Knowledge

Synthetic diamond

Source 📝

313:, he spent about 40 years (1882–1922) and a considerable part of his fortune trying to reproduce the experiments of Moissan and Hannay, but also adapted processes of his own. Parsons was known for his painstakingly accurate approach and methodical record keeping; all his resulting samples were preserved for further analysis by an independent party. He wrote a number of articles—some of the earliest on HPHT diamond—in which he claimed to have produced small diamonds. However, in 1928, he authorized Dr. C. H. Desch to publish an article in which he stated his belief that no synthetic diamonds (including those of Moissan and others) had been produced up to that date. He suggested that most diamonds that had been produced up to that point were likely synthetic 603: 752:. The diamond yield is about 10% of the initial graphite weight. The estimated cost of diamond produced by this method is comparable to that of the HPHT method but the crystalline perfection of the product is significantly worse for the ultrasonic synthesis. This technique requires relatively simple equipment and procedures, and has been reported by two research groups, but had no industrial use as of 2008. Numerous process parameters, such as preparation of the initial graphite powder, the choice of ultrasonic power, synthesis time and the solvent, were not optimized, leaving a window for potential improvement of the efficiency and reduction of the cost of the ultrasonic synthesis. 1277:. The revised guides were substantially contrary to what had been advocated in 2016 by De Beers. The new guidelines remove the word "natural" from the definition of "diamond", thus including lab-grown diamonds within the scope of the definition of "diamond". The revised guide further states that "If a marketer uses 'synthetic' to imply that a competitor's lab-grown diamond is not an actual diamond, ... this would be deceptive." In July 2019, the third party diamond certification lab GIA (Gemological Institute of America) dropped the word 'synthetic' from its certification process and report for lab-grown diamonds, according to the FTC revision. 591:-shaped volume. The cubic press was created shortly thereafter to increase the volume to which pressure could be applied. A cubic press is typically smaller than a belt press and can more rapidly achieve the pressure and temperature necessary to create synthetic diamond. However, cubic presses cannot be easily scaled up to larger volumes: the pressurized volume can be increased by using larger anvils, but this also increases the amount of force needed on the anvils to achieve the same pressure. An alternative is to decrease the surface area to volume ratio of the pressurized volume, by using more anvils to converge upon a higher-order 705: 326: 22: 960: 638: 1187: 248: 560: 646:
industrial applications, the flexibility and simplicity of CVD setups explain the popularity of CVD growth in laboratory research. The advantages of CVD diamond growth include the ability to grow diamond over large areas and on various substrates, and the fine control over the chemical impurities and thus properties of the diamond produced. Unlike HPHT, CVD process does not require high pressures, as the growth typically occurs at pressures under 27 kPa (3.9 psi).
721:
immersed in water, the chamber cools rapidly after the explosion, suppressing conversion of newly produced diamond into more stable graphite. In a variation of this technique, a metal tube filled with graphite powder is placed in the detonation chamber. The explosion heats and compresses the graphite to an extent sufficient for its conversion into diamond. The product is always rich in graphite and other non-diamond carbon forms, and requires prolonged boiling in hot
459: 619:(e.g., tungsten carbide or VK10 hard alloy). The outer octahedral cavity is pressed by 8 steel outer anvils. After mounting, the whole assembly is locked in a disc-type barrel with a diameter about 1 m (3 ft 3 in). The barrel is filled with oil, which pressurizes upon heating, and the oil pressure is transferred to the central cell. The synthesis capsule is heated up by a coaxial graphite heater, and the temperature is measured with a 1199:
economic scale. Indeed, by 2023, synthetic diamonds' share had increased to 17% of the overall diamond market. They are available in yellow, pink, green, orange, blue and, to a lesser extent, colorless (or white). The yellow color comes from nitrogen impurities in the manufacturing process, while the blue color comes from boron. Other colors, such as pink or green, are achievable after synthesis using irradiation. Several companies also offer
522:(CVD). William G. Eversole reportedly achieved vapor deposition of diamond over diamond substrate in 1953, but it was not reported until 1962. Diamond film deposition was independently reproduced by Angus and coworkers in 1968 and by Deryagin and Fedoseev in 1970. Whereas Eversole and Angus used large, expensive, single-crystal diamonds as substrates, Deryagin and Fedoseev succeeded in making diamond films on non-diamond materials ( 793:). Large, clear and transparent single-crystal diamonds are typically used as gemstones. Polycrystalline diamond (PCD) consists of numerous small grains, which are easily seen by the naked eye through strong light absorption and scattering; it is unsuitable for gems and is used for industrial applications such as mining and cutting tools. Polycrystalline diamond is often described by the average size (or 144: 1136:(at room temperature). Diamond is also distinguished from most other semiconductors by the lack of a stable native oxide. This makes it difficult to fabricate surface MOS devices, but it does create the potential for UV radiation to gain access to the active semiconductor without absorption in a surface layer. Because of these properties, it is employed in applications such as the 530:
relative lack of universal knowledge for identifying large quantities of melee efficiently, not all dealers have made an effort to test diamond melee to correctly identify whether it is of natural or synthetic origin. However, international laboratories are now beginning to tackle the issue head-on, with significant improvements in synthetic melee identification being made.
259:, played a significant role. His groundbreaking discovery that a diamond's crystal lattice is similar to carbon's crystal structure paved the way for initial attempts to produce diamonds. After it was discovered that diamond was pure carbon in 1797, many attempts were made to convert various cheap forms of carbon into diamond. The earliest successes were reported by 1369:, in which this physicist states that he has, on his part, succeeded in making carbon crystallize by methods different from those of Mr. Gannal, and that a sealed packet which he deposited with the Secretary in 1824 contains the details of his initial procedures. Mr. Arago announced that he knew another person who had arrived at similar results, and 1048:. Those synthetic polycrystalline diamond windows are shaped as disks of large diameters (about 10 cm for gyrotrons) and small thicknesses (to reduce absorption) and can only be produced with the CVD technique. Single crystal slabs of dimensions of length up to approximately 10 mm are becoming increasingly important in several areas of 467:
seeds. The container was heated and the pressure was raised to about 5.5 GPa (800,000 psi). The crystals grow as they flow from the center to the ends of the tube, and extending the length of the process produces larger crystals. Initially, a week-long growth process produced gem-quality stones of around 5 mm (0.20 in) (1
440:", which both dissolved carbon and accelerated its conversion into diamond. The largest diamond he produced was 0.15 mm (0.0059 in) across; it was too small and visually imperfect for jewelry, but usable in industrial abrasives. Hall's co-workers were able to replicate his work, and the discovery was published in the major journal 1020:. Efficient heat dissipation prolongs the lifetime of those electronic devices, and the devices' high replacement costs justify the use of efficient, though relatively expensive, diamond heat sinks. In semiconductor technology, synthetic diamond heat spreaders prevent silicon and other semiconducting devices from overheating. 781:(luster), and chemical stability (combined with marketing), make it a popular gemstone. High thermal conductivity is also important for technical applications. Whereas high optical dispersion is an intrinsic property of all diamonds, their other properties vary depending on how the diamond was created. 1198:
are grown by HPHT or CVD methods, and represented approximately 2% of the gem-quality diamond market as of 2013. However, there are indications that the market share of synthetic jewelry-quality diamonds may grow as advances in technology allow for larger higher-quality synthetic production on a more
650:
optimizing the substrate temperature (about 800 °C (1,470 °F)) during the growth through a series of test runs. Moreover, optimizing the gas mixture composition and flow rates is paramount to ensure uniform and high-quality diamond growth. The gases always include a carbon source, typically
649:
The CVD growth involves substrate preparation, feeding varying amounts of gases into a chamber and energizing them. The substrate preparation includes choosing an appropriate material and its crystallographic orientation; cleaning it, often with a diamond powder to abrade a non-diamond substrate; and
578:
The original GE invention by Tracy Hall uses the belt press wherein the upper and lower anvils supply the pressure load to a cylindrical inner cell. This internal pressure is confined radially by a belt of pre-stressed steel bands. The anvils also serve as electrodes providing electric current to the
466:
Synthetic gem-quality diamond crystals were first produced in 1970 by GE, then reported in 1971. The first successes used a pyrophyllite tube seeded at each end with thin pieces of diamond. The graphite feed material was placed in the center and the metal solvent (nickel) between the graphite and the
645:
Chemical vapor deposition is a method by which diamond can be grown from a hydrocarbon gas mixture. Since the early 1980s, this method has been the subject of intensive worldwide research. Whereas the mass production of high-quality diamond crystals make the HPHT process the more suitable choice for
349:
Due to questions on the patent process and the reasonable belief that no other serious diamond synthesis research occurred globally, the board of ASEA opted against publicity and patent applications. Thus the announcement of the ASEA results occurred shortly after the GE press conference of February
1262:
Around 2016, the price of synthetic diamond gemstones (e.g., 1 carat stones) began dropping "precipitously" by roughly 30% in one year, becoming clearly lower than that of mined diamonds. As of 2017, synthetic diamonds sold as jewelry were typically selling for 15–20% less than natural equivalents;
1206:
Gem-quality diamonds grown in a lab can be chemically, physically and optically identical to naturally occurring ones. The mined diamond industry has undertaken legal, marketing and distribution countermeasures to try to protect its market from the emerging presence of synthetic diamonds. Synthetic
820:
direction (along the longest diagonal of the cubic diamond lattice). Nanocrystalline diamond produced through CVD diamond growth can have a hardness ranging from 30% to 75% of that of single crystal diamond, and the hardness can be controlled for specific applications. Some synthetic single-crystal
945:
mounted in a fine copper tip. One thermistor functions as a heating device while the other measures the temperature of the copper tip: if the stone being tested is a diamond, it will conduct the tip's thermal energy rapidly enough to produce a measurable temperature drop. This test takes about 2–3
720:
10 in) in diameter) can be formed by detonating certain carbon-containing explosives in a metal chamber. These are called "detonation nanodiamonds". During the explosion, the pressure and temperature in the chamber become high enough to convert the carbon of the explosives into diamond. Being
614:
is claimed to be the most compact, efficient, and economical of all the diamond-producing presses. In the center of a BARS device, there is a ceramic cylindrical "synthesis capsule" of about 2 cm (0.12 cu in) in size. The cell is placed into a cube of pressure-transmitting material,
510:
Diamond Research Laboratory has grown stones of up to 25 carats (5.0 g) for research purposes. Stable HPHT conditions were kept for six weeks to grow high-quality diamonds of this size. For economic reasons, the growth of most synthetic diamonds is terminated when they reach a mass of 1 carat
341:(Allmänna Svenska Elektriska Aktiebolaget), Sweden's major electrical equipment manufacturing company. Starting in 1942, ASEA employed a team of five scientists and engineers as part of a top-secret diamond-making project code-named QUINTUS. The team used a bulky split-sphere apparatus designed by 1116:
Synthetic diamond transistors have been produced in the laboratory. They remain functional at much higher temperatures than silicon devices, and are resistant to chemical and radiation damage. While no diamond transistors have yet been successfully integrated into commercial electronics, they are
760:
In 2024, scientists announced a method that utilizes injecting methane and hydrogen gases onto a liquid metal alloy of gallium, iron, nickel and silicon (77.25/11.00/11.00/0.25 ratio) at approximately 1,025 °C to crystallize diamond at 1 atmosphere of pressure. The crystallization is a ‘seedless’
416:
container, the finished grit being squeezed out of the container into a gasket. The team recorded diamond synthesis on one occasion, but the experiment could not be reproduced because of uncertain synthesis conditions, and the diamond was later shown to have been a natural diamond used as a seed.
1171:
reactions that cannot ordinarily be studied and in some cases degrade redox-reactive organic contaminants in water supplies. Because diamond is mechanically and chemically stable, it can be used as an electrode under conditions that would destroy traditional materials. As an electrode, synthetic
839:
Every diamond contains atoms other than carbon in concentrations detectable by analytical techniques. Those atoms can aggregate into macroscopic phases called inclusions. Impurities are generally avoided, but can be introduced intentionally as a way to control certain properties of the diamond.
1258:
According to a report from the Gem & Jewellery Export Promotional Council, synthetic diamonds accounted for 0.28% of diamond produced for use as gemstones in 2014. In April 2022, CNN Business reported that engagement rings featuring a synthetic or a lab grown diamond jumped 63% compared to
529:
From 2013, reports emerged of a rise in undisclosed synthetic melee diamonds (small round diamonds typically used to frame a central diamond or embellish a band) being found in set jewelry and within diamond parcels sold in the trade. Due to the relatively low cost of diamond melee, as well as
538:
There are several methods used to produce synthetic diamonds. The original method uses high pressure and high temperature (HPHT) and is still widely used because of its relatively low cost. The process involves large presses that can weigh hundreds of tons to produce a pressure of 5 GPa
998:
onto the tool. This is typically referred to in industry as polycrystalline diamond (PCD). PCD-tipped tools can be found in mining and cutting applications. For the past fifteen years, work has been done to coat metallic tools with CVD diamond, and though the work shows promise, it has not
817:, the hardest known material on this scale. Diamond is also the hardest known natural material for its resistance to indentation. The hardness of synthetic diamond depends on its purity, crystalline perfection and orientation: hardness is higher for flawless, pure crystals oriented to the 147:
Synthetic diamonds, which have a different shade due to the different content of nitrogen impurities. Yellow diamonds are obtained with a higher nitrogen content in the carbon lattice, and transparent diamonds come only from pure carbon. The smallest yellow diamond size is around 0.3
571:) press. Diamond seeds are placed at the bottom of the press. The internal part of the press is heated above 1,400 °C (2,550 °F) and melts the solvent metal. The molten metal dissolves the high purity carbon source, which is then transported to the small diamond seeds and 2947:
Galimov, É. M.; Kudin, A. M.; Skorobogatskii, V. N.; Plotnichenko, V. G.; Bondarev, O. L.; Zarubin, B. G.; Strazdovskii, V. V.; Aronin, A. S.; Fisenko, A. V.; Bykov, I. V.; Barinov, A. Yu. (2004). "Experimental Corroboration of the Synthesis of Diamond in the Cavitation Process".
987:. These are by far the largest industrial applications of synthetic diamond. While natural diamond is also used for these purposes, synthetic HPHT diamond is more popular, mostly because of better reproducibility of its mechanical properties. Diamond is not suitable for machining 1007:
Most materials with high thermal conductivity are also electrically conductive, such as metals. In contrast, pure synthetic diamond has high thermal conductivity, but negligible electrical conductivity. This combination is invaluable for electronics where diamond is used as a
446:. He was the first person to grow a synthetic diamond with a reproducible, verifiable and well-documented process. He left GE in 1955, and three years later developed a new apparatus for the synthesis of diamond—a tetrahedral press with four anvils—to avoid violating a 689:
windows of the growth chamber or from the silicon substrate. Therefore, silica windows are either avoided or moved away from the substrate. Boron-containing species in the chamber, even at very low trace levels, also make it unsuitable for the growth of pure diamond.
