Knowledge

Turbojet

Source 📝

1653:
flow progresses from the intake to the propelling nozzle. These losses are quantified by compressor and turbine efficiencies and ducting pressure losses. When used in a turbojet application, where the output from the gas turbine is used in a propelling nozzle, raising the turbine temperature increases the jet velocity. At normal subsonic speeds this reduces the propulsive efficiency, giving an overall loss, as reflected by the higher fuel consumption, or SFC. However, for supersonic aircraft this can be beneficial, and is part of the reason why the Concorde employed turbojets. Turbojet systems are complex systems therefore to secure optimal function of such system, there is a call for the newer models being developed to advance its control systems to implement the newest knowledge from the areas of automation, so increase its safety and effectiveness.
394: 849:, and fuel tank pressurization. The engine itself needs air at various pressures and flow rates to keep it running. This air comes from the compressor, and without it, the turbines would overheat, the lubricating oil would leak from the bearing cavities, the rotor thrust bearings would skid or be overloaded, and ice would form on the nose cone. The air from the compressor, called secondary air, is used for turbine cooling, bearing cavity sealing, anti-icing, and ensuring that the rotor axial load on its thrust bearing will not wear it out prematurely. Supplying bleed air to the aircraft decreases the efficiency of the engine because it has been compressed, but then does not contribute to producing thrust. 661:
Nevertheless, the 593 met all the requirements of the Concorde programme. Estimates made in 1964 for the Concorde design at Mach 2.2 showed the penalty in range for the supersonic airliner, in terms of miles per gallon, compared to subsonic airliners at Mach 0.85 (Boeing 707, DC-8) was relatively small. This is because the large increase in drag is largely compensated by an increase in powerplant efficiency (the engine efficiency is increased by the ram pressure rise which adds to the compressor pressure rise, the higher aircraft speed approaches the exhaust jet speed increasing propulsive efficiency).
758: 578:, on 12 April 1937. It was liquid-fuelled. Whittle's team experienced near-panic during the first start attempts when the engine accelerated out of control to a relatively high speed despite the fuel supply being cut off. It was subsequently found that fuel had leaked into the combustion chamber during pre-start motoring checks and accumulated in pools, so the engine would not stop accelerating until all the leaked fuel had burned off. Whittle was unable to interest the government in his invention, and development continued at a slow pace. 668:. Aside from giving faster flight speeds turbojets had greater reliability than piston engines, with some models demonstrating dispatch reliability rating in excess of 99.9%. Pre-jet commercial aircraft were designed with as many as four engines in part because of concerns over in-flight failures. Overseas flight paths were plotted to keep planes within an hour of a landing field, lengthening flights. The increase in reliability that came with the turbojet enabled three- and two-engine designs, and more direct long-distance flights. 767: 723: 534: 512: 413: 32: 405: 750: 896:) and rotates because of the impact of the hot gas stream. Later stages are convergent ducts that accelerate the gas. Energy is transferred into the shaft through momentum exchange in the opposite way to energy transfer in the compressor. The power developed by the turbine drives the compressor and accessories, like fuel, oil, and hydraulic pumps that are driven by the accessory gearbox. 869:. In a piston engine, the burning gases are confined to a small volume, and as the fuel burns, the pressure increases. In a turbojet, the air and fuel mixture burn in the combustor and pass through to the turbine in a continuous flowing process with no pressure build-up. Instead, a small pressure loss occurs in the combustor. 448:(that drives the compressor). The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, 740:
Allowable turbine entry temperatures have increased steadily over time both with the introduction of superior alloys and coatings, and with the introduction and progressive effectiveness of blade cooling designs. On early engines, the turbine temperature limit had to be monitored, and avoided, by the
1652:
The efficiency of a gas turbine is increased by raising the overall pressure ratio, requiring higher-temperature compressor materials, and raising the turbine entry temperature, requiring better turbine materials and/or improved vane/blade cooling. It is also increased by reducing the losses as the
852:
Compressor types used in turbojets were typically axial or centrifugal. Early turbojet compressors had low pressure ratios up to about 5:1. Aerodynamic improvements including splitting the compressor into two separately rotating parts, incorporating variable blade angles for entry guide vanes and
736:
Water injection was a common method used to increase thrust, usually during takeoff, in early turbojets that were thrust-limited by their allowable turbine entry temperature. The water increased thrust at the temperature limit, but prevented complete combustion, often leaving a very visible smoke
660:
engine. However, joint studies by Rolls-Royce and Snecma for a second generation SST engine using the 593 core were done more than three years before Concorde entered service. They evaluated bypass engines with bypass ratios between 0.1 and 1.0 to give improved take-off and cruising performance.
