345:bioRxiv 3321:9839897 3229:9756690 3171:bioRxiv 3146:6625733 3123:Bibcode 3087:6737531 3037:bioRxiv 3009:7839219 2957:bioRxiv 2929:6196420 2881:bioRxiv 2852:4974340 2796:4940028 2742:4974349 2686:4150773 2596:4860251 2533:4436107 2482:6075866 2428:6208406 2407:Bibcode 2368:4108347 2319:6204083 2246:Bibcode 2210:4662681 2189:Science 2158:4085791 2118:5601612 2066:5719346 2045:Bibcode 2018:5537482 1965:5313163 1942:Bibcode 1857:5593545 1660:4581176 1609:5514424 1560:7029782 1539:Bibcode 1531:Science 1500:6089608 1443:7767890 1410:: 1–9. 1385:4928231 1324:5364434 1275:4309009 1128:7912277 1077:5241818 1056:Bibcode 1020:4948133 971:5078503 954:: 116. 920:2918286 828:4693004 779:5397092 756:Bibcode 720:2876223 568:Purpose 528:Purpose 284:Purpose 246:Purpose 242:(NGS). 220:primers 37:,  4406:  4396:  4361:  4351:  4318:  4310:  4281:  4271:  4236:  4226:  4168:  4158:  4119:  4109:  4057:  4047:  3996:  3988:  3946:  3897:  3850:  3842:  3802:  3792:  3753:  3745:  3709:  3673:  3663:  3616:  3608:  3567:  3559:  3551:  3515:  3507:  3458:  3408:  3398:  3359:  3328:  3318:  3279:  3271:  3236:  3226:  3185:  3153:  3143:  3094:  3084:  3016:  3006:  2936:  2926:  2883:  2859:  2849:  2803:  2793:  2749:  2739:  2693:  2683:  2644:  2603:  2593:  2540:  2530:  2489:  2479:  2435:  2425:  2375:  2365:  2326:  2316:  2274:  2264:  2238:Nature 2217:  2207:  2165:  2155:  2116:  2108:  2073:  2063:  2016:  2008:  1972:  1962:  1913:  1905:  1864:  1854:  1815:  1752:  1742:  1711:  1667:  1657:  1616:  1606:  1567:  1557:  1507:  1497:  1458:  1450:  1440:  1432:  1383:  1375:  1331:  1321:  1282:  1272:  1233:  1225:  1187:  1179:  1135:  1125:  1084:  1074:  1027:  1017:  978:  968:  927:  917:  878:  870:  835:  825:  786:  776:  727:  717:  669:  661:  522:et al. 497:et al. 489:vacuum 450:et al. 275:using 228:enzyme 4316:S2CID 3994:S2CID 3966:(PDF) 3848:S2CID 3751:S2CID 3614:S2CID 3565:S2CID 3357:S2CID 3277:S2CID 3183:S2CID 2459:eLife 2185:(PDF) 2114:S2CID 2014:S2CID 1911:S2CID 1768:"MMS" 1456:S2CID 1412:arXiv 1381:S2CID 1231:S2CID 1185:S2CID 876:S2CID 667:S2CID 507:MALDI 470:et al 456:LAESI 4404:PMID 4359:PMID 4308:PMID 4279:PMID 4234:PMID 4166:PMID 4117:PMID 4055:PMID 4029:Cell 3986:PMID 3944:PMID 3895:PMID 3840:PMID 3800:PMID 3743:PMID 3707:PMID 3671:PMID 3606:PMID 3557:PMID 3549:OSTI 3513:PMID 3505:ISSN 3456:ISBN 3406:PMID 3326:PMID 3269:PMID 3234:PMID 3151:PMID 3092:PMID 3014:PMID 2934:PMID 2857:PMID 2801:PMID 2747:PMID 2691:PMID 2642:PMID 2601:PMID 2575:Cell 2556:link 2538:PMID 2487:PMID 2433:PMID 2373:PMID 2324:PMID 2272:PMID 2215:PMID 2163:PMID 2106:PMID 2071:PMID 2006:PMID 1970:PMID 1903:PMID 1862:PMID 1813:ISSN 1750:PMID 1740:ISBN 1709:PMID 1665:PMID 1614:PMID 1565:PMID 1505:PMID 1448:PMID 1430:ISSN 1373:PMID 1329:PMID 1280:PMID 1223:PMID 1177:PMID 1133:PMID 1082:PMID 1025:PMID 