840:
Growth processes of synthetic diamond, using solvent-catalysts, generally lead to formation of a number of impurity-related complex centers, involving transition metal atoms (such as nickel, cobalt or iron), which affect the electronic properties of the material.
586:
The second type of press design is the cubic press. A cubic press has six anvils which provide pressure simultaneously onto all faces of a cube-shaped volume. The first multi-anvil press design was a tetrahedral press, using four anvils to converge upon a
283:. The molten iron was then rapidly cooled by immersion in water. The contraction generated by the cooling supposedly produced the high pressure required to transform graphite into diamond. Moissan published his work in a series of articles in the 1890s. 345:
and Anders Kämpe. Pressure was maintained within the device at an estimated 8.4 GPa (1,220,000 psi) and a temperature of 2,400 °C (4,350 °F) for an hour. A few small diamonds were produced, but not of gem quality or size.
107:
Numerous claims of diamond synthesis were reported between 1879 and 1928; most of these attempts were carefully analyzed but none was confirmed. In the 1940s, systematic research of diamond creation began in the United States, Sweden and the
501:
under short-wavelength ultraviolet light, but were inert under long-wave UV. Among natural diamonds, only the rarer blue gems exhibit these properties. Unlike natural diamonds, all the GE stones showed strong yellow fluorescence under
883:
to more than 2000 W/mK, depending on the defects, grain boundary structures. As the growth of diamond in CVD, the grains grow with the film thickness, leading to a gradient thermal conductivity along the film thickness direction.
1237:
In May 2015, a record was set for an HPHT colorless diamond at 10.02 carats. The faceted jewel was cut from a 32.2-carat stone that was grown in about 300 hours. By 2022, gem-quality diamonds of 16–20 carats were being produced.
1064:. Both the CVD and HPHT processes are also used to create designer optically transparent diamond anvils as a tool for measuring electric and magnetic properties of materials at ultra high pressures using a diamond anvil cell. 4714:
Ueda, K.; Kasu, M.; Yamauchi, Y.; Makimoto, T.; Schwitters, M.; Twitchen, D. J.; Scarsbrook, G. A.; Coe, S. E. (July 1, 2006). "Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz".
4931:
Benmoussa, A; Soltani, A; Haenen, K; Kroth, U; Mortet, V; Barkad, H A; Bolsee, D; Hermans, C; Richter, M; De Jaeger, J C; Hochedez, J F (2008). "New developments on diamond photodetector for VUV Solar Observations".
234:
and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special
4869:
Bucciolini, M.; Borchi, E; Bruzzi, M; Casati, M; Cirrone, P; Cuttone, G; Deangelis, C; Lovik, I; Onori, S; Raffaele, L.; Sciortino, S. (2005). "Diamond dosimetry: Outcomes of the CANDIDO and CONRADINFN projects".
979:. As the hardest known naturally occurring material, diamond can be used to polish, cut, or wear away any material, including other diamonds. Common industrial applications of this ability include diamond-tipped 940:
Diamond's thermal conductivity is made use of by jewelers and gemologists who may employ an electronic thermal probe to separate diamonds from their imitations. These probes consist of a pair of battery-powered
4805:
Railkar, T. A.; Kang, W. P.; Windischmann, Henry; Malshe, A. P.; Naseem, H. A.; Davidson, J. L.; Brown, W. D. (2000). "A critical review of chemical vapor-deposited (CVD) diamond for electronic applications".
1112:
of diamond (5.5 eV) gives it excellent dielectric properties. Combined with the high mechanical stability of diamond, those properties are being used in prototype high-power switches for power stations.
359: 5198: 420:
Hall achieved the first commercially successful synthesis of diamond on December 16, 1954, and this was announced on February 15, 1955. His breakthrough came when he used a press with a hardened steel
3513:
Gong, Yan; Luo, Da; Choe, Myeonggi; Kim, Yongchul; Ram, Babu; Zafari, Mohammad; Seong, Won Kyung; Bakharev, Pavel; Wang, Meihui; Park, In Kee; Lee, Seulyi; Shin, Tae Joo; Lee, Zonghoon; Lee, Geunsik;
471:
or 0.2 g), and the process conditions had to be as stable as possible. The graphite feed was soon replaced by diamond grit because that allowed much better control of the shape of the final crystal.
4352:
Mildren, Richard P.; Sabella, Alexander; Kitzler, Ondrej; Spence, David J.; McKay, Aaron M. (2013). "Ch. 8 Diamond Raman Laser Design and Performance". In Mildren, Rich P.; Rabeau, James R. (eds.).
3146:
Pal'Yanov, N.; Sokol, A.G.; Borzdov, M.; Khokhryakov, A.F. (2002). "Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study".
2527:
Burns, R. C.; Cvetkovic, V.; Dodge, C. N.; Evans, D. J. F.; Rooney, Marie-Line T.; Spear, P. M.; Welbourn, C. M. (1990). "Growth-sector dependence of optical features in large synthetic diamonds".
685:
During the growth, the chamber materials are etched off by the plasma and can incorporate into the growing diamond. In particular, CVD diamond is often contaminated by silicon originating from the
424:"belt" strained to its elastic limit wrapped around the sample, producing pressures above 10 GPa (1,500,000 psi) and temperatures above 2,000 °C (3,630 °F). The press used a 4160:
Coelho, R.T.; Yamada, S.; Aspinwall, D.K.; Wise, M.L.H. (1995). "The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminum-based alloys including MMC".
567:
In the HPHT method, there are three main press designs used to supply the pressure and temperature necessary to produce synthetic diamond: the belt press, the cubic press and the split-sphere (
5737: 302:
replicated Moissan's and Ruff's experiments, producing a synthetic diamond. Despite the claims of Moissan, Ruff, and Hershey, other experimenters were unable to reproduce their synthesis.
5791:
16 C.F.R. Part 23: Guides for the Jewelry, Precious Metals, and Pewter Industries: Federal Trade Commission Letter Declining to Amend the Guides with Respect to Use of the Term "Cultured"
3271:
State-of-the-Art Program on Compound Semiconductors XXXIX and Nitride and Wide Bandgap Semiconductors for Sensors, Photonics and Electronics IV: proceedings of the Electrochemical Society
1056:. Recent advances in the HPHT and CVD synthesis techniques have improved the purity and crystallographic structure perfection of single-crystalline diamond enough to replace silicon as a 5167: 1418: 5516: 4618:
Isberg, J.; Hammersberg, J; Johansson, E; Wikström, T; Twitchen, DJ; Whitehead, AJ; Coe, SE; Scarsbrook, GA (2002). "High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond".
4009:
Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y.; Li, Chao; Yates, Luke; Foley, Brian M.; Goorsky, Mark; Cola, Baratunde A.; Faili, Firooz; Graham, Samuel (February 7, 2018).
583:
pressure, rather than steel belts, to confine the internal pressure. Belt presses are still used today, but they are built on a much larger scale than those of the original design.
991:
at high speeds, as carbon is soluble in iron at the high temperatures created by high-speed machining, leading to greatly increased wear on diamond tools compared to alternatives.
5812: 3971:
Catledge, S. A.; Vohra, Yogesh K. (1999). "Effect of nitrogen addition on the microstructure and mechanical properties of diamond films grown using high-methane concentrations".
5707: 3450:
Khachatryan, A.Kh.; Aloyan, S.G.; May, P.W.; Sargsyan, R.; Khachatryan, V.A.; Baghdasaryan, V.S. (2008). "Graphite-to-diamond transformation induced by ultrasonic cavitation".
2248: 5549: 389:
interrupted the project. It was resumed in 1951 at the Schenectady Laboratories of GE, and a high-pressure diamond group was formed with Francis P. Bundy and H. M. Strong.
1230:-inscribed serial numbers on all of its gemstones. The company web site shows an example of the lettering of one of its laser inscriptions, which includes both the words " 3119:
Loshak, M. G. & Alexandrova, L. I. (2001). "Rise in the efficiency of the use of cemented carbides as a matrix of diamond-containing studs of rock destruction tool".
4669:
Russell, S. A. O.; Sharabi, S.; Tallaire, A.; Moran, D. A. J. (October 1, 2012). "Hydrogen-Terminated Diamond Field-Effect Transistors With Cutoff Frequency of 53 GHz".
3339: 1464: 654:, and hydrogen with a typical ratio of 1:99. Hydrogen is essential because it selectively etches off non-diamond carbon. The gases are ionized into chemically active 3747:
Yan, Chih-Shiue; Mao, Ho-Kwang; Li, Wei; Qian, Jiang; Zhao, Yusheng; Hemley, Russell J. (2005). "Ultrahard diamond single crystals from chemical vapor deposition".
2774: 77:(imitations of diamond made of superficially similar non-diamond materials), synthetic diamonds are composed of the same material as naturally formed diamonds—pure 5681: 4011:"Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance" 765:
methods. Injection of methane and hydrogen results in a diamond nucleus after around 15 minutes and eventually a continuous diamond film after around 150 minutes.
5766: 490:
produced blue ones. Removing nitrogen also slowed the growth process and reduced the crystalline quality, so the process was normally run with nitrogen present.
4222:
Sakamoto, M.; Endriz, J. G. & Scifres, D. R. (1992). "120 W CW output power from monolithic AlGaAs (800 nm) laser diode array mounted on diamond heatsink".
5334: 1713:
Royère, C. (1999). "The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?".
1219:
wavelengths. The DiamondView tester from De Beers uses UV fluorescence to detect trace impurities of nitrogen, nickel or other metals in HPHT or CVD diamonds.
777:
is considered to be the most important quality of a diamond. Purity and high crystalline perfection make diamonds transparent and clear, whereas its hardness,
5190: 2826: 5583: 3782:
Larico, R.; Justo, J. F.; Machado, W. V. M.; Assali, L. V. C. (2009). "Electronic properties and hyperfine fields of nickel-related complexes in diamond".
5455: 4459: 3225:
Barjon, J.; Rzepka, E.; Jomard, F.; Laroche, J.-M.; Ballutaud, D.; Kociniewski, T.; Chevallier, J. (2005). "Silicon incorporation in CVD diamond layers".
5485: 493:
Although the GE stones and natural diamonds were chemically identical, their physical properties were not the same. The colorless stones produced strong
5647: 3946: 2744: 971:
Most industrial applications of synthetic diamond have long been associated with their hardness; this property makes diamond the ideal material for
69:
that is produced in a controlled technological process (in contrast to naturally formed diamond, which is created through geological processes and
4386: 4187:
Ahmed, W.; Sein, H.; Ali, N.; Gracio, J.; Woodwards, R. (2003). "Diamond films grown on cemented WC-Co dental burs using an improved CVD method".
3835:
Assali, L. V. C.; Machado, W. V. M.; Justo, J. F. (2011). "3d transition metal impurities in diamond: electronic properties and chemical trends".
1441: 5733: 5400: 891:
within the crystal. The thermal conductivity of pure diamond is the highest of any known solid. Single crystals of synthetic diamond enriched in
200:
are used at high-energy research facilities and are available commercially. Due to its unique combination of thermal and chemical stability, low
1385:
gave a reading of the minutes of experiments made on November 26, 1828 on the powder presented as artificial diamond by Mr. Cagniard de Latour."
5163: 2577:
Abbaschian, Reza; Zhu, Henry; Clarke, Carter (2005). "High pressure-high temperature growth of diamond crystals using split sphere apparatus".
1923: 917:
of any material, 30 W/cm·K at room temperature, 7.5 times higher than that of copper. Natural diamond's conductivity is reduced by 1.1% by the
1408: 5508: 4068:
Wei, Lanhua; Kuo, P.; Thomas, R.; Anthony, T.; Banholzer, W. (1993). "Thermal conductivity of isotopically modified single crystal diamond".
381:
companies to further develop diamond synthesis. They were able to heat carbon to about 3,000 °C (5,430 °F) under a pressure of 3.5
5012:
Nebel, C.E.; Uetsuka, H.; Rezek, B.; Shin, D.; Tokuda, N.; Nakamura, T. (2007). "Inhomogeneous DNA bonding to polycrystalline CVD diamond".
3203: 1104:, which reaches 4500 cm/(V·s) for electrons in single-crystal CVD diamond. High mobility is favorable for high-frequency operation and 3486: 3068:
Hall, H. T. (1958). "Ultrahigh-Pressure Research: At ultrahigh pressures new and sometimes unexpected chemical and physical events occur".
1756: 1650: 1631: 1594: 4760:
Isberg, J.; Gabrysch, M.; Tajani, A. & Twitchen, D.J. (2006). "High-field Electrical Transport in Single Crystal CVD Diamond Diodes".
1255:
for synthetic diamonds has been increasing, albeit from a small base, as customers look for stones that are ethically sound and cheaper.
1167:, which would interact with DNA thereby changing electrical conductivity of the diamond film. In addition, diamonds can be used to detect 5299:
Collins, A.T.; Connor, A.; Ly, C-H.; Shareef, A.; Spear, P.M. (2005). "High-temperature annealing of optical centers in type-I diamond".
3690: 3615: 3589: 3285: 2044: 1539: 5141: 1612: 5804: 1785: 109: 294:
claimed in 1917 to have produced diamonds up to 7 mm (0.28 in) in diameter, but later retracted his statement. In 1926, Dr.
5703: 1273:
approved a substantial revision to its Jewelry Guides, with changes that impose new rules on how the trade can describe diamonds and
2804: 5538: 1945: 1490: 1266:
In May 2018, De Beers announced that it would introduce a new jewelry brand called "Lightbox" that features synthetic diamonds.
1226:
of laboratory-grown diamonds has made public statements about being "committed to disclosure" of the nature of its diamonds, and
5790: 5436: 1163:
to the surface of polycrystalline diamond films produced through CVD. Such DNA-modified films can be used for detecting various
539:(730,000 psi) at 1,500 °C (2,730 °F). The second method, using chemical vapor deposition (CVD), creates a carbon 5614: 3308: 5893: 5872: 5851: 4852: 4781: 4336: 4284: 4144: 4046: 3684: 3583: 3279: 3197: 3052: 2994: 2188: 2038: 1917: 1890: 1863: 518:
of hydrocarbon gases at the relatively low temperature of 800 °C (1,470 °F). This low-pressure process is known as
1096:. Making a p–n junction by sequential doping of synthetic diamond with boron and phosphorus produces light-emitting diodes ( 2444: 2384: 2335: 1468: 5642: 4369: 4110:
Wenckus, J. F. (December 18, 1984) "Method and means of rapidly distinguishing a simulated diamond from natural diamond"
2766: 834: 543:
over a substrate onto which the carbon atoms deposit to form diamond. Other methods include explosive formation (forming
5673: 482:
were common, especially "plate-like" ones from the nickel. Removing all nitrogen from the process by adding aluminum or
3415:
Dolmatov, V. Yu. (2006). "Development of a rational technology for synthesis of high-quality detonation nanodiamonds".