872:
The fuel-air mixture can only burn in slow-moving air, so an area of reverse flow is maintained by the fuel nozzles for the approximately stoichiometric burning in the primary zone. Further compressed air is introduced which completes the combustion process and reduces the temperature of the
787:
The intake has to supply air to the engine with an acceptably small variation in pressure (known as distortion) and having lost as little energy as possible on the way (known as pressure recovery). The ram pressure rise in the intake is the inlet's contribution to the propulsion system's
910:
After the turbine, the gases expand through the exhaust nozzle producing a high velocity jet. In a convergent nozzle, the ducting narrows progressively to a throat. The nozzle pressure ratio on a turbojet is high enough at higher thrust settings to cause the nozzle to choke.
783:
into the rotating compressor blades. Older engines had stationary vanes in front of the moving blades. These vanes also helped to direct the air onto the blades. The air flowing into a turbojet engine is always subsonic, regardless of the speed of the aircraft itself.
421: 600:, (also referred to as the "Gloster Whittle", "Gloster Pioneer", or "Gloster G.40") made the first British jet-engined flight in 1941. It was designed to test the Whittle jet engine in flight, and led to the development of the Gloster Meteor. 467:
Turbojets have poor efficiency at low vehicle speeds, which limits their usefulness in vehicles other than aircraft. Turbojet engines have been used in isolated cases to power vehicles other than aircraft, typically for attempts on
2321:
SAMI 2010 • 8th IEEE International Symposium on Applied Machine Intelligence and Informatics • 28–30 January 2010 • Herl'any, Slovakia (Advanced methods of turbojet engines' control), R. Andoga, L. Főző, L. Madarász and J. Judičák
573:
in a seminal paper in 1926 ("An Aerodynamic Theory of Turbine Design"). Whittle later concentrated on the simpler centrifugal compressor only, for a variety of practical reasons. A Whittle engine was the first turbojet to run, the
615:, the Me 262 in April and the Gloster Meteor in July. Only about 15 Meteor saw WW2 action but up to 1400 Me 262s were produced, with 300 entering combat, delivering the first ground attacks and air combat victories of jet planes. 964:
An afterburner or "reheat jetpipe" is a combustion chamber added to reheat the turbine exhaust gases. The fuel consumption is very high, typically four times that of the main engine. Afterburners are used almost exclusively on
560:
formally submitted his ideas for a turbojet to his superiors. In October 1929 he developed his ideas further. On 16 January 1930 in England, Whittle submitted his first patent (granted in 1932). The patent showed a two-stage
1158: 889:. The hottest turbine vanes and blades in an engine have internal cooling passages. Air from the compressor is passed through these to keep the metal temperature within limits. The remaining stages do not need cooling. 761:
Schematic diagram showing the operation of a centrifugal flow turbojet engine. The compressor is driven by the turbine stage and throws the air outwards, requiring it to be redirected parallel to the axis of
873:
combustion products to a level which the turbine can accept. Less than 25% of the air is typically used for combustion, as an overall lean mixture is required to keep within the turbine temperature limits.
918:
is fitted, the divergent (increasing flow area) section allows the gases to reach supersonic velocity within the divergent section. Additional thrust is generated by the higher resulting exhaust velocity.
741:
pilot, typically during starting and at maximum thrust settings. Automatic temperature limiting was introduced to reduce pilot workload and reduce the likelihood of turbine damage due to over-temperature.
2325:
Technical University of Košice, Department of Cybernetics and Artificial Intelligence, Košice, Slovakia ** Technical University of Košice, Department of Environmental Studies and Information Engineering,
1403: 1472:". If the nozzle is choked, the pressure at the nozzle exit plane is greater than atmospheric pressure, and extra terms must be added to the above equation to account for the pressure thrust. 1552: 733:
in the United States was in a good position to enter the jet engine business due to its experience with the high-temperature materials used in their turbosuperchargers during World War II.
853:
stators, and bleeding air from the compressor enabled later turbojets to have overall pressure ratios of 15:1 or more. After leaving the compressor, the air enters the combustion chamber.