976:PMID 925:PMID 899:Cell 868:PMID 833:PMID 784:PMID 725:PMID 659:PMID 552:FRET 480:SIMS 273:cDNA 168:and 84:FACS 57:and 4394:PMC 4384:doi 4349:PMC 4341:doi 4300:doi 4296:188 4269:PMC 4259:doi 4224:PMC 4214:doi 4156:PMC 4148:doi 4107:PMC 4097:doi 4045:PMC 4037:doi 4033:176 3978:doi 3934:doi 3922:144 3887:doi 3875:139 3832:doi 3828:342 3790:PMC 3782:doi 3735:doi 3699:doi 3661:PMC 3653:doi 3641:368 3596:doi 3541:doi 3497:doi 3485:142 3396:PMC 3388:doi 3349:doi 3316:PMC 3308:doi 3261:doi 3224:PMC 3214:doi 3175:doi 3141:PMC 3131:doi 3082:PMC 3074:doi 3041:doi 3004:PMC 2994:doi 2961:doi 2924:PMC 2914:doi 2847:PMC 2837:doi 2791:PMC 2783:doi 2737:PMC 2727:doi 2681:PMC 2673:doi 2632:doi 2591:PMC 2583:doi 2579:165 2528:PMC 2518:doi 2477:PMC 2467:doi 2423:PMC 2415:doi 2363:PMC 2355:doi 2314:PMC 2306:doi 2262:PMC 2254:doi 2242:618 2205:PMC 2197:doi 2193:348 2153:PMC 2145:doi 2098:doi 2061:PMC 2053:doi 1998:doi 1960:PMC 1950:doi 1893:doi 1852:PMC 1844:doi 1805:doi 1772:MMS 1732:doi 1699:doi 1655:PMC 1645:doi 1604:PMC 1596:doi 1555:PMC 1547:doi 1535:367 1495:PMC 1487:doi 1438:PMC 1422:doi 1363:doi 1319:PMC 1311:doi 1307:139 1270:PMC 1262:doi 1215:doi 1167:doi 1123:PMC 1113:doi 1072:PMC 1064:doi 1015:PMC 1007:doi 966:PMC 956:doi 915:PMC 907:doi 903:141 860:doi 823:PMC 815:doi 774:PMC 764:doi 715:PMC 707:doi 651:doi 511:In 460:In 216:PCR 4422:: 4402:. 4392:. 4380:23 4378:. 4374:. 4357:. 4347:. 4335:. 4331:. 4314:. 4306:. 4294:. 4277:. 4267:. 4255:19 4253:. 4249:. 4232:. 4222:. 4210:11 4208:. 4204:. 4164:. 4154:. 4144:50 4142:. 4138:. 4115:. 4105:. 4095:. 4085:10 4083:. 4079:. 4067:^ 4053:. 4043:. 4031:. 4027:. 4015:^ 3992:. 3984:. 3974:13 3972:. 3968:. 3942:. 3932:. 3920:. 3916:. 3893:. 3885:. 3873:. 3869:. 3846:. 3838:. 3826:. 3812:^ 3798:. 3788:. 3778:18 3776:. 3772:. 3749:. 3741:. 3731:18 3729:. 3705:. 3695:87 3693:. 3669:. 3659:. 3651:. 3639:. 3635:. 3612:. 3604:. 3592:75 3590:. 3586:. 3563:. 3555:. 3547:. 3537:32 3535:. 3511:. 3503:. 3495:. 3483:. 3479:. 3426:. 3404:. 3394:. 3384:42 3382:. 3378:. 3355:. 3324:. 3314:. 3304:41 3302:. 3298:. 3275:. 3267:. 3257:41 3255:. 3232:. 3222:. 3210:23 3208:. 3204:. 3181:. 3149:. 3139:. 3129:. 3119:15 3117:. 3113:. 3090:. 3080:. 3070:18 3068:. 3064:. 3035:. 3012:. 3002:. 2990:22 2988:. 2984:. 2959:. 2955:. 2932:. 2922:. 2910:19 2908:. 2904:. 2869:^ 2855:. 2845:. 2833:15 2831:. 2827:. 2813:^ 2799:. 2789:. 2779:88 2777:. 2773:. 2759:^ 2745:. 2735:. 2723:15 2721:. 2717:. 2703:^ 2689:. 2679:. 2669:42 2667:. 2663:. 2640:. 2628:27 2626:. 2622:. 2599:. 2589:. 2577:. 2573:. 2552:}} 2548:{{ 2536:. 2514:17 2512:. 2508:. 2485:. 2475:. 2461:. 2457:. 2445:^ 2431:. 2421:. 2413:. 2401:. 2397:. 2385:^ 2371:. 2361:. 2349:. 2345:. 2322:. 2312:. 2302:62 2300:. 2296:. 2284:^ 2270:. 2260:. 2252:. 2240:. 2236:. 2213:. 2203:. 2191:. 2187:. 2161:. 2151:. 2141:11 2139:. 2135:. 2112:. 2104:. 