5759: 3307:
Iakoubovskii, K.; Baidakova, M.V.; Wouters, B.H.; Stesmans, A.; Adriaenssens, G.J.; Vul', A.Ya.; Grobet, P.J. (2000).
5903: 2234: 1976:"Further Comments on Attempts by H. Moissan, J. B. Hannay and Sir Charles Parsons to Make Diamonds in the Laboratory" 1342:, and into the product of his experiments, which have presented properties similar to those of particles of diamond." 1155:
Conductive CVD diamond is a useful electrode under many circumstances. Photochemical methods have been developed for
745: 112:, which culminated in the first reproducible synthesis in 1953. Further research activity yielded the discoveries of 3888:
Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.; Mel'Nik, N. N.; Curro, N. J.; Thompson, J. D.; Stishov, S. M. (2004).
1029: 709: 2836: 2638:
Angus, John C.; Will, Herbert A.; Stanko, Wayne S. (1968). "Growth of Diamond Seed Crystals by Vapor Deposition".
408:
for his work in 1946. Bundy and Strong made the first improvements, then more were made by Hall. The GE team used
5575: 1259:
previous year, while the number of engagement rings sold with a natural diamond declined 25% in the same period.
5368: 5342: 5047:
Gandini, D. (2000). "Oxidation of carbonylic acids at boron-doped diamond electrodes for wastewater treatment".
5452: 4510: 4455: 1828: 994:
The usual form of diamond in cutting tools is micron-sized grains dispersed in a metal matrix (usually cobalt)
814: 89: 5473: 5221: 5090:
Michaud, P.-A. (2000). "Preparation of peroxodisulfuric acid using Boron-Doped Diamond thin film electrodes".
5637: 1108:
made from diamond have already demonstrated promising high-frequency performance above 50 GHz. The wide
342: 3889: 4717: 4671: 4567:
Koizumi, S.; Watanabe, K; Hasegawa, M; Kanda, H (2001). "Ultraviolet Emission from a Diamond pn Junction".
2831: 1100:) producing UV light of 235 nm. Another useful property of synthetic diamond for electronics is high 128:, respectively). These two processes still dominate synthetic diamond production. A third method in which 5961: 5760:"DPA Petition on Proposed Revisions to the Guides for the Jewelry, Precious Metals and Pewter Industries" 4975:
Panizza, M. & Cerisola, G. (2005). "Application of diamond electrodes to electrochemical processes".
2740: 1366: 1172:
diamond can be used in waste water treatment of organic effluents and the production of strong oxidants.
1141: 447: 887:
Unlike most electrical insulators, pure diamond is an excellent conductor of heat because of the strong
5951: 5391: 4432: 1587: 152:
The properties of synthetic diamonds depend on the manufacturing process. Some have properties such as
3712:
Sumiya, H. (2005). "Super-hard diamond indenter prepared from high-purity synthetic diamond crystal".
2285:
Bovenkerk, H. P.; Bundy, F. P.; Chrenko, R. M.; Codella, P. J.; Strong, H. M.; Wentorf, R. H. (1993).
1245:
has led to human rights abuses in Africa and other diamond mining countries. The 2006 Hollywood movie
1032:. These properties make diamond superior to any other existing window material used for transmitting 910: 855:), allowing it to be used in electronic applications. Nitrogen impurities hinder movement of lattice 762: 632: 572: 519: 333:
The first known (but initially not reported) diamond synthesis was achieved on February 16, 1953, in
125: 4411: 4385:
Khounsary, Ali M.; Smither, Robert K.; Davey, Steve; Purohit, Ankor (1992). Khounsary, Ali M (ed.).
4351: 3643: 2685:
Deryagin, B. V.; Fedoseev, D. V. (1970). "Epitaxial Synthesis of Diamond in the Metastable Region".
1907: 1052:
including heatspreaders inside laser cavities, diffractive optics and as the optical gain medium in
818: 275:
crucible in a furnace. Whereas Hannay used a flame-heated tube, Moissan applied his newly developed
136:
synthesis, entered the market in the late 1990s. A fourth method, treating graphite with high-power
5268: 1270: 976: 852: 306: 227:. It is estimated that 98% of industrial-grade diamond demand is supplied with synthetic diamonds. 205: 4136: 1382: 4909: 4481:
Jackson, D. D.; Aracne-Ruddle, C.; Malba, V.; Weir, S. T.; Catledge, S. A.; Vohra, Y. K. (2003).
3187: 1370: 1117:
promising for use in exceptionally high-power situations and hostile non-oxidizing environments.
1105: 1077: 844: 260: 185: 5918: 1744: 1647: 1628: 1591: 474:
The first gem-quality stones were always yellow to brown in color because of contamination with
5263: 4406: 3638: 3616:"Ultrahard and superhard phases of fullerite C60: comparison with diamond on hardness and wear" 1121: 699: 544: 405: 133: 5883: 5862: 3674: 3656: 3573: 3269: 2028: 1880: 1609: 1517: 744:-sized diamond crystals can be synthesized from a suspension of graphite in organic liquid at 4384: 1298: 1212: 880: 789:
Diamond can be one single, continuous crystal or it can be made up of many smaller crystals (
378: 5121: 2172: 1779: 761:
process, which further separates it from conventional high-pressure and high-temperature or
208:, synthetic diamond is becoming the most popular material for optical windows in high-power 132:-sized diamond grains are created in a detonation of carbon-containing explosives, known as 5308: 5255: 5056: 5021: 4941: 4879: 4815: 4773: 4726: 4680: 4627: 4576: 4541: 4494: 4398: 4231: 4196: 4077: 3980: 3914: 3854: 3801: 3756: 3721: 3630: 3526: 3459: 3373: 3323: 3234: 3157: 3077: 3044: 3037: 2957: 2918: 2872: 2694: 2647: 2586: 2536: 2459: 2399: 2350: 2298: 2180: 2140: 2091: 1987: 1247: 1093: 1089: 914: 848: 276: 236: 209: 189: 165: 157: 2863:
Werner, M; Locher, R (1998). "Growth and application of undoped and doped diamond films".
514:
In the 1950s, research started in the Soviet Union and the US on the growth of diamond by
239:
devices and techniques have been developed to distinguish synthetic and natural diamonds.
8: 5395: 2796: 1331: 1223: 1125: 1057: 805:, usually referred to as "nanocrystalline" and "microcrystalline" diamond, respectively. 726: 655: 526:
and metals), which led to massive research on inexpensive diamond coatings in the 1980s.
479: 176:. Electronic applications of synthetic diamond are being developed, including high-power 140:, has been demonstrated in the laboratory, but as of 2008 had no commercial application. 25:
Lab-grown diamonds of various colors grown by the high-pressure-and-temperature technique
5312: 5259: 5060: 5025: 4953: 4945: 4883: 4819: 4730: 4684: 4631: 4580: 4545: 4498: 4402: 4235: 4200: 4126: 4081: 3984: 3918: 3858: 3805: 3760: 3725: 3634: 3530: 3463: 3377: 3327: 3238: 3161: 3081: 2961: 2922: 2876: 2698: 2651: 2590: 2540: 2463: 2403: 2354: 2302: 2144: 2095: 1991: 729:
is used primarily in polishing applications. It is mainly produced in China, Russia and
325: 5443:
for Gemesis diamond, International Gemological Institute, 2007. Retrieved May 27, 2015.
5281: 5072: 4957: 4831: 4787: 4742: 4696: 4651: 4600: 4424: 3938: 3904: 3870: 3844: 3817: 3791: 3432: 3397: 3250: 3093: 2973: 2888: 2710: 2475: 2415: 2316: 2109: 1695: 1687: 1216: 1181: 864: 778: 725:(about 1 day at 250 °C (482 °F)) to dissolve them. The recovered nanodiamond 397: 295: 101: 5277: 4208: 3652: 3335: 3169: 3132: 2884: 1949: 5956: 5930: 5889: 5868: 5847: 5433: 5392:"DeBeers Pleads to Price-Fixing: Firm Pays $ 10 million, Can Fully Reenter U.S." 5285: 4791: 4777: 4643: 4592: 4483:"Magnetic susceptibility measurements at high pressure using designer diamond anvils" 4428: 4365: 4332: 4309: 4280: 4173: 4140: 4093: 4038: 4030: 3930: 3874: 3821: 3680: 3614:
Blank, V.; Popov, M.; Pivovarov, G.; Lvova, N.; Gogolinsky, K.; Reshetov, V. (1998).
3579: 3542: 3389: 3275: 3193: 3101: 3048: 2977: 2892: 2714: 2548: 2240: 2230: 2184: 2034: 1913: 1886: 1882:
The Book of Diamonds: Their Curious Lore, Properties, Tests and Synthetic Manufacture
1859: 1722: 1699: 1287: 1101: 860: 390: 299: 256: 201: 161: 5076: 4988: 4961: 4835: 4746: 4700: 4655: 4604: 3436: 3254: 2706: 2479: 1362: 1263:
the relative price was expected to decline further as production economics improve.
5606: 5316: 5273: 5133: 5099: 5064: 5029: 4992: 4984: 4949: 4887: 4823: 4769: 4734: 4688: 4635: 4584: 4549: 4502: 4416: 4357: 4300:"The diamond window for a milli-wave zone high power electromagnetic wave output". 4239: 4204: 4169: 4085: 4022: 3988: 3942: 3922: 3862: 3809: 3764: 3729: 3648: 3534: 3467: 3424: 3401: 3381: 3331: 3242: 3165: 3148: 3128: 3085: 2965: 2926: 2880: 2702: 2655: 2594: 2544: 2467: 2443:
Bovenkerk, H. P.; Bundy, F. P.; Hall, H. T.; Strong, H. M.; Wentorf, R. H. (1959).
2419: 2407: 2358: 2320: 2306: 2148: 2099: 1995: 1820: 1679: 1529: 1339: 1303: 1274: 1200: 1085: 616: 540: 441: 409: 386: 374: 370: 363: 255:
In the early stages of diamond synthesis, the founding figure of modern chemistry,
197: 164:
that are superior to those of most naturally formed diamonds. Synthetic diamond is
74: 5033: 4849: 4553: 3471: 3385: 3364:
Decarli, P.; Jamieson, J. (June 1961). "Formation of Diamond by Explosive Shock".
3039:
Multianvil cells and high-pressure experimental methods, in Treatise of Geophysics
2998: 2930: 2598: 2173: 637: 5919:"First Diamond Synthesis: 50 Years Later, A Murky Picture Of Who Deserves Credit" 5841: 5459: 5440: 4856: 3514: 3089: 2909:
Osawa, E (2007). "Recent progress and perspectives in single-digit nanodiamond".
1855: 1654: 1635: 1616: 1598: 1252: 568: 498: 287: 4089: 2483: 2423: 2366: 2079: 1667: 1373:
announced that Mr. Gannal had spoken to him eight years ago about his attempts."
247: 5734:"Orwell's '1984', De Beers' Lobbying, & the New FTC Lab Diamond Guidelines" 4891: 3866: 3813: 3538: 1242: 1028:
Diamond is hard, chemically inert, and has high thermal conductivity and a low
611: 592: 401: 280: 5137: 5068: 4827: 4759: 4532:
Denisenko, A.; Kohn, E. (2005). "Diamond power devices. Concepts and limits".
4361: 4262: 4112: 3487:"Forget Billions of Years: Scientists Have Grown Diamonds in Just 150 Minutes" 3428: 2625: 1148:
solar observations). A diamond VUV detector recently was used in the European
5945: 5934: 4692: 4313: 4034: 2244: 1824: 1740: 1133: 1073: 1037: 1036:
and microwave radiation. Therefore, synthetic diamond is starting to replace
1009: 988: 964: 888: 679: 671: 412:
anvils within a hydraulic press to squeeze the carbonaceous sample held in a
382: 310: 264: 181: 4738: 4639: 4588: 5191:"Global Rough Diamond Production Estimated to Hit Over 135M Carats in 2015" 4647: 4596: 4097: 4042: 4026: 3934: 3768: 3546: 3491: 3393: 3246: 3105: 2104: 1726: 1683: 1534: 1413: 1208: 1186: 972: 959: 822: 667: 663: 620: 596: 494: 468: 425: 314: 279:, in which an electric arc was struck between carbon rods inside blocks of 93: 81: 4243: 2224: 615:
such as pyrophyllite ceramics, which is pressed by inner anvils made from
5364: 4132: 4010: 3909: 3517:(April 24, 2024). "Growth of diamond in liquid metal at 1 atm pressure". 1292: 1164: 1145: 1061: 1053: 1013: 856: 794: 790: 774: 733:, and started reaching the market in bulk quantities by the early 2000s. 722: 588: 251:
Moissan trying to create synthetic diamonds using an electric arc furnace
193: 4997: 3926: 3306: 1442:"Introducing the Largest Lab Grown Diamond in the World: Pride of India" 559: 486:
produced colorless "white" stones, and removing the nitrogen and adding
124:, named for their production method (high-pressure high-temperature and 70: 5507:
Murphy, Hannah; Biesheuvel, Thomas; Elmquist, Sonja (August 27, 2015).
4221: 3097: 1335: 1081: 1017: 942: 802: 749: 599:. However, such a press would be complex and difficult to manufacture. 580: 548: 137: 5320: 5103: 4506: 4420: 3733: 2969: 2946: 2659: 2471: 2362: 1691: 1322:
As early as 1828, investigators claimed to have synthesized diamonds:
5246:
Walker, J. (1979). "Optical absorption and luminescence in diamond".
4260:. (August 2, 2005) "Diamond-silicon hybrid integrated heat spreader" 3992: 2411: 2311: 2286: 2153: 2128: 2113: 2000: 1975: 980: 919: 868: 798: 659: 515: 413: 334: 291: 173: 129: 85: 4482: 4480: 4277:
Materials for infrared windows and domes: properties and performance
3145: 1808: 704: 309:. A prominent scientist and engineer known for his invention of the 92:. As of 2023 the heaviest synthetic diamond ever made weighs 30.18 3185: 1195: 1156: 1109: 1045: 1033: 995: 984: 507: 483: 475: 437: 268: 231: 224: 169: 153: 4617: 4387:"Diamond Monochromator for High Heat Flux Synchrotron X-ray Beams" 3849: 3796: 937:
naturally present, which acts as an inhomogeneity in the lattice.
2383:
Bundy, F. P.; Hall, H. T.; Strong, H. M.; Wentorf, R. H. (1955).