711:
Early German turbojets had severe limitations on the amount of running they could do due to the lack of suitable high temperature materials for the turbines. British engines such as the
1475:
The rate of flow of fuel entering the engine is very small compared with the rate of flow of air. If the contribution of fuel to the nozzle gross thrust is ignored, the net thrust is:
770:
Schematic diagram showing the operation of an axial flow turbojet engine. Here, the compressor is again driven by the turbine, but the air flow remains parallel to the axis of thrust
649:) which gave a smaller diameter, although longer, engine. By replacing the propeller used on piston engines with a high speed jet of exhaust, higher aircraft speeds were attainable. 2418: 803:
propulsion systems where the intake and engine contributions to the total compression were 63%/8% at Mach 2 and 54%/17% at Mach 3+. Intakes have ranged from "zero-length" on the
2379: 585:
patented a similar engine in 1935. His design, an axial-flow engine, as opposed to Whittle's centrifugal flow engine, was eventually adopted by most manufacturers by the 1950s.
1454: 1207: 1249: 826:
The turbine rotates the compressor at high speed, adding energy to the airflow while squeezing (compressing) it into a smaller space. Compressing the air increases its
1631: 1582: 1283: 1032: 476:
engine, a development of the gas turbine engine where an additional turbine is used to drive a rotating output shaft. These are common in helicopters and hovercraft.
530:. His engine was to be an axial-flow turbojet, but was never constructed, as it would have required considerable advances over the state of the art in compressors. 1603: 1313: 380: 630:
is extracted to drive the compressor. The turbine exit gases still contain considerable energy that is converted in the propelling nozzle to a high speed jet.
2411: 675:, a key technology that dragged progress on jet engines. Non-UK jet engines built in the 1930s and 1940s had to be overhauled every 10 or 20 hours due to 1995:, Powerplants For The Concord Supersonic Civil Airliner, S.G.Hooker, Proceedings of The Institution of Mechanical Engineers, Summer meeting 1964, p.1227 3120: 1734: 1039: 2128: 1953: 799:
The intake gains prominence at high speeds when it generates more compression than the compressor stage. Well-known examples are the Concorde and
2404: 1966:
Power for the second-generation SST, Young and Devriese, Extracts from the 25th Louis Bleriot Lecture, Flight International,11 May 1972, p.659
592:, powered by von Ohain's design, became the world's first aircraft to fly using the thrust from a turbojet engine. It was flown by test pilot 393: 373: 1843: 719:
for 80 hours initially, later extended to 150 hours between overhauls, as a result of an extended 500-hour run being achieved in tests.
618:
Air is drawn into the rotating compressor via the intake and is compressed to a higher pressure before entering the combustion chamber.
2797: 2160: 2287: 2787: 1992: 622:
is mixed with the compressed air and burns in the combustor. The combustion products leave the combustor and expand through the
2935: 2760: 366: 2098: 1871: 1328: 2309: 2115: 1980: 1921: 1760: 2792: 1895: 3073: 96: 1820: 2237: 1480: 115: 68: 2660: 2539: 1682: 487:, due to their high exhaust speed, small frontal area, and relative simplicity. They are used on some supersonic 75: 2709: 978: 974: 444:. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a 53: 815: 2897: 1930: 842: 483:
which were required to spend a long period travelling supersonically. Turbojets are common in medium range
82: 3105: 2745: 2369: 2198: 2041: 2363: 2184: 2135: 2064: 3037: 2928: 2740: 2516: 1414: 337: 213: 170: 1170: 834:
fan rotates at about 2,500 RPM, while a small helicopter engine compressor rotates around 50,000 RPM.
3125: 2387: 1798: 1730: 811: 64: 49: 1218: 818:, each feeding three engines with an intake airflow of about 800 pounds per second (360 kg/s). 2995: 2817: 2735: 2595: 928: 881:
Hot gases leaving the combustor expand through the turbine. Typical materials for turbines include
841:
from the compressor to the aircraft for the operation of various sub-systems. Examples include the
800: 2174:"Trade-offs in Jet Inlet Design" Sobester, Journal of Aircraft Vol.44, No.3, May–June 2007, Fig.12 1776: 2689: 2476: 804: 433: 332: 288: 149: 42: 2665: 2635: 2630: 2554: 2471: 1677: 789: 634: 566: 320: 245: 219: 181: 2054:
Sims, C.T., Chester, A History of Superalloy Metallurgy, Proc. 5th Symp. on Superalloys, 1984.
