Knowledge

Stress field

Source đź“ť

158:
These two interactions will both strengthen the material in different ways. If two equivalently charged fields come in contact and are confined to a particular region, excessive force is needed to overcome the repulsive forces needed to elicit dislocation movement past one another. If two oppositely charged fields come into contact with one another they will merge with one another to form a jog. A jog can be modelled as a potential well that traps dislocations. Thus, excessive force is needed to force the dislocations apart. Since dislocation motion is the primary mechanism behind plastic deformation, increasing the stress required to move dislocations directly increases the yield strength of the material.
871: 25: 146:
associated with it. The creation of these stress fields is a result of the material trying to dissipate mechanical energy that is being exerted on the material. By convention, these dislocations are labelled as either positive or negative depending on whether the stress field of the dislocation is mostly compressive or tensile.
145:
and this stretching causes the stress field to form. Atomic bonds farther and farther away from the dislocation centre are less and less stretched which is why the stress field dissipates as the distance from the dislocation centre increases. Each dislocation within the material has a stress field
157:
field) charges we can understand how dislocations interact with each other in the lattice. If two like fields come in contact with one another they will be repelled by one another. On the other hand, if two opposing charges come into contact with one another they will be attracted to one another.
165:
for materials. Stress fields can be created by adding different sized atoms to the lattice (solute strengthening). If a smaller atom is added to the lattice a tensile stress field is created. The atomic bonds are longer due to the smaller radius of the solute atom. Similarly, if a larger atom is
166:
added to the lattice a compressive stress field is created. The atomic bonds are shorter due to the larger radius of the solute atom. The stress fields created by adding solute atoms form the basis of the material strengthening process that occurs in
208: 125:
is the distribution of internal forces in a body that balance a given set of external forces. Stress fields are widely used in
162: 89: 451: 61: 108: 68: 201: 46: 75: 42: 236: 895: 874: 194: 57: 900: 536: 541: 317: 805: 307: 241: 35: 150: 818: 622: 511: 381: 361: 261: 231: 795: 679: 396: 351: 82: 8: 828: 704: 689: 666: 662: 441: 366: 266: 251: 777: 674: 556: 461: 376: 341: 271: 217: 813: 747: 699: 694: 574: 564: 506: 281: 154: 130: 16:
Distribution of internal forces in a body that balance a given set of external forces
617: 612: 546: 521: 516: 491: 431: 391: 246: 134: 856: 752: 652: 627: 599: 584: 486: 436: 426: 421: 297: 757: 734: 719: 589: 569: 481: 406: 401: 356: 322: 312: 256: 126: 371: 889: 647: 642: 302: 149:
By modelling of dislocations and their stress fields as either a positive (
823: 709: 684: 637: 632: 607: 496: 416: 386: 142: 851: 838: 346: 456: 787: 767: 762: 742: 724: 714: 526: 471: 333: 186: 24: 846: 772: 579: 531: 476: 138: 446: 411: 466: 167: 141:. The bonds are clearly stretched around the location of the 501: 133:. Consider that one can picture the stress fields as the 161:
The theory of stress fields can be applied to various
137:
created by adding an extra half plane of atoms to a
49:. Unsourced material may be challenged and removed. 183:, Springer, 2010. Chapter 1, Introduction, page 1 887: 202: 209: 195: 109:Learn how and when to remove this message 888: 216: 190: 47:adding citations to reliable sources 18: 452:List of tectonic plate interactions 13: 173: 14: 912: 181:Stress Field of the Earth's Crust 870: 869: 23: 34:needs additional citations for 1: 179:Arno Zang, Ove Stephansson, 7: 10: 917: 865: 837: 804: 786: 733: 661: 598: 555: 537:Thick-skinned deformation 331: 290: 224: 542:Thin-skinned deformation 318:Stereographic projection 163:strengthening mechanisms 308:Orthographic projection 291:Measurement conventions 237:LamĂ©'s stress ellipsoid 819:Paleostress inversion 512:Strike-slip tectonics 382:Extensional tectonics 362:Continental collision 232:Deformation mechanism 397:Fold and thrust belt 153:field) or negative ( 43:improve this article 896:Classical mechanics 829:Section restoration 705:Rock microstructure 367:Convergent boundary 267:Strain partitioning 252:Overburden pressure 242:Mohr–Coulomb theory 806:Kinematic analysis 462:Mountain formation 377:Divergent boundary 342:Accretionary wedge 218:Structural geology 901:Materials science 883: 882: 