1231: 1190:
Colorless gem cut from diamond grown by chemical vapor deposition
1129: 730: 651: 523: 66: 5843:
The diamond formula: diamond synthesis-a gemological perspective
4868: 1409:"Lab-grown diamonds: girl's best friend or cut-price sparklers?" 1378:
Procès-verbaux des séances de l'Académie (Académie des sciences)
1358:
Procès-verbaux des séances de l'Académie (Académie des sciences)
1330:, November 3, 1828: "There was given a reading of a letter from 1327:
Procès-verbaux des séances de l'Académie (Académie des sciences)
21: 3118: 1234:
created" and the serial number prefix "LG" (laboratory grown).
1049: 741: 686: 433: 429: 305:
The most definitive replication attempts were performed by Sir
272: 177: 78: 4859:, Vanderbilt University Research News. Retrieved May 27, 2015. 2204:
Liander, H. & Lundblad, E. (1955). "Artificial diamonds".
458: 286:
Many other scientists tried to replicate his experiments. Sir
4804: 3887: 3224: 1227: 1168: 1137: 1060:
and window material in high-power radiation sources, such as
675: 503: 487: 421: 5462:. Jckonline.com (May 27, 2015). Retrieved September 1, 2015. 5164:"How High Quality Synthetic Diamonds Will Impact the Market" 4566: 3449: 2284: 2229:. Jan-Erik Pettersson. Stockholm: Sveriges Tekniska Museum. 879:
The thermal conductivity of CVD diamond ranges from tens of
358: 143: 4930: 4668: 3309:"Structure and defects of detonation synthesis nanodiamond" 1946:"Science: Dr. J. Willard Hershey and the Synthetic Diamond" 1149: 385:(510,000 psi) for a few seconds. Soon thereafter, the 338: 97: 5509:"Want to Make a Diamond in Just 10 Weeks? Use a Microwave" 2226:
Daedalus 1988 : Sveriges Tekniska Museums Årsbok 1988
1784:. London and New York's Harper Brothers. pp. 140 ff. 1334:, who communicated some investigations into the action of 797:) of the crystals that make it up. Grain sizes range from 271:
at up to 3,500 °C (6,330 °F) with iron inside a
5677: 4159: 3672: 2080:"Some notes on carbon at high temperatures and pressures" 2030:
50 years progress in crystal growth: a reprint collection
1522:
Philosophical Transactions of the Royal Society of London
1160: 1097: 5805:"How GIA Is Changing Its Reports for Lab-Grown Diamonds" 5506: 5472:
Wang, Wuyi; Persaud, Stephanie; Myagkaya, Elina (2022).
4713: 3781: 3613: 2623:
Eversole, W. G. (April 17, 1962) "Synthesis of diamond"
2526: 2442: 2222: 602: 428:
container in which graphite was dissolved within molten
5389: 4974: 3363: 2203: 5298: 4905: 4808:
Critical Reviews in Solid State and Materials Sciences
4162:
International Journal of Machine Tools and Manufacture
2382: 1745:"Nouvelles expériences sur la reproduction du diamant" 755: 5011: 4850:"Designing diamond circuits for extreme environments" 4531: 3186:
Koizumi, S.; Nebel, C. E. & Nesladek, M. (2008).
1084:. Since these elements contain one more or one fewer 462:
A scalpel with single-crystal synthetic diamond blade
5864:
Gems: their sources, descriptions and identification
5607:"Why Lab Created Diamonds are a Poor Value Purchase" 5548:. The Gem & Jewellery Export Promotion Council. 3970: 2997:. International Diamond Laboratories. Archived from 2767:"Industry worries about undisclosed synthetic melee" 1491:"Lab Grown Diamonds: A Miracle of Modern Technology" 579:
compressed cell. A variation of the belt press uses
5471: 5222:"How 2023 became the year of the lab-grown diamond" 4456:"Diamonds for Modern Synchrotron Radiation Sources" 4067: 4008: 2576: 1905: 1878: 1627:Academy of Sciences], November 10, 1828, volume 9, 1144:and BOLD (Blind to the Optical Light Detectors for 5474:"New Record Size for CVD Laboratory-Grown Diamond" 4186: 3834: 3036: 2129:"The Problem of Artificial Production of Diamonds" 1813:Zeitschrift für Anorganische und Allgemeine Chemie 1646:Academy of Sciences], December 1, 1828, volume 9, 554: 4326: 3571: 1515: 5943: 5727: 5725: 5706:. U.S. Federal Trade Commission. July 24, 2018. 5704:"FTC Approves Final Revisions to Jewelry Guides" 5367:. Associated Press via NBC News. July 13, 2004. 4454:Heartwig, J.; et al. (September 13, 2006). 3414: 2684: 2026: 1777: 821:diamonds and HPHT nanocrystalline diamonds (see 5793:, U.S. Federal Trade Commission, July 21, 2008. 5674:"De Beers admits defeat over man-made diamonds" 4474: 4124: 2637: 1912:. Heathside Press, New York. pp. 127–132. 1465:"The state of 2013 global rough diamond supply" 5796: 5635: 5188: 3676:Properties, Growth and Applications of Diamond 3512: 1439: 1088:than carbon, they turn synthetic diamond into 999:significantly replaced traditional PCD tools. 983:and saws, and the use of diamond powder as an 954: 5722: 5667: 5665: 5365:"De Beers pleads guilty in price fixing case" 4764:. Diamond and Other New Carbon Materials IV. 4274: 4004: 4002: 3043:. Vol. 2. Elsevier, Amsterdam. pp.  2942: 2940: 2438: 2436: 2077: 1665: 825:) are harder than any known natural diamond. 641:Free-standing single-crystal CVD diamond disc 533: 450:secrecy order on the GE patent applications. 5219: 4453: 3964: 3746: 3274:. The Electrochemical Society. p. 363. 3121:Int. J. Refractory Metals and Hard Materials 2862: 2170: 2126: 1973: 1668:"On the Artificial Formation of the Diamond" 1376: 1356: 1325: 828: 626: 5882:Spear, K. E. & Dismukes, J. P. (1994). 5539:"Synthetic Diamonds – Promoting Fair Trade" 5115: 5113: 4458:. European Synchrotron Radiation Facility. 3484: 3267: 3067: 2741:"Melee Diamonds: Tiny Diamonds, Big Impact" 2333: 1969: 1967: 693: 511:(200 mg) to 1.5 carats (300 mg). 369:In 1941, an agreement was made between the 230:Both CVD and HPHT diamonds can be cut into 5662: 5245: 4968: 4862: 3999: 3711: 2937: 2433: 1885:. Kessinger Publishing. pp. 123–130. 1849: 1712: 1345:"Artificial production of real diamonds", 1072:Synthetic diamond has potential uses as a 436:or iron. Those metals acted as a "solvent- 5671: 5390:Pressler, Margaret Webb (July 14, 2004). 5267: 4996: 4410: 3908: 3848: 3795: 3673:Neves, A. J. & Nazaré, M. H. (2001). 3642: 2310: 2166: 2164: 2152: 2103: 1999: 1533: 746:atmospheric pressure and room temperature 5629: 5573: 5453:Company Grows 10 Carat Synthetic Diamond 5335:"Memorial Diamonds Deliver Eternal Life" 5110: 4329:Introduction to the physics of gyrotrons 3609: 3607: 3408: 3181: 3179: 2989: 2987: 2908: 2904: 2902: 2522: 2520: 1964: 1806: 1462: 1185: 958: 736: 703: 636: 601: 558: 457: 357: 324: 246: 204:and high optical transparency in a wide 172:, in cutting and polishing tools and in 142: 20: 5519:from the original on September 30, 2018 5239: 5119: 5092:Electrochemical and Solid-State Letters 5089: 5046: 4560: 3189:Physics and Applications of CVD Diamond 3034: 2827:"Swiss lab introduces melee identifier" 2572: 2570: 2179:. Cambridge University Press. pp.  1899: 1771: 1759:from the original on September 11, 2017 1739: 874: 267:in 1893. Their method involved heating 16:Diamond created by controlled processes 5944: 5784: 5772:from the original on February 22, 2017 5765:. De Beers Technologies UK. May 2016. 5740:from the original on November 27, 2018 5617:from the original on November 20, 2018 5403:from the original on November 12, 2012 5182: 5122:"The Many Facets of Man-Made Diamonds" 4906:"Blind to the Optical Light Detectors" 4611: 4015:ACS Applied Materials & Interfaces 3881: 3345:from the original on December 22, 2015 3139: 3030: 3028: 2858: 2856: 2854: 2161: 1843: 1610:Artificial production of real diamonds 1406: 773:Traditionally, the absence of crystal 453: 396:The Schenectady group improved on the 362:A belt press produced in the 1980s by 114:high pressure high temperature diamond 5802: 5731: 5710:from the original on January 12, 2019 5684:from the original on November 9, 2020 5650:from the original on January 13, 2017 5604: 5488:from the original on February 8, 2023 5170:from the original on November 3, 2013 5144:from the original on October 28, 2008 5083: 5040: 4513:from the original on October 20, 2020 4180: 3604: 3176: 2984: 2899: 2517: 2280: 2278: 1926:from the original on November 5, 2012 1831:from the original on October 25, 2020 1788:from the original on November 5, 2012 1571: 1569: 1120:Synthetic diamond is already used as 1040:as the output window of high-power CO 847:, but diamond with boron added is an 813:The hardness of diamond is 10 on the 575:, forming a large synthetic diamond. 393:and others joined the project later. 353: 329:First synthetic diamonds by ASEA 1953 104:ever found weighs 3167 ct (633.4 g). 5371:from the original on January 1, 2015 5189:Zimnisky, Paul (February 10, 2015). 5120:Yarnell, Amanda (February 2, 2004). 4934:Semiconductor Science and Technology 4774:10.4028/www.scientific.net/AST.48.73 4525: 3417:Russian Journal of Applied Chemistry 2567: 1421:from the original on October 1, 2022 1002: 716:Diamond nanocrystals (5 nm (2.0 5906:. In Daedalus 1988. ISBN 9176160181 5605:Fried, Michael (January 20, 2017). 5574:Kavilanz, Parija (April 27, 2022). 5201:from the original on March 22, 2015 5049:Journal of Applied Electrochemistry 4462:from the original on March 24, 2015 4128:Turning And Mechanical Manipulation 4061: 4049:from the original on March 20, 2022 3693:from the original on March 20, 2022 3592:from the original on March 20, 2022 3300: 3288:from the original on March 20, 2022 3206:from the original on March 20, 2022 3192:. Wiley VCH. pp. 50, 200–240. 3035:Ito, E. (2007). G. Schubert (ed.). 3025: 2851: 2493: 2251:from the original on March 20, 2022 2047:from the original on March 20, 2022 2008: 1542:from the original on April 25, 2016 1467:. Resource Investor. Archived from 1463:Zimnisky, Paul (January 22, 2013). 1440:Suman Tagadiya (February 4, 2023). 1023: 835:Crystallographic defects in diamond 756:Crystallization inside liquid metal 13: 5916: 5815:from the original on July 11, 2021 5636:Zimnisky, Paul (January 9, 2017). 5555:from the original on July 13, 2014 4912:from the original on June 21, 2009 4848:Salisbury, David (August 4, 2011) 4762:Advances in Science and Technology 2835:. National Jeweler. Archived from 2773:. jckonline.com. January 2, 2014. 2747:from the original on June 12, 2018 2275: 2059: 1948:. McPherson Museum. Archived from 1715:Annales Pharmaceutiques Françaises 1566: 867:, thereby increasing hardness and 14: 5973: 5910: 5803:Graff, Michelle (April 4, 2019). 5672:Kottasová, Ivana (May 29, 2018). 5220:Pearl, Diana (October 26, 2023). 4872:Nuclear Instruments and Methods A 3952:from the original on June 7, 2011 2807:from the original on May 18, 2015 2777:from the original on May 18, 2015 2223:Sveriges Tekniska Museum (1988). 1407:Fisher, Alice (October 1, 2022). 