2042:"sir alec | flame tubes | marshal sir | 1949 | 0598 | Flight Archive" 1993:
https://journals-sagepub-com.wikipedialibrary.idm.oclc.org/doi/pdf/10.1177/0020348363178001159
1911: 3115: 2921: 2902: 2670: 2640: 2620: 1687: 1608: 1559: 1260: 1009: 831: 526:
The first patent for using a gas turbine to power an aircraft was filed in 1921 by Frenchman
1940: 1885: 1750: 3110: 2990: 2887: 2850: 2802: 2564: 604: 570: 553: 298: 176: 946:
before changing to water and then water-methanol. A system to trial the technique in the
8: 3084: 3010: 2985: 1975:
The Engine For TSR2, J.D.Wragg - TSR2 with Hindsight, Royal Air Force Historical Society,
1634: 1587: 1297: 966: 779:
An intake, or tube, is needed in front of the compressor to help direct the incoming air
712: 692: 688: 684: 665: 2396: 2253: 1707: 2955: 2755: 2704: 1667: 793: 757: 315: 89: 2782: 2574: 2375: 2305: 2233: 2154: 2111: 2094: 1976: 1917: 1891: 1867: 1756: 905: 469: 441: 232: 464:, developed the concept independently into practical engines during the late 1930s. 2882: 2675: 2645: 2615: 2549: 1662: 730: 716: 696: 646: 642: 562: 527: 488: 397: 327: 153: 1861: 1832:
Experimental & Prototype US Air Force Jet Fighters, Jenkins & Landis, 2008
3032: 2960: 2840: 2534: 2462: 2431: 947: 915: 766: 672: 627: 597: 542: 293: 256: 136: 2970: 2447: 1465: 1288: 992: 988: 939: 608: 589: 582: 546: 515: 495:, but most fighters spend little time travelling supersonically, and so employ 484: 457: 453: 226: 1153:{\displaystyle F_{N}=({\dot {m}}_{air}+{\dot {m}}_{f})V_{j}-{\dot {m}}_{air}V} 830:
and temperature. The smaller the compressor, the faster it turns. The (large)
703:
technology allowed other countries to produce economically practical engines.
3099: 3042: 3020: 3005: 2807: 2605: 2579: 2511: 2383: 2372:: 1941 survey with discussion of experimental designs of the 1920s and 1930s. 1646: 1318: 866: 722: 676: 638: 593: 575: 557: 519: 449: 188: 892:
In the first stage, the turbine is largely an impulse turbine (similar to a
533: 3055: 3015: 2861: 2835: 2825: 2655: 2610: 2212: 2028: 1287:
is the speed of the jet (the exhaust plume) and is assumed to be less than
969:, most being military aircraft. Two supersonic airliners, Concorde and the 893: 780: 753:
An animation of an axial compressor. The stationary blades are the stators.
612: 511: 500: 472:. Where vehicles are "turbine-powered", this is more commonly by use of a 412: 3060: 2980: 2965: 2944: 2730: 2725: 2544: 2442: 2434: 2392: 1469: 959: 932: 657: 538: 437: 265: 193: 143: 683:
alloys which allowed extended use without overhaul, engines such as the
679:
and other types of damage to blades. British engines, however, utilised
3000: 2975: 2501: 2427: 1913:
The Me 262 Stormbird: From the Pilots Who Flew, Fought, and Survived It
981: 700: 518:, the world's first aircraft to fly purely on turbojet power, using an 473: 204: 157: 1910:
Heaton, Colin D.; Lewis, Anne-Marien; Tillman, Barrett (15 May 2012).
