Knowledge

Spectralon

Source 📝

79: 128:. Gross contamination of the material or marring of the optical surface can be remedied by sanding under a stream of running water. This surface refinishing both restores the original topography of the surface and returns the material to its original reflectance. Weathering tests on the material show no damage upon exposure to atmospheric UV flux. The material shows no sign of optical or physical degradation after long-term immersion testing in sea water. 20: 137:
offers the same physical characteristics as optical-grade material, but is a different formulation of resin that gives enhanced performance when used in laser pump cavities. Spectralon is used in a variety of "side pumped" lasers. Space-grade Spectralon combines high reflectance with an extremely lambertian reflectance profile, and is used for terrestrial
112:
arises from the material's surface and immediate subsurface structure. The porous network of thermoplastic produces multiple reflections in the first few tenths of a millimeter. Spectralon can partially depolarize the light it reflects, but this effect decreases at high incidence angles. Although it
136:
Three grades of Spectralon reflectance material are available: optical grade, laser grade, and space grade. Optical-grade Spectralon has a high reflectance and Lambertian behavior, and is used primarily as a reference standard or target for calibration of spectrophotometers. Laser-grade Spectralon
96:
at wavelengths from 257 nm to 10,600 nm, although reflectivity decreases at wavelengths beyond the near infrared. Spectralon exhibits absorbances at 2800 nm, then absorbs strongly (<20% reflectance) from 5400 to 8000 nm. Although the high diffuse reflectance allows efficient
91:
powder that has been compressed into solid forms and sintered for stability, with approx. 40% void volume to enhance scattering of light. Surface or subsurface contamination may lower the reflectance at the extreme upper and lower ends of the spectral range. The material is also highly
113:
is extremely hydrophobic, this open structure readily absorbs non-polar solvents, greases and oils. Impurities are difficult to remove from Spectralon; thus, the material should be kept free from contaminants to maintain its reflectance properties.
86:
Spectralon's reflectance is generally >99% over a range from 400 to 1500 nm and >95% from 250 to 2500 nm., however grades are available with added carbon to achieve various gray levels. The material consists of
450:
Evain S, Flexas J, Moya I (2004). "A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence".
236:
Stiegman, Albert E.; Bruegge, Carol J.; Springsteen, Arthur W. (1 April 1993). "Ultraviolet stability and contamination analysis of Spectralon diffuse reflectance material".
496: 153: 160:. Spectralon allows removal of contributions in the emitted light that are directly linked not to the surface (leaf) properties but to geometrical factors. 145: 324:
Raymond F. Kokaly; Andrew K. Skidmore (December 2015). "Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 Ξm".
149: 144:
Spectralon's optical properties make it ideal as a reference surface in remote sensing and spectroscopy. For instance, it is used to obtain
193:
Georgiev, Georgi T.; Butler, James J. (2007). "Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet".
412: 387: 375: 120:
and is thermally stable to > 350 Â°C. It is chemically inert to all but the most powerful bases such as
281:
Voss, Kenneth J.; Zhang, Hao (2006). "Bidirectional reflectance of dry and submerged Labsphere Spectralon plaque".
438: 54:
behavior, and can be machined into a wide variety of shapes for the construction of optical components such as
515: 535: 520: 117: 258: 545: 540: 253: 109: 93: 51: 495:. Air Force Research Laboratory, Munitions Directorate. p. 16. AFRL-MN-EG-TR-2003-7013. 460: 290: 245: 202: 413:"Optimization Of Spectralon Through Numerical Modeling And Improved Processes And Designs" 8: 464: 294: 249: 206: 59: 55: 35: 434: 371: 341: 306: 218: 78: 468: 349: 333: 298: 263: 210: 157: 43: 63: 487: 138: 472: 337: 529: 345: 98: 47: 31: 16:
Fluoropolymer which has the highest diffuse reflectance of any known material
310: 222: 121: 353: 302: 214: 168:
Spectralon was developed by Labsphere and has been available since 1986.
125: 39: 429:
Fischer, Robert Edward; Tadic-Galeb, Biljana and Yoder, Paul R. (2008)
267: 326:
International Journal of Applied Earth Observation and Geoinformation
19: 323: 124:
and organo-sodium or lithium compounds. The material is extremely