1353:(278): 300–301 (December 6, 1828) 1251:helped to publicize the problem. 1207:diamonds can be distinguished by 843:For instance, pure diamond is an 192:. Synthetic diamond detectors of 5752: 5696: 5598: 5586:from the original on May 5, 2022 5567: 5531: 5500: 5465: 5446: 5427: 5415: 5383: 5357: 5327: 5292: 5213: 5156: 5005: 4924: 4908:. Royal Observatory of Belgium. 4898: 4842: 4798: 4279:. SPIE Press. pp. 303–334. 2084:Proceedings of the Royal Society 1809:"Über die Bildung von Diamanten" 1030:coefficient of thermal expansion 784: 265:Ferdinand Frédéric Henri Moissan 90:chemical and physical properties 5923:Chemical & Engineering News 5833: 5434:Laboratory Grown Diamond Report 5341:. June 23, 2009. Archived from 5126:Chemical & Engineering News 4989:10.1016/j.electacta.2005.04.023 4753: 4707: 4662: 4447: 4378: 4345: 4320: 4293: 4268: 4250: 4215: 4153: 4118: 4104: 3828: 3775: 3740: 3705: 3666: 3565: 3553: 3506: 3478: 3443: 3357: 3261: 3218: 3112: 3061: 3013: 2819: 2789: 2759: 2733: 2721: 2707:10.1070/RC1970v039n09ABEH002022 2678: 2666: 2631: 2617: 2605: 2555: 2505: 2376: 2336:"Ultra-high pressure apparatus" 2327: 2263: 2216: 2197: 2120: 2071: 2020: 1938: 1872: 1800: 1733: 1706: 1659: 1640: 1621: 1316: 1080:with impurities like boron and 949: 555:High pressure, high temperature 5732:Payne, Jason (July 25, 2018). 4393:. High Heat Flux Engineering. 4354:Optical Engineering of Diamond 3890:"Superconductivity in diamond" 3485:David Nield (April 25, 2024). 1603: 1590:], November 3, 1828, volume 9, 1581: 1554: 1518:"On the nature of the diamond" 1509: 1483: 1456: 1433: 1400: 1295:inspired by Hannay and Moissan 1203:grown using cremated remains. 1194:Synthetic diamonds for use as 1067: 1016:, laser arrays and high-power 815:Mohs scale of mineral hardness 1: 5904:Om konsten att göra diamanter 5860: 5421: 5034:10.1016/j.diamond.2007.02.015 5014:Diamond and Related Materials 4954:10.1088/0268-1242/23/3/035026 4554:10.1016/j.diamond.2004.12.043 4534:Diamond and Related Materials 4209:10.1016/S0925-9635(03)00074-8 4189:Diamond and Related Materials 3653:10.1016/S0925-9635(97)00232-X 3623:Diamond and Related Materials 3472:10.1016/j.diamond.2008.01.112 3386:10.1126/science.133.3467.1821 3336:10.1016/S0925-9635(99)00354-4 3316:Diamond and Related Materials 3170:10.1016/S0024-4937(01)00079-2 3133:10.1016/S0263-4368(00)00039-1 2931:10.1016/j.diamond.2007.08.008 2911:Diamond and Related Materials 2599:10.1016/j.diamond.2005.09.007 2511: 2287:"Errors in diamond synthesis" 2269: 2014: 1394: 768: 5861:O'Donoghue, Michael (2006). 5839: 4718:IEEE Electron Device Letters 4672:IEEE Electron Device Letters 4174:10.1016/0890-6955(95)93044-7 3575:Handbook of Electrochemistry 3090:10.1126/science.128.3322.445 3019: 2561: 2549:10.1016/0022-0248(90)90126-6 2499: 2065: 1906:Hershey, J. Willard (1940). 1879:Hershey, J. Willard (2004). 1338:placed in contact with pure 1175: 863:) and put the lattice under 658:in the growth chamber using 88:3D form—and share identical 7: 5278:10.1088/0034-4885/42/10/001 4356:. Wiley. pp. 239–276. 4090:10.1103/PhysRevLett.70.3764 2885:10.1088/0034-4885/61/12/002 1653:September 11, 2017, at the 1634:September 11, 2017, at the 1597:September 11, 2017, at the 1280: 1142:Stanford Linear Accelerator 955:Machining and cutting tools 808: 712:) of detonation nanodiamond 448:U.S. Department of Commerce 10: 5978: 5881: 5301:Journal of Applied Physics 4892:10.1016/j.nima.2005.06.030 4855:November 18, 2011, at the 4331:. JHU Press. p. 229. 4327:Nusinovich, G. S. (2004). 3973:Journal of Applied Physics 3867:10.1103/PhysRevB.84.155205 3814:10.1103/PhysRevB.79.115202 3572:Zoski, Cynthia G. (2007). 3559: 3539:10.1038/s41586-024-07339-7 2797:"Diamond Melee definition" 2727: 2672: 2611: 1575: 1560: 1516:Tennant, Smithson (1797). 1179: 1122:radiation detection device 832: 697: 630: 606:Schematic of a BARS system 534:Manufacturing technologies 242: 5867:. Butterworth-Heinemann. 5846:. Butterworth-Heinemann. 5439:October 21, 2012, at the 5138:10.1021/cen-v082n005.p026 4828:10.1080/10408430008951119 4362:10.1002/9783527648603.ch8 3679:. IET. pp. 142–147. 3578:. Elsevier. p. 136. 3429:10.1134/S1070427206120019 3268:Kopf, R. F., ed. (2003). 2529:Journal of Crystal Growth 2033:. Elsevier. p. 194. 2027:Feigelson, R. S. (2004). 1778:Crookes, William (1909). 1365:communicated a note from 1291:(1895): a short story by 911:isotopically pure diamond 829:Impurities and inclusions 763:chemical vapor deposition 633:Chemical vapor deposition 627:Chemical vapor deposition 563:Schematic of a belt press 520:chemical vapor deposition 290:claimed success in 1909. 126:chemical vapor deposition 5638:"A New Diamond Industry" 5166:. Kitco. July 12, 2013. 4693:10.1109/LED.2012.2210020 4489:(Submitted manuscript). 4125:Holtzapffel, C. (1856). 2687:Russian Chemical Reviews 2445:"Preparation of diamond" 1825:10.1002/zaac.19170990109 1309: 1271:Federal Trade Commission 1106:field-effect transistors 694:Detonation of explosives 307:Charles Algernon Parsons 186:field-effect transistors 102:heaviest natural diamond 31:laboratory-grown diamond 5902:Lundblad, Erik (1988). 5840:Barnard, A. S. (2000). 5307:(8): 083517–083517–10. 5069:10.1023/A:1026526729357 4739:10.1109/LED.2006.876325 4640:10.1126/science.1074374 4589:10.1126/science.1060258 3749:Physica Status Solidi A 3227:Physica Status Solidi A 2801:Encyclopædia Britannica 1269:In July 2018, the U.S. 851:(and, in some cases, a 551:of graphite solutions. 545:detonation nanodiamonds 320: 261:James Ballantyne Hannay 5513:Bloomberg Businessweek 4275:Harris, D. C. (1999). 4027:10.1021/acsami.7b16812 3769:10.1002/pssa.200409033 3720:(2): 026112–026112–3. 3247:10.1002/pssa.200561920 2105:10.1098/rspa.1907.0062 2078:Parson, C. A. (1907). 1684:10.1098/rspl.1879.0144 1666:Hannay, J. B. (1879). 1615:June 29, 2014, at the 1535:10.1098/rstl.1797.0005 1377: 1367:Mr. Cagniard de Latour 1361:, November 10, 1828: " 1357: 1326: 1191: 968: 713: 700:Detonation nanodiamond 642: 607: 564: 463: 406:Nobel Prize in Physics 366: 330: 252: 149: 26: 5458:June 1, 2015, at the 4435:on September 17, 2008 4263:U.S. patent 6,924,170 4113:U.S. patent 4,488,821 2839:on September 10, 2015 2626:U.S. patent 3,030,188 2171:Hazen, R. M. (1999). 2127:Desch, C. H. (1928). 1974:Lonsdale, K. (1962). 1381:, December 1, 1828: " 1299:Synthetic alexandrite 1189: 962: 737:Ultrasound cavitation 708:Electron micrograph ( 707: 640: 631:Further information: 605: 562: 461: 361: 328: 250: 198:high-energy particles 190:light-emitting diodes 146: 24: 4256:Ravi, Kramadhati V. 2585:(11–12): 1916–1919. 2334:Hall, H. T. (1960). 1678:(200–205): 450–461. 1094:n-type semiconductor 1076:, because it can be 915:thermal conductivity 875:Thermal conductivity 859:(defects within the 849:electrical conductor 845:electrical insulator 277:electric arc furnace 158:thermal conductivity 5809:Nationaljeweler.com 5396:The Washington Post 5345:on October 17, 2012 5313:2005JAP....97h3517C 5260:1979RPPh...42.1605W 5061:1988JApEl..18..410W 5026:2007DRM....16.1648N 4977:Electrochimica Acta 4946:2008SeScT..23c5026B 4884:2005NIMPA.552..189B 4820:2000CRSSM..25..163R 4731:2006IEDL...27..570U 4685:2012IEDL...33.1471R 4632:2002Sci...297.1670I 4626:(5587): 1670–1672. 4581:2001Sci...292.1899K 4575:(5523): 1899–1901. 4546:2005DRM....14..491D 4499:2003RScI...74.2467J 4403:1993SPIE.1739..628K 4244:10.1049/el:19920123 4236:1992ElL....28..197S 4224:Electronics Letters 4201:2003DRM....12.1300A 4082:1993PhRvL..70.3764W 3985:1999JAP....86..698C 3927:10.1038/nature02449 3919:2004Natur.428..542E 3859:2011PhRvB..84o5205A 3806:2009PhRvB..79k5202L 3761:2004PSSAR.201R..25Y 3726:2005RScI...76b6112S 3635:1998DRM.....7..427B 3531:2024Natur.629..348G 3464:2008DRM....17..931K 3378:1961Sci...133.1821D 3372:(3467): 1821–1822. 3328:2000DRM.....9..861I 3239:2005PSSAR.202.2177B 3162:2002Litho..60..145P 3082:1958Sci...128..445H 2962:2004DokPh..49..150G 2923:2007DRM....16.2018O 2877:1998RPPh...61.1665W 2699:1970RuCRv..39..783D 2652:1968JAP....39.2915A 2591:2005DRM....14.1916A 2541:1990JCrGr.104..257B 2489:on January 8, 2014. 2464:1959Natur.184.1094B 2458:(4693): 1094–1098. 2429:on January 8, 2014. 2404:1955Natur.176...51B 2385:"Man-made diamonds" 2372:on January 8, 2014. 2355:1960RScI...31..125H 2303:1993Natur.365...19B 2145:1928Natur.121..799C 2096:1907RSPSA..79..532P 1992:1962Natur.196..104L 1952:on January 12, 2016 1850:Nassau, K. (1980). 1588:Academy of Sciences 1471:on January 28, 2013 1347:Mechanics' Magazine 1058:diffraction grating 913:, have the highest 454:Further development 5962:1953 introductions 5643:The Mining Journal 4487:Rev. Sci. Instrum. 3560:Spear and Dismukes 3452:Diam. Relat. Mater 2743:. April 11, 2017. 2728:Spear and Dismukes 2673:Spear and Dismukes 2612:Spear and Dismukes 2579:Diam. Relat. Mater 2175:The diamond makers 1858:. pp. 12–25. 1672:Proc. R. Soc. Lond 1576:Spear and Dismukes 1561:Spear and Dismukes 1215:, ultraviolet, or 1192: 1182:Diamond (gemstone) 969: 865:compressive stress 779:optical dispersion 714: 682:, or other means. 643: 608: 565: 464: 367: 354:GE diamond project 343:Baltzar von Platen 331: 296:J. Willard Hershey 253: 150: 71:obtained by mining 43:laboratory-created 27: 5952:Synthetic diamond 5917:Schulz, William. 5895:978-0-471-53589-8 5885:Synthetic diamond 5874:978-0-7506-5856-0 5853:978-0-7506-4244-6 5478:Gems and Gemology 5321:10.1063/1.1866501 5254:(10): 1605–1659. 5104:10.1149/1.1390963 5055:(12): 1345–1350. 4783:978-3-03813-096-3 4679:(10): 1471–1473. 4507:10.1063/1.1544084 4421:10.1117/12.140532 4338:978-0-8018-7921-0 4286:978-0-8194-3482-1 4146:978-1-879335-39-4 4076:(24): 3764–3767. 3903:(6982): 542–545. 3734:10.1063/1.1850654 3714:Rev. Sci. Instrum 3686:978-0-85296-785-0 3662:on July 21, 2011. 3585:978-0-444-51958-0 3525:(8011): 348–354. 3423:(12): 1913–1918. 3281:978-1-56677-391-1 3233:(11): 2177–2181. 3199:978-3-527-40801-6 3076:(3322): 445–449. 3054:978-0-8129-2275-2 2970:10.1134/1.1710678 2917:(12): 2018–2022. 2871:(12): 1665–1710. 2660:10.1063/1.1656693 2472:10.1038/1841094a0 2363:10.1063/1.1716907 2343:Rev. Sci. Instrum 2190:978-0-521-65474-6 2139:(3055): 799–800. 2040:978-0-444-51650-3 1986:(4850): 104–106. 1919:978-0-486-41816-2 1892:978-1-4179-7715-4 1865:978-0-8019-6773-3 1807:Ruff, O. (1917). 