1821:
Improvements relating to the propulsion of aircraft and other vehicles
3025: 2892: 2750: 2600: 2559: 2496: 862: 838: 496: 479:
Turbojets were used on Concorde and the longer-range versions of the
352: 239: 199: 1728:
Maxime Guillaume,"Propulseur par réaction sur l'air," French patent
545:, the first British aircraft to fly with a turbojet engine, and the 31: 2866: 2625: 2569: 2486: 2467: 846: 827: 807: 749: 699:
for 500 hours without maintenance. It was not until the 1950s that
653: 347: 310: 305: 276: 20: 1863:
The First Jet Pilot – The Story of German Test Pilot Erich Warsitz
1605:
if there is to be a net forward thrust on the airframe. The speed
715:
used better materials giving improved durability. The Welland was
2481: 1672: 943: 886: 882: 680: 623: 461: 445: 281: 161: 2913: 2650: 2506: 1004: 970: 569:. Practical axial compressors were made possible by ideas from 492: 480: 342: 2360:: includes rare videos (Heinkel He 178) and audio commentaries 2357: 2830: 2006: 1645:
The operation of a turbojet is modelled approximately by the
404: 1844:"Frank Whittle, 89, Dies; His Jet Engine Propelled Progress" 619: 16:
Airbreathing jet engine which is typically used in aircraft
2426: 1954:"The Day Germany's First Jet Fighter Soared into History" 503:
to raise exhaust speed for bursts of supersonic travel.
420: 814:, to the twin 65 feet (20 m) long, intakes on the 726:
J85-GE-17A turbojet engine from General Electric (1970)
652:
One of the last applications for a turbojet engine was
2211:"World Encyclopedia of Aero Engines – 5th edition" by 2027:"World Encyclopedia of Aero Engines – 5th edition" by 1823:, British patent no. 347,206 (filed: 16 January 1930). 1398:{\displaystyle ({\dot {m}}_{air}+{\dot {m}}_{f})V_{j}} 436:
which is typically used in aircraft. It consists of a
2110:"Test Pilot" Brian Trubshaw, Sutton Publishing 1999, 1611: 1590: 1562: 1483: 1417: 1331: 1300: 1263: 1221: 1173: 1042: 1012: 927:
Thrust was most commonly increased in turbojets with
2341: 2304:"Gas Turbine Theory" Cohen, Rogers, Saravanamuttoo, 1752:
Britain's Jet Age: From the Meteor to the Sea Vixen
56:. Unsourced material may be challenged and removed. 2798:Engine-indicating and crew-alerting system (EICAS) 1909: 1625: 1597: 1576: 1546: 1448: 1397: 1307: 1277: 1243: 1201: 1152: 1026: 400:, the first production turbojet in operational use 2831:Full Authority Digital Engine/Electronics (FADEC) 603:The first two operational turbojet aircraft, the 3097: 1253:is the rate of flow of fuel entering the engine 1547:{\displaystyle F_{N}={\dot {m}}_{air}(V_{j}-V)} 2788:Electronic centralised aircraft monitor (ECAM) 1584:must exceed the true airspeed of the aircraft 1211:is the rate of flow of air through the engine 611:, entered service in 1944, towards the end of 2929: 2412: 1633:can be calculated thermodynamically based on 664:Turbojet engines had a significant impact on 374: 2274: 2268: 2232:(2nd ed.). Cambridge University Press. 2227: 1739:(filed: 3 May 1921; issued: 13 January 1922) 2344:Constructing A Turbocharger Turbojet Engine 408:Diagram of a typical gas turbine jet engine 19:For the Hong Kong based ferry company, see 2936: 2922: 2793:Electronic flight instrument system (EFIS) 2419: 2405: 2358:Erich Warsitz, the world's first jet pilot 1622: 1594: 1573: 1304: 1274: 1023: 987:Reheat was flight-trialled in 1944 on the 977:, a carrier aircraft for the experimental 865:is significantly different from that in a 381: 367: 1936: 1883: 116:Learn how and when to remove this message 3121:Research and development in Nazi Germany 2223: 2221: 2199:"1947 | 1359 | Flight Archive" 2071:. Flightglobal.com: 448. 25 October 1945 1841: 1722: 765: 756: 748: 721: 532: 510: 419: 411: 403: 392: 1884:Listemann, Phil H. (6 September 2016), 3098: 2378:– Correspondence from the archives of 2159:: CS1 maint: archived copy as title ( 2004: 1458:represents the ram drag of the intake 922: 2917: 2400: 2364:NASA reciprocating Engine Description 2218: 1799:"History – Frank Whittle (1907–1996)" 1748: 1640: 856: 2005:Larson, George C. (April–May 2010), 1842:Foderaro, Lisa W. (10 August 1996). 