105:
per square centimeter, limiting its use to lower-powered systems.
102: 380: 67: 368:
Techniques and Applications of Hyperspectral Image Analysis
152:(BRDF) in the laboratory. It can also be applied to obtain 88: 235: 101:, the material has a fairly low damage threshold of 4 116:
The material has a hardness roughly equal to that of
486:Goldstein, Dennis H.; et al. (February 2003). 407: 405: 527: 449: 150:bidirectional reflectance distribution function 402: 192: 50:regions of the spectrum. It exhibits highly 489:Polarimetric characterization of Spectralon 188: 186: 184: 182: 180: 38:of any known material or coating over the 485: 317: 280: 257: 77: 18: 177: 528: 274: 13: 502:from the original on June 4, 2011. 82:Reflectance spectrum of Spectralon 73: 14: 557: 509: 370:. John Wiley & Sons. p. 133. 479: 131: 443: 423: 360: 229: 1: 453:Remote Sensing of Environment 171: 7: 10: 562: 516:Spectralon Product Details 163: 473:10.1016/j.rse.2004.03.012 338:10.1016/J.JAG.2015.01.010 118:high-density polyethylene 388:"Space Grade Spectralon" 433:. McGraw-Hill. p. 534. 154:vegetation fluorescence 110:Lambertian reflectance 83: 24: 521:Spectralon Tech Guide 431:Optical system design 81: 64:optical pump cavities 34:that has the highest 22: 366:Geladi, Paul (2007) 303:10.1364/AO.45.007924 215:10.1364/AO.46.007892 465:2004RSEnv..91..175E 295:2006ApOpt..45.7924V 250:1993OptEn..32..799S 238:Optical Engineering 207:2007ApOpt..46.7892G 60:integrating spheres 56:calibration targets 36:diffuse reflectance 84: 25: 23:A Spectralon panel 536:Optical materials 289:(30): 7924–7927. 268:10.1117/12.132374 553: 504: 503: 501: 494: 483: 477: 476: 447: 441: 427: 421: 420: 417:Photonics Online 409: 400: 399: 397: 395: 390:. Labsphere, Inc 384: 378: 364: 358: 357: 321: 315: 314: 278: 272: 271: 261: 233: 227: 226: 190: 158:Fraunhofer lines 146:leaf reflectance 561: 560: 556: 555: 554: 552: 551: 550: 526: 525: 512: 507: 499: 492: 484: 480: 448: 444: 428: 424: 411: 410: 403: 393: 391: 386: 385: 381: 365: 361: 322: 318: 279: 275: 259:10.1.1.362.2910 234: 230: 191: 178: 174: 166: 134: 76: 74:Characteristics 17: 12: 11: 5: 559: 549: 548: 546:Thermoplastics 543: 541:Fluoropolymers 538: 524: 523: 518: 511: 510:External links 508: 506: 505: 478: 459:(2): 175–185. 442: 422: 401: 379: 359: 316: 283:Applied Optics 273: 228: 195:Applied Optics 175: 173: 170: 165: 162: 141:applications. 139:remote sensing 133: 130: 75: 72: 15: 9: 6: 4: 3: 2: 558: 547: 544: 542: 539: 537: 534: 533: 531: 522: 519: 517: 514: 513: 498: 491: 490: 482: 474: 470: 466: 462: 458: 454: 446: 440: 436: 432: 426: 418: 414: 408: 406: 389: 383: 377: 376:9780470010884 373: 369: 363: 355: 351: 347: 343: 339: 335: 331: 327: 320: 312: 308: 304: 300: 296: 292: 288: 284: 277: 269: 265: 260: 255: 251: 247: 243: 239: 232: 224: 220: 216: 212: 208: 204: 200: 196: 189: 187: 185: 183: 181: 176: 169: 161: 159: 155: 151: 147: 142: 140: 129: 127: 123: 119: 114: 111: 106: 104: 100: 99:laser pumping 95: 90: 80: 71: 69: 65: 61: 57: 53: 49: 48:near-infrared 45: 41: 37: 33: 32:fluoropolymer 29: 21: 488: 481: 456: 452: 445: 430: 425: 419:. Labsphere. 416: 392:. Retrieved 382: 367: 362: 329: 325: 319: 286: 282: 276: 241: 237: 231: 201:(32): 7893. 198: 194: 167: 143: 135: 132:Applications 122:sodium amide 115: 107: 85: 27: 26: 126:hydrophobic 40:ultraviolet 530:Categories 439:0071472487 244:(4): 799. 172:References 156:using the 94:lambertian 52:Lambertian 28:Spectralon 354:Q58321875 346:1569-8432 332:: 55–83. 254:CiteSeerX 497:Archived 394:29 March 350:Wikidata 311:17068529 223:17994141 461:Bibcode 291:Bibcode 246:Bibcode 203:Bibcode 164:History 44:visible 437:  374:  352:  344:  309:  256:  221:  103:joules 68:lasers 62:, and 46:, and 500:(PDF) 493:(PDF) 30:is a 435:ISBN 396:2019 372:ISBN 342:ISSN 307:PMID 219:PMID 148:and 108:The 89:PTFE 66:for 469:doi 334:doi 299:doi 264:doi 211:doi 532:: 467:. 457:91 455:. 415:. 404:^ 348:. 340:. 330:43 328:. 305:. 297:. 287:45 285:. 262:. 252:. 242:32 240:. 217:. 209:. 199:46 197:. 179:^ 70:. 58:, 42:, 475:. 471:: 463:: 398:. 356:. 336:: 313:. 301:: 293:: 270:. 266:: 248:: 225:. 213:: 205::

Index


fluoropolymer
diffuse reflectance
ultraviolet
visible
near-infrared
Lambertian
calibration targets
integrating spheres
optical pump cavities
lasers

PTFE
lambertian
laser pumping
joules
Lambertian reflectance
high-density polyethylene
sodium amide
hydrophobic
remote sensing
leaf reflectance
bidirectional reflectance distribution function
vegetation fluorescence
Fraunhofer lines




Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