1578:, pp. 23, 512–513 1288:The Diamond Maker 1275:diamond simulants 1201:memorial diamonds 1003:Thermal conductor 861:crystal structure 748:using ultrasonic 404:, who received a 300:McPherson College 257:Antoine Lavoisier 202:thermal expansion 184:, high-frequency 162:electron mobility 75:diamond simulants 39:lab-grown diamond 37:), also called a 5969: 5938: 5899: 5878: 5857: 5825: 5824: 5822: 5820: 5800: 5794: 5788: 5782: 5781: 5779: 5777: 5771: 5764: 5756: 5750: 5749: 5747: 5745: 5729: 5720: 5719: 5717: 5715: 5700: 5694: 5693: 5691: 5689: 5669: 5660: 5659: 5657: 5655: 5633: 5627: 5626: 5624: 5622: 5602: 5596: 5595: 5593: 5591: 5571: 5565: 5564: 5562: 5560: 5554: 5543: 5535: 5529: 5528: 5526: 5524: 5504: 5498: 5497: 5495: 5493: 5469: 5463: 5450: 5444: 5431: 5425: 5419: 5413: 5412: 5410: 5408: 5387: 5381: 5380: 5378: 5376: 5361: 5355: 5354: 5352: 5350: 5331: 5325: 5324: 5296: 5290: 5289: 5271: 5243: 5237: 5236: 5234: 5232: 5217: 5211: 5210: 5208: 5206: 5195:Kitco Commentary 5186: 5180: 5179: 5177: 5175: 5160: 5154: 5153: 5151: 5149: 5117: 5108: 5107: 5087: 5081: 5080: 5044: 5038: 5037: 5020:(8): 1648–1651. 5009: 5003: 5002: 5000: 4972: 4966: 4965: 4928: 4922: 4921: 4919: 4917: 4902: 4896: 4895: 4878:(1–2): 189–196. 4866: 4860: 4846: 4840: 4839: 4802: 4796: 4795: 4757: 4751: 4750: 4711: 4705: 4704: 4666: 4660: 4659: 4615: 4609: 4608: 4564: 4558: 4557: 4540:(3–7): 491–498. 4529: 4523: 4522: 4520: 4518: 4478: 4472: 4471: 4469: 4467: 4451: 4445: 4444: 4442: 4440: 4431:. Archived from 4414: 4382: 4376: 4375: 4349: 4343: 4342: 4324: 4318: 4317: 4297: 4291: 4290: 4272: 4266: 4265: 4254: 4248: 4247: 4219: 4213: 4212: 4195:(8): 1300–1306. 4184: 4178: 4177: 4157: 4151: 4150: 4122: 4116: 4115: 4108: 4102: 4101: 4065: 4059: 4058: 4056: 4054: 4021:(5): 4808–4815. 4006: 3997: 3996: 3993:10.1063/1.370787 3968: 3962: 3961: 3959: 3957: 3951: 3912: 3910:cond-mat/0404156 3894: 3885: 3879: 3878: 3852: 3832: 3826: 3825: 3799: 3779: 3773: 3772: 3744: 3738: 3737: 3709: 3703: 3702: 3700: 3698: 3670: 3664: 3663: 3661: 3655:. Archived from 3646: 3629:(2–5): 427–431. 3620: 3611: 3602: 3601: 3599: 3597: 3569: 3563: 3557: 3551: 3550: 3515:Ruoff, Rodney S. 3510: 3504: 3503: 3501: 3499: 3482: 3476: 3475: 3447: 3441: 3440: 3412: 3406: 3405: 3361: 3355: 3354: 3352: 3350: 3344: 3322:(3–6): 861–865. 3313: 3304: 3298: 3297: 3295: 3293: 3265: 3259: 3258: 3222: 3216: 3215: 3213: 3211: 3183: 3174: 3173: 3156:(3–4): 145–159. 3143: 3137: 3136: 3116: 3110: 3109: 3065: 3059: 3058: 3042: 3032: 3023: 3017: 3011: 3010: 3008: 3006: 2995:"HPHT synthesis" 2991: 2982: 2981: 2944: 2935: 2934: 2906: 2897: 2896: 2860: 2849: 2848: 2846: 2844: 2832:National Jeweler 2823: 2817: 2816: 2814: 2812: 2793: 2787: 2786: 2784: 2782: 2763: 2757: 2756: 2754: 2752: 2737: 2731: 2725: 2719: 2718: 2682: 2676: 2670: 2664: 2663: 2635: 2629: 2628: 2621: 2615: 2609: 2603: 2602: 2574: 2565: 2559: 2553: 2552: 2524: 2515: 2509: 2503: 2497: 2491: 2490: 2488: 2482:. Archived from 2449: 2440: 2431: 2430: 2428: 2422:. Archived from 2412:10.1038/176051a0 2389: 2380: 2374: 2373: 2371: 2365:. Archived from 2340: 2331: 2325: 2324: 2314: 2312:10.1038/365019a0 2282: 2273: 2267: 2261: 2260: 2258: 2256: 2220: 2214: 2213: 2201: 2195: 2194: 2178: 2168: 2159: 2158: 2156: 2154:10.1038/121799a0 2124: 2118: 2117: 2107: 2090:(533): 532–535. 2075: 2069: 2063: 2057: 2056: 2054: 2052: 2024: 2018: 2012: 2006: 2005: 2003: 2001:10.1038/196104a0 1971: 1962: 1961: 1959: 1957: 1942: 1936: 1935: 1933: 1931: 1909:Book of Diamonds 1903: 1897: 1896: 1876: 1870: 1869: 1852:Gems made by Man 1847: 1841: 1840: 1838: 1836: 1804: 1798: 1797: 1795: 1793: 1775: 1769: 1768: 1766: 1764: 1737: 1731: 1730: 1710: 1704: 1703: 1663: 1657: 1644: 1638: 1625: 1619: 1607: 1601: 1585: 1579: 1573: 1564: 1558: 1552: 1551: 1549: 1547: 1537: 1513: 1507: 1506: 1504: 1502: 1497:. April 13, 2023 1487: 1481: 1480: 1478: 1476: 1460: 1454: 1453: 1451: 1449: 1437: 1431: 1430: 1428: 1426: 1404: 1388: 1380: 1360: 1340:carbon disulfide 1329: 1320: 1304:List of diamonds 1140:detector at the 1102:carrier mobility 1086:valence electron 1024:Optical material 936: 934: 933: 926: 925: 908: 907: 906: 899: 898: 889:covalent bonding 719: 617:cemented carbide 410:tungsten carbide 387:Second World War 371:General Electric 220: 219: 218: 63:cultured diamond 5977: 5976: 5972: 5971: 5970: 5968: 5967: 5966: 5942: 5941: 5913: 5896: 5875: 5854: 5836: 5830: 5828: 5818: 5816: 5801: 5797: 5789: 5785: 5775: 5773: 5769: 5762: 5758: 5757: 5753: 5743: 5741: 5730: 5723: 5713: 5711: 5702: 5701: 5697: 5687: 5685: 5670: 5663: 5653: 5651: 5634: 5630: 5620: 5618: 5611:The Diamond Pro 5603: 5599: 5589: 5587: 5572: 5568: 5558: 5556: 5552: 5541: 5537: 5536: 5532: 5522: 5520: 5505: 5501: 5491: 5489: 5470: 5466: 5460:Wayback Machine 5451: 5447: 5441:Wayback Machine 5432: 5428: 5420: 5416: 5406: 5404: 5388: 5384: 5374: 5372: 5363: 5362: 5358: 5348: 5346: 5333: 5332: 5328: 5297: 5293: 5248:Rep. Prog. Phys 5244: 5240: 5230: 5228: 5218: 5214: 5204: 5202: 5187: 5183: 5173: 5171: 5162: 5161: 5157: 5147: 5145: 5118: 5111: 5088: 5084: 5045: 5041: 5010: 5006: 4973: 4969: 4929: 4925: 4915: 4913: 4904: 4903: 4899: 4867: 4863: 4857:Wayback Machine 4847: 4843: 4803: 4799: 4784: 4758: 4754: 4712: 4708: 4667: 4663: 4616: 4612: 4565: 4561: 4530: 4526: 4516: 4514: 4479: 4475: 4465: 4463: 4452: 4448: 4438: 4436: 4412:10.1.1.261.1970 4383: 4379: 4372: 4371:978-352764860-3 4350: 4346: 4339: 4325: 4321: 4299: 4298: 4294: 4287: 4273: 4269: 4261: 4255: 4251: 4220: 4216: 4185: 4181: 4158: 4154: 4147: 4123: 4119: 4111: 4109: 4105: 4070:Phys. Rev. Lett 4066: 4062: 4052: 4050: 4007: 4000: 3969: 3965: 3955: 3953: 3949: 3892: 3886: 3882: 3833: 3829: 3780: 3776: 3745: 3741: 3710: 3706: 3696: 3694: 3687: 3671: 3667: 3659: 3644:10.1.1.520.7265 3618: 3612: 3605: 3595: 3593: 3586: 3570: 3566: 3558: 3554: 3511: 3507: 3497: 3495: 3483: 3479: 3448: 3444: 3413: 3409: 3362: 3358: 3348: 3346: 3342: 3311: 3305: 3301: 3291: 3289: 3282: 3266: 3262: 3223: 3219: 3209: 3207: 3200: 3184: 3177: 3144: 3140: 3117: 3113: 3066: 3062: 3055: 3033: 3026: 3018: 3014: 3004: 3002: 2993: 2992: 2985: 2950:Doklady Physics 2945: 2938: 2907: 2900: 2865:Rep. Prog. Phys 2861: 2852: 2842: 2840: 2825: 2824: 2820: 2810: 2808: 2795: 2794: 2790: 2780: 2778: 2765: 2764: 2760: 2750: 2748: 2739: 2738: 2734: 2726: 2722: 2683: 2679: 2671: 2667: 2636: 2632: 2624: 2622: 2618: 2610: 2606: 2575: 2568: 2560: 2556: 2525: 2518: 2510: 2506: 2498: 2494: 2486: 2447: 2441: 2434: 2426: 2398:(4471): 51–55. 2387: 2381: 2377: 2369: 2338: 2332: 2328: 2283: 2276: 2268: 2264: 2254: 2252: 2237: 2221: 2217: 2202: 2198: 2191: 2169: 2162: 2125: 2121: 2076: 2072: 2064: 2060: 2050: 2048: 2041: 2025: 2021: 2013: 2009: 1972: 1965: 1955: 1953: 1944: 1943: 1939: 1929: 1927: 1920: 1904: 1900: 1893: 1877: 1873: 1866: 1856:Chilton Book Co 1848: 1844: 1834: 1832: 1805: 1801: 1791: 1789: 1776: 1772: 1762: 1760: 1738: 1734: 1711: 1707: 1664: 1660: 1655:Wayback Machine 1645: 1641: 1636:Wayback Machine 1626: 1622: 1617:Wayback Machine 1608: 1604: 1599:Wayback Machine 1586: 1582: 1574: 1567: 1559: 1555: 1545: 1543: 1514: 1510: 1500: 1498: 1489: 1488: 1484: 1474: 1472: 1461: 1457: 1447: 1445: 1438: 1434: 1424: 1422: 1405: 1401: 1397: 1392: 1391: 1321: 1317: 1312: 1283: 1253:Consumer demand 1184: 1178: 1128:and has a wide 1070: 1043: 1026: 1012:for high-power 1005: 963:Diamonds in an 957: 952: 932: 930: 929: 928: 924: 922: 921: 920: 918: 905: 903: 902: 901: 897: 895: 894: 893: 892: 877: 837: 831: 811: 801:to hundreds of 787: 771: 758: 739: 717: 702: 696: 635: 629: 557: 536: 499:phosphorescence 456: 356: 323: 288:William Crookes 263:in 1879 and by 245: 217: 214: 213: 212: 210: 51:artisan-created 17: 12: 11: 5: 5975: 5965: 5964: 5959: 5954: 5940: 5939: 5912: 5911:External links 5909: 5908: 5907: 5900: 5894: 5888:. Wiley-IEEE. 5879: 5873: 5858: 5852: 5835: 5832: 5827: 5826: 5795: 5783: 5751: 5721: 5695: 5661: 5628: 5597: 5576:"CNN Business" 5566: 5530: 5499: 5464: 5445: 5426: 5414: 5382: 5356: 5326: 5291: 5269:10.1.1.467.443 5238: 5212: 5181: 5155: 5109: 5082: 5039: 5004: 4983:(2): 191–199. 4967: 4923: 4897: 4861: 4841: 4814:(3): 163–277. 4797: 4782: 4752: 4725:(7): 570–572. 4706: 4661: 4610: 4559: 4524: 4473: 4446: 4377: 4370: 4344: 4337: 4319: 4292: 4285: 4267: 4249: 4230:(2): 197–199. 4214: 4179: 4168:(5): 761–774. 4152: 4145: 4117: 4103: 4060: 3998: 3963: 3880: 3843:(15): 155205. 3827: 3790:(11): 115202. 3774: 3739: 3704: 3685: 3665: 3603: 3584: 3564: 3552: 3505: 3477: 3458:(6): 931–936. 3442: 3407: 3356: 3299: 3280: 3260: 3217: 3198: 3175: 3138: 3111: 3060: 3053: 3024: 3012: 3001:on May 1, 2009 2983: 2956:(3): 150–153. 2936: 2898: 2850: 2818: 2788: 2758: 2732: 2720: 2693:(9): 783–788. 2677: 2665: 2630: 2616: 2604: 2566: 2554: 2535:(2): 257–279. 2516: 2504: 2492: 2432: 2375: 2326: 2274: 2262: 2235: 2215: 2196: 2189: 2160: 2119: 2070: 2058: 2039: 2019: 2007: 1963: 1937: 1918: 1898: 1891: 1871: 1864: 1842: 1799: 1770: 1749:Comptes Rendus 1741:Moissan, Henri 1732: 1705: 1658: 1639: 1620: 1602: 1580: 1565: 1553: 1508: 1482: 1455: 1444:. Diamondrensu 1432: 1398: 1396: 1393: 1390: 1389: 1387: 1386: 1374: 1371:Mr. Gay-Lussac 1354: 1343: 1314: 1313: 1311: 1308: 1307: 1306: 1301: 1296: 1282: 1279: 1243:diamond mining 1180:Main article: 1177: 1174: 1126:radiation hard 1069: 1066: 1041: 1025: 1022: 1004: 1001: 989:ferrous alloys 956: 953: 951: 948: 931: 923: 904: 896: 876: 873: 853:superconductor 833:Main article: 830: 827: 810: 807: 786: 783: 770: 767: 757: 754: 738: 735: 698:Main article: 695: 692: 628: 625: 612:BARS apparatus 593:platonic solid 556: 553: 535: 532: 455: 452: 402:Percy Bridgman 355: 352: 322: 319: 244: 241: 215: 206:spectral range 196:(UV) light or 182:power stations 15: 9: 6: 4: 3: 2: 5974: 5963: 5960: 5958: 5955: 5953: 5950: 5949: 5947: 5936: 5932: 5928: 5924: 5920: 5915: 5914: 5905: 5901: 5897: 5891: 5887: 5886: 5880: 5876: 5870: 5866: 5865: 5859: 5855: 5849: 5845: 5844: 5838: 5837: 5831: 5814: 5810: 5806: 5799: 5792: 5787: 5768: 5761: 5755: 5739: 5735: 5728: 5726: 5709: 5705: 5699: 5683: 5679: 5675: 5668: 5666: 5649: 5645: 5644: 5639: 5632: 5616: 5612: 5608: 5601: 5585: 5581: 5577: 5570: 5551: 5547: 5540: 5534: 5518: 5514: 5510: 5503: 5487: 5483: 5479: 5475: 5468: 5461: 5457: 5454: 5449: 5442: 5438: 5435: 5430: 5423: 5418: 5402: 5398: 5397: 5393: 5386: 5370: 5366: 5360: 5344: 5340: 5336: 5330: 5322: 5318: 5314: 5310: 5306: 5302: 5295: 5287: 5283: 5279: 5275: 5270: 5265: 5261: 5257: 5253: 5249: 5242: 5227: 5223: 5216: 5200: 5196: 5192: 5185: 5169: 5165: 5159: 5143: 5139: 5135: 5131: 5127: 5123: 5116: 5114: 5105: 5101: 5097: 5093: 5086: 5078: 5074: 5070: 5066: 5062: 5058: 5054: 5050: 5043: 5035: 5031: 5027: 5023: 5019: 5015: 5008: 4999: 4994: 4990: 4986: 4982: 4978: 4971: 4963: 4959: 4955: 4951: 4947: 4943: 4940:(3): 035026. 