814:3D fold evolution 700:Pressure solution 695:Oblique foliation 575:Exfoliation joint 565:Columnar jointing 225:Underlying theory 131:materials science 119: 118: 111: 93: 908: 873: 872: 618:Detachment fault 613:Cataclastic rock 547:Thrust tectonics 517:Structural basin 492:Pull-apart basin 432:Horst and graben 211: 204: 197: 188: 187: 114: 107: 103: 100: 94: 92: 51: 27: 19: 916: 915: 911: 910: 909: 907: 906: 905: 886: 885: 884: 879: 861: 833: 800: 782: 753:Detachment fold 729: 657: 653:Transform fault 628:Fault mechanics 594: 551: 487:Plate tectonics 437:Intra-arc basin 327: 298:Brunton compass 286: 220: 215: 176: 174:Further reading 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 914: 904: 903: 898: 881: 880: 878: 877: 866: 863: 862: 860: 859: 854: 849: 843: 841: 835: 834: 832: 831: 826: 821: 816: 810: 808: 802: 801: 799: 798: 792: 790: 784: 783: 781: 780: 775: 770: 765: 760: 755: 750: 745: 739: 737: 731: 730: 728: 727: 722: 720:Tectonic phase 717: 712: 707: 702: 697: 692: 687: 682: 677: 671: 669: 659: 658: 656: 655: 650: 645: 640: 635: 630: 625: 620: 615: 610: 604: 602: 596: 595: 593: 592: 587: 582: 577: 572: 567: 561: 559: 553: 552: 550: 549: 544: 539: 534: 529: 524: 519: 514: 509: 504: 499: 494: 489: 484: 482:Passive margin 479: 474: 469: 464: 459: 454: 449: 444: 439: 434: 429: 424: 419: 414: 409: 407:Foreland basin 404: 402:Fold mountains 399: 394: 389: 384: 379: 374: 369: 364: 359: 357:Back-arc basin 354: 349: 344: 338: 336: 329: 328: 326: 325: 323:Strike and dip 320: 315: 310: 305: 300: 294: 292: 288: 287: 285: 284: 279: 274: 269: 264: 259: 257:Rock mechanics 254: 249: 244: 239: 234: 228: 226: 222: 221: 214: 213: 206: 199: 191: 185: 184: 175: 172: 127:fluid dynamics 117: 116: 58:"Stress field" 31: 29: 22: 15: 9: 6: 4: 3: 2: 913: 902: 899: 897: 894: 893: 891: 876: 868: 867: 864: 858: 855: 853: 850: 848: 845: 844: 842: 840: 836: 830: 827: 825: 822: 820: 817: 815: 812: 811: 809: 807: 803: 797: 794: 793: 791: 789: 785: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 744: 741: 740: 738: 736: 732: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 696: 693: 691: 688: 686: 683: 681: 678: 676: 673: 672: 670: 668: 664: 660: 654: 651: 649: 648:Transfer zone 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 605: 603: 601: 597: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 562: 560: 558: 554: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 418: 415: 413: 410: 408: 405: 403: 400: 398: 395: 393: 390: 388: 385: 383: 380: 378: 375: 373: 370: 368: 365: 363: 360: 358: 355: 353: 350: 348: 345: 343: 340: 339: 337: 335: 330: 324: 321: 319: 316: 314: 311: 309: 306: 304: 301: 299: 296: 295: 293: 289: 283: 280: 278: 275: 273: 270: 268: 265: 263: 260: 258: 255: 253: 250: 248: 247:Mohr's circle 245: 243: 240: 238: 235: 233: 230: 229: 227: 223: 219: 212: 207: 205: 200: 198: 193: 192: 189: 182: 178: 177: 171: 169: 164: 159: 156: 152: 147: 144: 140: 136: 132: 128: 124: 113: 110: 102: 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: â€“  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 643:Thrust fault 332:Large-scale 303:Inclinometer 277:Stress field 276: 180: 160: 148: 123:stress field 122: 120: 105: 99:October 2017 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 824:Paleostress 710:Slickenside 685:Crenulation 638:Fault trace 633:Fault scarp 623:Disturbance 608:Cataclasite 497:Rift valley 417:Half-graben 387:Fault block 372:DĂ©collement 151:compressive 143:dislocation 890:Categories 852:Pure shear 839:Shear zone 796:Competence 680:Compaction 557:Fracturing 352:Autochthon 347:Allochthon 69:newspapers 788:Boudinage 768:Monocline 763:Homocline 743:Anticline 725:Tectonite 715:Stylolite 690:Fissility 667:lineation 663:Foliation 527:Syneclise 472:Obduction 442:Inversion 334:tectonics 875:Category 847:Mylonite 778:Vergence 773:Syncline 675:Cleavage 600:Faulting 748:Chevron 735:Folding 580:Fissure 532:Terrane 477:Orogeny 457:MĂ©lange 392:Fenster 282:Tension 155:tensile 139:crystal 83:scholar 522:Suture 507:Saddle 447:Klippe 412:Graben 272:Stress 262:Strain 168:alloys 135:stress 85:  78:  71:  64:  56:  857:Shear 585:Joint 467:Nappe 427:Horst 422:Horse 90:JSTOR 76:books 758:Dome 665:and 590:Vein 570:Dike 502:Rift 313:Rake 129:and 62:news 45:by 892:: 170:. 121:A 210:e 203:t 196:v 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Stress field"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
fluid dynamics
materials science
stress
crystal
dislocation
compressive
tensile
strengthening mechanisms
alloys
v
t
e
Structural geology
Deformation mechanism
Lamé's stress ellipsoid
Mohr–Coulomb theory
Mohr's circle
Overburden pressure
Rock mechanics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