2092:. 2069:. 2059:. 2051:. 2039:. 2035:. 2012:. 2004:. 1994:36 1992:. 1968:. 1958:. 1948:. 1938:12 1936:. 1932:. 1909:. 1901:. 1889:35 1887:. 1883:. 1860:. 1850:. 1838:. 1834:. 1811:. 1799:. 1795:. 1770:. 1748:. 1738:. 1707:. 1695:87 1693:. 1689:. 1677:^ 1663:. 1653:. 1641:16 1639:. 1635:. 1612:. 1602:. 1592:23 1590:. 1586:. 1563:. 1553:. 1545:. 1533:. 1529:. 1517:^ 1503:. 1493:. 1483:17 1481:. 1477:. 1454:. 1446:. 1436:. 1428:. 1420:. 1408:60 1406:. 1402:. 1379:. 1371:. 1359:57 1357:. 1353:. 1341:^ 1327:. 1317:. 1305:. 1301:. 1278:. 1268:. 1256:. 1252:. 1229:. 1221:. 1211:10 1209:. 1197:^ 1183:. 1175:. 1163:16 1161:. 1157:. 1145:^ 1131:. 1121:. 1109:11 1107:. 1103:. 1080:. 1070:. 1062:. 1050:. 1046:. 1023:. 1013:. 1003:21 1001:. 997:. 974:. 964:. 950:. 946:. 923:. 913:. 901:. 897:. 874:. 866:. 854:. 831:. 821:. 811:31 809:. 805:. 782:. 772:. 762:. 752:13 750:. 746:. 723:. 713:. 703:28 701:. 697:. 679:^ 665:. 657:. 645:. 301:. 157:. 98:, 53:, 49:, 45:, 4410:. 4386:: 4365:. 4343:: 4337:2 4322:. 4302:: 4285:. 4261:: 4240:. 4216:: 4172:. 4150:: 4123:. 4099:: 4091:: 4061:. 4039:: 4000:. 3980:: 3950:. 3936:: 3928:: 3901:. 3889:: 3881:: 3854:. 3834:: 3806:. 3784:: 3757:. 3737:: 3713:. 3701:: 3677:. 3655:: 3647:: 3620:. 3598:: 3571:. 3543:: 3519:. 3499:: 3491:: 3464:. 3437:. 3412:. 3390:: 3363:. 3351:: 3332:. 3310:: 3283:. 3263:: 3240:. 3216:: 3189:. 3177:: 3157:. 3133:: 3125:: 3098:. 3076:: 3049:. 3043:: 3020:. 2996:: 2969:. 2963:: 2940:. 2916:: 2889:. 2863:. 2839:: 2807:. 2785:: 2753:. 2729:: 2697:. 2675:: 2648:. 2634:: 2607:. 2585:: 2558:) 2544:. 2520:: 2493:. 2469:: 2463:7 2439:. 2417:: 2409:: 2403:9 2379:. 2357:: 2351:8 2330:. 2308:: 2278:. 2256:: 2248:: 2221:. 2199:: 2169:. 2147:: 2120:. 2100:: 2094:8 2077:. 2055:: 2047:: 2041:7 2020:. 2000:: 1976:. 1952:: 1944:: 1917:. 1895:: 1868:. 1846:: 1840:8 1819:. 1807:: 1801:9 1780:. 1756:. 1734:: 1715:. 1701:: 1671:. 1647:: 1620:. 1598:: 1571:. 1549:: 1541:: 1511:. 1489:: 1462:. 1424:: 1414:: 1387:. 1365:: 1335:. 1313:: 1286:. 1264:: 1258:5 1237:. 1217:: 1191:. 1169:: 1139:. 1115:: 1088:. 1066:: 1058:: 1052:8 1031:. 1009:: 982:. 958:: 952:4 931:. 909:: 882:. 862:: 856:3 839:. 817:: 790:. 766:: 758:: 731:. 709:: 673:. 653:: 647:5 354:: 124:I

Index


central dogma of molecular biology
cellular biology
genomics
transcriptomics
proteomics
metabolomics
cell–cell interactions
fluorescence-activated cell sorting
metabolome
fluorescence in situ hybridization
FACS
laser capture microdissection
microfluidics
micromanipulation
serial dilution
micropipette
Raman spectroscopy
optical tweezers
nkjet Printing
micropipette
Raman spectroscopy
optical tweezers
Single-cell genomics
PCR
primers
Multiple displacement amplification
enzyme
Φ29 DNA polymerase
Multiple Annealing and Looping–Based Amplification Cycles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