4939: 4935: 4927: 4911: 4907: 4901: 4893: 4889: 4885: 4881: 4877: 4873: 4865: 4858: 4854: 4851: 4845: 4837: 4833: 4829: 4825: 4821: 4817: 4813: 4809: 4801: 4793: 4789: 4785: 4779: 4775: 4771: 4767: 4763: 4756: 4748: 4744: 4740: 4736: 4732: 4728: 4724: 4720: 4719: 4710: 4702: 4698: 4694: 4690: 4686: 4682: 4678: 4674: 4673: 4665: 4657: 4653: 4649: 4645: 4641: 4637: 4633: 4629: 4625: 4621: 4614: 4606: 4602: 4598: 4594: 4590: 4586: 4582: 4578: 4574: 4570: 4563: 4555: 4551: 4547: 4543: 4539: 4535: 4528: 4512: 4508: 4504: 4500: 4496: 4492: 4488: 4484: 4477: 4461: 4457: 4450: 4434: 4430: 4426: 4422: 4418: 4413: 4408: 4404: 4400: 4396: 4392: 4388: 4381: 4373: 4367: 4363: 4359: 4355: 4348: 4340: 4334: 4330: 4323: 4315: 4311: 4307: 4303: 4296: 4288: 4282: 4278: 4271: 4264: 4259: 4253: 4245: 4241: 4237: 4233: 4229: 4225: 4218: 4210: 4206: 4202: 4198: 4194: 4190: 4183: 4175: 4171: 4167: 4163: 4156: 4148: 4142: 4138: 4134: 4130: 4129: 4121: 4114: 4107: 4099: 4095: 4091: 4087: 4083: 4079: 4075: 4071: 4064: 4048: 4044: 4040: 4036: 4032: 4028: 4024: 4020: 4016: 4012: 4005: 4003: 3994: 3990: 3986: 3982: 3978: 3974: 3967: 3948: 3944: 3940: 3936: 3932: 3928: 3924: 3920: 3916: 3911: 3906: 3902: 3898: 3891: 3884: 3876: 3872: 3868: 3864: 3860: 3856: 3851: 3846: 3842: 3838: 3831: 3823: 3819: 3815: 3811: 3807: 3803: 3798: 3793: 3789: 3785: 3778: 3770: 3766: 3762: 3758: 3754: 3750: 3743: 3735: 3731: 3727: 3723: 3719: 3715: 3708: 3692: 3688: 3682: 3678: 3677: 3669: 3658: 3654: 3650: 3645: 3640: 3636: 3632: 3628: 3624: 3617: 3610: 3608: 3591: 3587: 3581: 3577: 3576: 3568: 3562:, pp. 308–309 3561: 3556: 3548: 3544: 3540: 3536: 3532: 3528: 3524: 3520: 3516: 3509: 3494: 3493: 3488: 3481: 3473: 3469: 3465: 3461: 3457: 3453: 3446: 3438: 3434: 3430: 3426: 3422: 3418: 3411: 3403: 3399: 3395: 3391: 3387: 3383: 3379: 3375: 3371: 3367: 3360: 3341: 3337: 3333: 3329: 3325: 3321: 3317: 3310: 3303: 3287: 3283: 3277: 3273: 3272: 3264: 3256: 3252: 3248: 3244: 3240: 3236: 3232: 3228: 3221: 3205: 3201: 3195: 3191: 3190: 3182: 3180: 3171: 3167: 3163: 3159: 3155: 3151: 3150: 3142: 3134: 3130: 3126: 3122: 3115: 3107: 3103: 3099: 3095: 3091: 3087: 3083: 3079: 3075: 3071: 3064: 3056: 3050: 3046: 3041: 3040: 3031: 3029: 3021: 3016: 3000: 2996: 2990: 2988: 2979: 2975: 2971: 2967: 2963: 2959: 2955: 2951: 2943: 2941: 2932: 2928: 2924: 2920: 2916: 2912: 2905: 2903: 2894: 2890: 2886: 2882: 2878: 2874: 2870: 2866: 2859: 2857: 2855: 2838: 2834: 2833: 2828: 2822: 2806: 2802: 2798: 2792: 2776: 2772: 2768: 2762: 2746: 2742: 2736: 2730:, pp. 265–266 2729: 2724: 2716: 2712: 2708: 2704: 2700: 2696: 2692: 2688: 2681: 2674: 2669: 2661: 2657: 2653: 2649: 2645: 2641: 2640:J. Appl. Phys 2634: 2627: 2620: 2613: 2608: 2600: 2596: 2592: 2588: 2584: 2580: 2573: 2571: 2563: 2558: 2550: 2546: 2542: 2538: 2534: 2530: 2523: 2521: 2513: 2508: 2501: 2496: 2485: 2481: 2477: 2473: 2469: 2465: 2461: 2457: 2453: 2446: 2439: 2437: 2425: 2421: 2417: 2413: 2409: 2405: 2401: 2397: 2393: 2386: 2379: 2368: 2364: 2360: 2356: 2352: 2348: 2344: 2337: 2330: 2322: 2318: 2313: 2308: 2304: 2300: 2296: 2292: 2288: 2281: 2279: 2271: 2266: 2250: 2246: 2242: 2238: 2236:91-7616-018-1 2232: 2228: 2227: 2219: 2211: 2207: 2200: 2192: 2186: 2182: 2177: 2176: 2167: 2165: 2155: 2150: 2146: 2142: 2138: 2134: 2130: 2123: 2115: 2111: 2106: 2101: 2097: 2093: 2089: 2085: 2081: 2074: 2067: 2062: 2046: 2042: 2036: 2032: 2031: 2023: 2016: 2011: 2002: 1997: 1993: 1989: 1985: 1981: 1977: 1970: 1968: 1951: 1947: 1941: 1925: 1921: 1915: 1911: 1910: 1902: 1894: 1888: 1884: 1883: 1875: 1867: 1861: 1857: 1853: 1846: 1830: 1826: 1822: 1819:(1): 73–104. 1818: 1814: 1810: 1803: 1787: 1783: 1782: 1774: 1758: 1754: 1750: 1746: 1742: 1736: 1728: 1724: 1721:(2): 116–30. 1720: 1716: 1709: 1701: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1662: 1656: 1652: 1649: 1643: 1637: 1633: 1630: 1624: 1618: 1614: 1611: 1606: 1600: 1596: 1593: 1589: 1584: 1577: 1572: 1570: 1562: 1557: 1541: 1536: 1531: 1527: 1523: 1519: 1512: 1496: 1492: 1486: 1470: 1466: 1459: 1443: 1436: 1420: 1416: 1415: 1410: 1403: 1399: 1384: 1379: 1375: 1372: 1368: 1364: 1359: 1355: 1352: 1348: 1344: 1341: 1337: 1333: 1328: 1324: 1323: 1319: 1315: 1305: 1302: 1300: 1297: 1294: 1290: 1289: 1285: 1284: 1278: 1276: 1272: 1267: 1264: 1260: 1256: 1254: 1250: 1249: 1248:Blood Diamond 1244: 1239: 1235: 1233: 1229: 1225: 1220: 1218: 1214: 1210: 1204: 1202: 1197: 1188: 1183: 1173: 1170: 1166: 1162: 1158: 1153: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1118: 1114: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1074:semiconductor 1065: 1063: 1059: 1055: 1051: 1047: 1039: 1038:zinc selenide 1035: 1031: 1021: 1019: 1015: 1011: 1010:heat spreader 1000: 997: 992: 990: 986: 982: 978: 977:cutting tools 974: 973:machine tools 966: 965:angle grinder 961: 947: 944: 938: 935: 916: 912: 890: 885: 882: 872: 870: 866: 862: 858: 854: 850: 846: 841: 836: 826: 824: 819: 816: 806: 804: 800: 796: 792: 785:Crystallinity 782: 780: 776: 766: 764: 753: 751: 747: 743: 734: 732: 728: 724: 711: 706: 701: 691: 688: 683: 681: 680:electron beam 677: 673: 672:welding torch 669: 668:arc discharge 665: 661: 657: 653: 647: 639: 634: 624: 622: 618: 613: 604: 600: 598: 594: 590: 584: 582: 576: 574: 570: 561: 552: 550: 546: 542: 531: 527: 525: 521: 517: 512: 509: 505: 500: 496: 491: 489: 485: 481: 477: 472: 470: 460: 451: 449: 445: 444: 439: 435: 431: 427: 423: 418: 415: 411: 407: 403: 399: 394: 392: 388: 384: 380: 376: 372: 365: 360: 351: 347: 344: 340: 336: 327: 318: 316: 312: 311:steam turbine 308: 303: 301: 297: 293: 289: 284: 282: 278: 274: 270: 266: 262: 258: 249: 240: 238: 237:spectroscopic 233: 228: 226: 222: 207: 203: 199: 195: 191: 187: 183: 179: 175: 171: 167: 163: 159: 155: 145: 141: 139: 135: 131: 127: 123: 119: 115: 111: 105: 103: 99: 95: 91: 87: 83: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 23: 19: 5926: 5922: 5884: 5863: 5842: 5834:Bibliography 5829: 5817:. Retrieved 5808: 5798: 5786: 5774:. Retrieved 5754: 5742:. Retrieved 5712:. Retrieved 5698: 5686:. Retrieved 5652:. Retrieved 5641: 5631: 5621:November 19, 5619:. Retrieved 5610: 5600: 5588:. Retrieved 5580:CNN Business 5579: 5569: 5559:February 12, 5557:. Retrieved 5545: 5533: 5521:. Retrieved 5512: 5502: 5490:. Retrieved 5481: 5477: 5467: 5448: 5429: 5417: 5407:November 26, 5405:. Retrieved 5394: 5385: 5373:. Retrieved 5359: 5347:. Retrieved 5343:the original 5338: 5329: 5304: 5300: 5294: 5251: 5247: 5241: 5229:. Retrieved 5225: 5215: 5203:. Retrieved 5194: 5184: 5172:. Retrieved 5158: 5146:. Retrieved 5132:(5): 26–31. 5129: 5125: 5095: 5091: 5085: 5052: 5048: 5042: 5017: 5013: 5007: 4998:11567/244765 4980: 4976: 4970: 4937: 4933: 4926: 4914:. Retrieved 4900: 4875: 4871: 4864: 4844: 4811: 4807: 4800: 4765: 4761: 4755: 4722: 4716: 4709: 4676: 4670: 4664: 4623: 4619: 4613: 4572: 4568: 4562: 4537: 4533: 4527: 4515:. Retrieved 4490: 4486: 4476: 4464:. Retrieved 4449: 4437:. Retrieved 4433:the original 4394: 4390: 4380: 4353: 4347: 4328: 4322: 4308:: 27. 1999. 4305: 4301: 4295: 4276: 4270: 4257: 4252: 4227: 4223: 4217: 4192: 4188: 4182: 4165: 4161: 4155: 4127: 4120: 4106: 4073: 4069: 4063: 4051:. Retrieved 4018: 4014: 3976: 3972: 3966: 3954:. Retrieved 3900: 3896: 3883: 3840: 3837:Phys. Rev. B 3836: 3830: 3787: 3784:Phys. Rev. B 3783: 3777: 3752: 3748: 3742: 3717: 3713: 3707: 3695:. Retrieved 3675: 3668: 3657:the original 3626: 3622: 3594:. Retrieved 3574: 3567: 3555: 3522: 3518: 3508: 3496:. Retrieved 3492:ScienceAlert 3490: 3480: 3455: 3451: 3445: 3420: 3416: 3410: 3369: 3365: 3359: 3347:. Retrieved 3319: 3315: 3302: 3290:. Retrieved 3270: 3263: 3230: 3226: 3220: 3208:. Retrieved 3188: 3153: 3147: 3141: 3124: 3120: 3114: 3073: 3069: 3063: 3038: 3015: 3003:. Retrieved 2999:the original 2953: 2949: 2914: 2910: 2868: 2864: 2841:. Retrieved 2837:the original 2830: 2821: 2809:. Retrieved 2800: 2791: 2779:. Retrieved 2770: 2761: 2749:. Retrieved 2735: 2723: 2690: 2686: 2680: 2668: 2643: 2639: 2633: 2619: 2607: 2582: 2578: 2557: 2532: 2528: 2507: 2495: 2484:the original 2455: 2451: 2424:the original 2395: 2391: 2378: 2367:the original 2346: 2342: 2329: 2297:(6441): 19. 2294: 2290: 2265: 2255:November 20, 2253:. Retrieved 2225: 2218: 2209: 2206:ASEA Journal 2205: 2199: 2174: 2136: 2132: 2122: 2087: 2083: 2073: 2061: 2049:. Retrieved 2029: 2022: 2010: 1983: 1979: 1954:. Retrieved 1950:the original 1940: 1928:. Retrieved 1908: 1901: 1881: 1874: 1851: 1845: 1833:. Retrieved 1816: 1812: 1802: 1790:. Retrieved 1780: 1773: 1761:. Retrieved 1752: 1748: 1735: 1718: 1714: 1708: 1675: 1671: 1661: 1642: 1623: 1605: 1583: 1556: 1546:February 23, 1544:. Retrieved 1525: 1521: 1511: 1499:. Retrieved 1494: 1485: 1473:. Retrieved 1469:the original 1458: 1446:. Retrieved 1435: 1423:. Retrieved 1414:The Guardian 1412: 1402: 1350: 1346: 1318: 1286: 1268: 1265: 1261: 1257: 1246: 1241:Traditional 1240: 1236: 1221: 1209:spectroscopy 1205: 1193: 1165:biomolecules 1154: 1119: 1115: 1071: 1062:synchrotrons 1054:Raman lasers 1027: 1014:laser diodes 1006: 993: 970: 950:Applications 939: 886: 878: 857:dislocations 842: 838: 823:hyperdiamond 812: 788: 772: 759: 740: 715: 684: 664:hot filament 648: 644: 621:thermocouple 609: 597:dodecahedron 595:, such as a 585: 577: 573:precipitates 566: 537: 528: 513: 495:fluorescence 492: 473: 465: 442: 426:pyrophyllite 419: 400:designed by 395: 368: 348: 332: 304: 285: 254: 229: 151: 121: 117: 113: 110:Soviet Union 106: 82:crystallized 62: 58: 54: 50: 46: 42: 38: 34: 30: 28: 18: 5654:January 14, 4493:(4): 2467. 4397:: 628–642. 4302:New Diamond 4135:. pp.  4133:Holtzapffel 4053:October 16, 2646:(6): 2915. 2614:, pp. 25–26 2502:, pp. 40–43 1956:January 12, 1755:: 320–326. 1528:: 123–127. 1495:klenota.com 1475:February 4, 1383:Mr. Thenard 1293:H. G. Wells 1068:Electronics 1044:lasers and 1018:transistors 943:thermistors 803:micrometers 791:polycrystal 723:nitric acid 589:tetrahedron 383:gigapascals 379:Carborundum 194:ultraviolet 166:widely used 122:CVD diamond 100:), and the 5946:Categories 5776:August 21, 5714:August 17, 5422:O'Donoghue 4517:August 21, 4391:Proc. SPIE 3979:(1): 698. 3755:(4): R25. 2512:O'Donoghue 2349:(2): 125. 2270:O'Donoghue 2015:O'Donoghue 1930:August 15, 1792:August 18, 1425:October 1, 1395:References 1336:phosphorus 1332:Mr. Gannal 1157:covalently 1082:phosphorus 981:drill bits 799:nanometers 795:grain size 769:Properties 750:cavitation 549:sonication 480:Inclusions 391:Tracy Hall 350:15, 1955. 174:heat sinks 138:ultrasound 134:detonation 73:). Unlike 55:artificial 5935:0009-2347 5546:gjepc.org 5349:August 8, 5286:250857323 5264:CiteSeerX 5197:. Kitco. 5174:August 1, 5098:(2): 77. 4792:137379434 4768:: 73–76. 4429:137212507 4407:CiteSeerX 4314:1340-4792 4035:1944-8244 3956:April 24, 3875:118553722 3850:1307.3278 3822:119227072 3797:1208.3207 3639:CiteSeerX 3498:April 25, 2978:120882885 2893:250878100 2771:JCKOnline 2715:250819894 2245:841614801 2068:, pp. 6–7 1763:March 10, 1700:135789069 1648:page 151: 1629:page 140: 1592:page 137: 1501:April 13, 1363:Mr. Arago 1224:one maker 1222:At least 1196:gemstones 1176:Gemstones 1152:program. 1046:gyrotrons 946:seconds. 909:(99.9%), 869:toughness 662:power, a 660:microwave 581:hydraulic 516:pyrolysis 414:catlinite 335:Stockholm 292:Otto Ruff 225:gyrotrons 170:abrasives 130:nanometer 86:isotropic 59:synthetic 5957:Crystals 5819:July 11, 5813:Archived 5767:Archived 5744:July 29, 5738:Archived 5708:Archived 5682:Archived 5648:Archived 5615:Archived 5584:Archived 5550:Archived 5523:July 19, 5517:Archived 5492:June 21, 5486:Archived 5456:Archived 5437:Archived 5424:, p. 115 5401:Archived 5369:Archived 5205:March 7, 5199:Archived 5168:Archived 5148:March 2, 5142:Archived 5077:97692319 4962:93845703 4910:Archived 4853:Archived 4836:96368363 4747:27756719 4701:15626986 4656:27736134 4648:12215638 4605:10675358 4597:11397942 4511:Archived 4460:Archived 4098:10053956 4047:Archived 4043:29328632 3947:Archived 3935:15057827 3691:Archived 3590:Archived 3547:38658760 3437:96810777 3394:17818997 3349:March 4, 3340:Archived 3286:Archived 3255:93807288 3204:Archived 3106:17834381 3022:, p. 150 2805:Archived 2775:Archived 2745:Archived 2564:, p. 166 2514:, p. 320 2480:44669031 2272:, p. 474 2249:Archived 2045:Archived 2017:, p. 473 1924:Archived 1835:June 29, 1829:Archived 1786:Archived 1781:Diamonds 1757:Archived 1743:(1894). 1727:10365467 1651:Archived 1632:Archived 1613:Archived 1595:Archived 1563:, p. 309 1540:Archived 1448:June 11, 1419:Archived 1281:See also 1213:infrared 1159:linking 1124:. It is 1110:band gap 1034:infrared 996:sintered 985:abrasive 809:Hardness 656:radicals 508:De Beers 484:titanium 476:nitrogen 438:catalyst 422:toroidal 269:charcoal 178:switches 154:hardness 47:man-made 5688:May 30, 5375:May 27, 5339:Reuters 5309:Bibcode 5256:Bibcode 5231:May 23, 5057:Bibcode 5022:Bibcode 4942:Bibcode 4880:Bibcode 4816:Bibcode 4727:Bibcode 4681:Bibcode 4628:Bibcode 4620:Science 4577:Bibcode 4569:Science 4542:Bibcode 4495:Bibcode 4399:Bibcode 4232:Bibcode 4197:Bibcode 4078:Bibcode 3981:Bibcode 3943:4423950 3915:Bibcode 3855:Bibcode 3802:Bibcode 3757:Bibcode 3722:Bibcode 3631:Bibcode 3527:Bibcode 3460:Bibcode 3402:9805441 3374:Bibcode 3366:Science 3324:Bibcode 3235:Bibcode 3158:Bibcode 3127:: 5–9. 3098:1756408 3078:Bibcode 3070:Science 3045:197–230 3020:Barnard 2958:Bibcode 2919:Bibcode 2873:Bibcode 2843:May 10, 2811:May 10, 2781:May 10, 2751:June 9, 2695:Bibcode 2675:, p. 42 2648:Bibcode 2587:Bibcode 2562:Barnard 2537:Bibcode 2500:Barnard 2460:Bibcode 2420:4266566 2400:Bibcode 2351:Bibcode 2321:4348180 2299:Bibcode 2141:Bibcode 2092:Bibcode 2066:Barnard 1988:Bibcode 1232:Gemesis 1211:in the 1132:of 5.5 1130:bandgap 731:Belarus 652:methane 524:silicon 364:KOBELCO 243:History 67:diamond 5933:  5892:  5871:  5850:  5590:May 5, 5284:  5266:  5075:  4960:  4916:May 5, 4834:  4790:  4780:  4745:  4699:  4654:  4646:  4603:  4595:  4466:May 5, 4439:May 5, 4427:  4409:  4368:  4335:  4312:  4283:  4143:  4139:–178. 4096:  4041:  4033:  3941:  3933:  3897:Nature 3873:  3820:  3697:May 3, 3683:  3641:  3596:May 3, 3582:  3545:  3519:Nature 3435:  3400:  3392:  3292:May 3, 3278:  3253:  3210:May 3, 3196:  3149:Lithos 3104:  3096:  3051:  3005:May 5, 2976:  2891:  2713:  2478:  2452:Nature 2418:  2392:Nature 2319:  2291:Nature 2243:  2233:  2187:  2183:–113. 2133:Nature 2112:  2051:May 3, 2037:  1980:Nature 1916:  1889:  1862:  1725:  1698:  1692:113601 1690:  1090:p-type 1050:optics 742:Micron 727:powder 687:silica 547:) and 541:plasma 506:. The 504:X-rays 443:Nature 434:cobalt 430:nickel 398:anvils 375:Norton 373:(GE), 315:spinel 273:carbon 221:lasers 120:) and 84:in an 79:carbon 5929:(5). 5770:(PDF) 5763:(PDF) 5553:(PDF) 5542:(PDF) 5484:(1). 5282:S2CID 5073:S2CID 4958:S2CID 4832:S2CID 4788:S2CID 4743:S2CID 4697:S2CID 4652:S2CID 4601:S2CID 4425:S2CID 4258:et al 3950:(PDF) 3939:S2CID 3905:arXiv 3893:(PDF) 3871:S2CID 3845:arXiv 3818:S2CID 3792:arXiv 3660:(PDF) 3619:(PDF) 3433:S2CID 3398:S2CID 3343:(PDF) 3312:(PDF) 3251:S2CID 3094:JSTOR 2974:S2CID 2889:S2CID 2711:S2CID 2487:(PDF) 2476:S2CID 2448:(PDF) 2427:(PDF) 2416:S2CID 2388:(PDF) 2370:(PDF) 2339:(PDF) 2317:S2CID 2212:: 97. 2114:92683 2110:JSTOR 1696:S2CID 1688:JSTOR 1310:Notes 1228:laser 1217:X-ray 1169:redox 1138:BaBar 1078:doped 967:blade 775:flaws 678:, an 676:laser 666:, an 488:boron 469:carat 96:(6.0 65:, is 61:, or 5931:ISSN 5890:ISBN 5869:ISBN 5848:ISBN 5821:2021 5778:2018 5746:2018 5716:2018 5690:2018 5656:2017 5623:2018 5592:2022 5561:2016 5525:2022 5494:2022 5409:2008 5377:2015 5351:2009 5233:2024 5207:2015 5176:2013 5150:2004 4918:2009 4778:ISBN 4644:PMID 4593:PMID 4519:2018 4468:2009 4441:2009 4395:1739 4366:ISBN 4333:ISBN 4310:ISSN 4281:ISBN 4141:ISBN 4094:PMID 4055:2020 4039:PMID 4031:ISSN 3958:2009 3931:PMID 3699:2021 3681:ISBN 3598:2021 3580:ISBN 3543:PMID 3500:2024 3390:PMID 3351:2013 3294:2021 3276:ISBN 3212:2021 3194:ISBN 3102:PMID 3049:ISBN 3007:2009 2845:2015 2813:2015 2783:2015 2753:2018 2257:2021 2241:OCLC 2231:ISBN 2185:ISBN 2053:2021 2035:ISBN 1958:2016 1932:2009 1914:ISBN 1887:ISBN 1860:ISBN 1837:2019 1794:2011 1765:2014 1723:PMID 1548:2016 1503:2023 1477:2013 1450:2024 1427:2022 1150:LYRA 1098:LEDs 975:and 881:W/mK 674:, a 670:, a 610:The 569:BARS 497:and 377:and 339:ASEA 321:ASEA 281:lime 232:gems 223:and 188:and 160:and 118:HPHT 5678:CNN 5317:doi 5274:doi 5226:CNN 5134:doi 5100:doi 5065:doi 5030:doi 4993:hdl 4985:doi 4950:doi 4888:doi 4876:552 4824:doi 4770:doi 4735:doi 4689:doi 4636:doi 4624:297 4585:doi 4573:292 4550:doi 4503:doi 4417:doi 4358:doi 4240:doi 4205:doi 4170:doi 4137:176 4086:doi 4023:doi 3989:doi 3923:doi 3901:428 3863:doi 3810:doi 3765:doi 3753:201 3730:doi 3649:doi 3535:doi 3523:629 3468:doi 3425:doi 3382:doi 3370:133 3332:doi 3243:doi 3231:202 3166:doi 3129:doi 3086:doi 3074:128 2966:doi 2927:doi 2881:doi 2703:doi 2656:doi 2595:doi 2545:doi 2533:104 2468:doi 2456:184 2408:doi 2396:176 2359:doi 2307:doi 2295:365 2181:100 2149:doi 2137:121 2100:doi 2088:79a 1996:doi 1984:196 1821:doi 1753:118 1680:doi 1530:doi 1161:DNA 1146:VUV 1092:or 710:TEM 337:by 298:of 180:at 168:in 35:LGD 5948:: 5927:82 5925:. 5921:. 5811:. 5807:. 5736:. 5724:^ 5680:. 5676:. 5664:^ 5646:. 5640:. 5613:. 5609:. 5582:. 5578:. 5544:. 5515:. 5511:. 5482:58 5480:. 5476:. 5399:. 5337:. 5315:. 5305:97 5303:. 5280:. 5272:. 5262:. 5252:42 5250:. 5224:. 5193:. 5140:. 5130:82 5128:. 5124:. 5112:^ 5094:. 5071:. 5063:. 5053:20 5051:. 5028:. 5018:16 5016:. 4991:. 4981:51 4979:. 4956:. 4948:. 4938:23 4936:. 4886:. 4874:. 4830:. 4822:. 4812:25 4810:. 4786:. 4776:. 4766:48 4741:. 4733:. 4723:27 4721:. 4695:. 4687:. 4677:33 4675:. 4650:. 4642:. 4634:. 4622:. 4599:. 4591:. 4583:. 4571:. 4548:. 4538:14 4536:. 4509:. 4501:. 4491:74 4485:. 4423:. 4415:. 4405:. 4389:. 4364:. 4306:15 4304:. 4238:. 4228:28 4226:. 4203:. 4193:12 4191:. 4166:35 4164:. 4131:. 4092:. 4084:. 4074:70 4072:. 4045:. 4037:. 4029:. 4019:10 4017:. 4013:. 4001:^ 3987:. 3977:86 3975:. 3945:. 3937:. 3929:. 3921:. 3913:. 3899:. 3895:. 3869:. 3861:. 3853:. 3841:84 3839:. 3816:. 3808:. 3800:. 3788:79 3786:. 3763:. 3751:. 3728:. 3718:76 3716:. 3689:. 3647:. 3637:. 3625:. 3621:. 3606:^ 3588:. 3541:. 3533:. 3521:. 3489:. 3466:. 3456:17 3454:. 3431:. 3421:79 3419:. 3396:. 3388:. 3380:. 3368:. 3338:. 3330:. 3318:. 3314:. 3284:. 3249:. 3241:. 3229:. 3202:. 3178:^ 3164:. 3154:60 3152:. 3125:19 3123:. 3100:. 3092:. 3084:. 3072:. 3047:. 3027:^ 2986:^ 2972:. 2964:. 2954:49 2952:. 2939:^ 2925:. 2915:16 2913:. 2901:^ 2887:. 2879:. 2869:61 2867:. 2853:^ 2829:. 2803:. 2799:. 2769:. 2709:. 2701:. 2691:39 2689:. 2654:. 2644:39 2642:. 2593:. 2583:14 2581:. 2569:^ 2543:. 2531:. 2519:^ 2474:. 2466:. 2454:. 2450:. 2435:^ 2414:. 2406:. 2394:. 2390:. 2357:. 2347:31 2345:. 2341:. 2315:. 2305:. 2293:. 2289:. 2277:^ 2247:. 2239:. 2210:28 2208:. 2163:^ 2147:. 2135:. 2131:. 2108:. 2098:. 2086:. 2082:. 2043:. 1994:. 1982:. 1978:. 1966:^ 1922:. 1854:. 1827:. 1817:99 1815:. 1811:. 1751:. 1747:. 1719:57 1717:. 1694:. 1686:. 1676:30 1674:. 1670:. 1568:^ 1538:. 1526:87 1524:. 1520:. 1493:. 1417:. 1411:. 1351:10 1349:, 1134:eV 871:. 623:. 478:. 432:, 317:. 211:CO 156:, 148:mm 94:ct 57:, 53:, 49:, 45:, 41:, 29:A 5937:. 5898:. 5877:. 5856:. 5823:. 5780:. 5748:. 5718:. 5692:. 5658:. 5625:. 5594:. 5563:. 5527:. 5496:. 5411:. 5379:. 5353:. 5323:. 5319:: 5311:: 5288:. 5276:: 5258:: 5235:. 5209:. 5178:. 5152:. 5136:: 5106:. 5102:: 5096:3 5079:. 5067:: 5059:: 5036:. 5032:: 5024:: 5001:. 4995:: 4987:: 4964:. 4952:: 4944:: 4920:. 4894:. 4890:: 4882:: 4838:. 4826:: 4818:: 4794:. 4772:: 4749:. 4737:: 4729:: 4703:. 4691:: 4683:: 4658:. 4638:: 4630:: 4607:. 4587:: 4579:: 4556:. 4552:: 4544:: 4521:. 4505:: 4497:: 4470:. 4443:. 4419:: 4401:: 4374:. 4360:: 4341:. 4316:. 4289:. 4246:. 4242:: 4234:: 4211:. 4207:: 4199:: 4176:. 4172:: 4149:. 4100:. 4088:: 4080:: 4057:. 4025:: 3995:. 3991:: 3983:: 3960:. 3925:: 3917:: 3907:: 3877:. 3865:: 3857:: 3847:: 3824:. 3812:: 3804:: 3794:: 3771:. 3767:: 3759:: 3736:. 3732:: 3724:: 3701:. 3651:: 3633:: 3627:7 3600:. 3549:. 3537:: 3529:: 3502:. 3474:. 3470:: 3462:: 3439:. 3427:: 3404:. 3384:: 3376:: 3353:. 3334:: 3326:: 3320:9 3296:. 3257:. 3245:: 3237:: 3214:. 3172:. 3168:: 3160:: 3135:. 3131:: 3108:. 3088:: 3080:: 3057:. 3009:. 2980:. 2968:: 2960:: 2933:. 2929:: 2921:: 2895:. 2883:: 2875:: 2847:. 2815:. 2785:. 2755:. 2717:. 2705:: 2697:: 2662:. 2658:: 2650:: 2601:. 2597:: 2589:: 2551:. 2547:: 2539:: 2470:: 2462:: 2410:: 2402:: 2361:: 2353:: 2323:. 2309:: 2301:: 2259:. 2193:. 2157:. 2151:: 2143:: 2116:. 2102:: 2094:: 2055:. 2004:. 1998:: 1990:: 1960:. 1934:. 1895:. 1868:. 1839:. 1823:: 1796:. 1767:. 1729:. 1702:. 1682:: 1550:. 1532:: 1505:. 1479:. 1452:. 1429:. 1042:2 927:C 900:C 718:× 216:2 116:( 98:g 33:(

Index

Six non-faceted diamond crystals of 2–3 mm (0.079–0.118 in) size; they are yellow, green-yellow, green-blue, light-blue, light-blue and dark blue.
diamond
obtained by mining
diamond simulants
carbon
crystallized
isotropic
chemical and physical properties
ct
g
heaviest natural diamond
Soviet Union
chemical vapor deposition
nanometer
detonation
ultrasound

hardness
thermal conductivity
electron mobility
widely used
abrasives
heat sinks
switches
power stations
field-effect transistors
light-emitting diodes
ultraviolet
high-energy particles
thermal expansion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.