1464:If the speed of the jet is equal to 914:If, however, a convergent-divergent 54:adding citations to reliable sources 25: 2185:"1960 | Flight | Archive" 1407:represents the nozzle gross thrust 938:Liquid injection was tested on the 633:The first turbojets, used either a 13: 3074:Timeline of heat engine technology 2335: 1887:The Gloster Meteor F.I & F.III 935:. Some engines used both methods. 14: 3137: 2351: 2288:"11.6 Performance of Jet Engines" 2228:Cumpsty, Nicholas (2003). "3.1". 2065:"Rolls-Royce Derwent | 1945" 1777:"Chasing the Sun – Frank Whittle" 1449:{\displaystyle {\dot {m}}_{air}V} 973:, also used afterburners as does 2943: 2661:Thrust specific fuel consumption 2215:, Sutton Publishing, 2006, p.160 2031:, Sutton Publishing, 2006, p.192 1866:, Pen and Sword Books, England, 1202:{\displaystyle {\dot {m}}_{air}} 706: 30: 2382:relating to the development of 2370:Possibilities of Jet Propulsion 2315: 2298: 2280: 2246: 2205: 2191: 2177: 2168: 2121: 2104: 2083: 2057: 2048: 2034: 2021: 1998: 1986: 1969: 1960: 1946: 1903: 1877: 1749:Ellis, Guy (15 February 2016). 1683:Turbojet development at the RAE 671:High-temperature alloys were a 41:needs additional citations for 2710:Propeller speed reduction unit 1854: 1835: 1826: 1813: 1791: 1769: 1742: 1700: 1541: 1522: 1382: 1332: 1244:{\displaystyle {\dot {m}}_{f}} 1106: 1056: 975:Scaled Composites White Knight 953: 950:was devised but never fitted. 1: 2380:Peterhouse, Cambridge College 1693: 998: 821: 816:North American XB-70 Valkyrie 774: 744: 2256:. NASA Glenn Research Center 1710:. NASA Glenn Research Center 843:environmental control system 7: 2621:Engine pressure ratio (EPR) 2366:: includes a software model 2342:Springer, Edwin H. (2001). 1656: 1034:of a turbojet is given by: 861:The burning process in the 10: 3142: 2888:Auxiliary power unit (APU) 2517:Rotating detonation engine 1890:, Philedition, p. 3, 1468:the nozzle is said to be " 957: 903: 876: 506: 338:Rotating detonation engine 18: 3082: 3069: 3051: 2951: 2875: 2849: 2816: 2773: 2718: 2697: 2688: 2588: 2525: 2455: 2441: 2388:Cambridge Digital Library 899: 812:Lockheed C-141 Starlifter 2596:Aircraft engine starting 2386:reciprocating engine in 2376:Whittle Power Jet Papers 2346:. Turbojet Technologies. 2091:"Starting Something Big" 942:in 1941 initially using 929:water/methanol injection 805:Pratt & Whitney TF33 801:Lockheed SR-71 Blackbird 541:/700 engine flew in the 214:External thermal engines 171:Internal thermal engines 2477:Pulse detonation engine 2275:Cumpsty, Jet Propulsion 1626:{\displaystyle V_{j}\;} 1577:{\displaystyle V_{j}\;} 1278:{\displaystyle V_{j}\;} 1027:{\displaystyle F_{N}\;} 565:feeding a single-sided 434:airbreathing jet engine 333:Pulse detonation engine 2666:Thrust to weight ratio 2636:Overall pressure ratio 2631:Jet engine performance 2555:Centrifugal compressor 2472:Gluhareff Pressure Jet 1678:Turbine engine failure 1627: 1599: 1578: 1548: 1450: 1399: 1309: 1279: 1245: 1203: 1154: 1028: 790:overall pressure ratio 771: 763: 754: 727: 635:centrifugal compressor 588:On 27 August 1939 the 567:centrifugal compressor 549: 523: 425: 417: 409: 401: 321:Gluhareff Pressure Jet 3016:Steam (reciprocating) 2903:Ice protection system 2671:Variable cycle engine 2641:Propulsive efficiency 1688:Variable cycle engine 1628: 1600: 1579: 1556:The speed of the jet 1549: 1451: 1400: 1310: 1280: 1246: 1204: 1155: 1029: 769: 760: 752: 725: 536: 514: 423: 415: 407: 396: 2803:Flight data recorder 2565:Constant speed drive 2545:Afterburner (reheat) 1609: 1588: 1560: 1481: 1415: 1329: 1298: 1261: 1219: 1171: 1040: 1010: 810:installation in the 605:Messerschmitt Me 262 554:RAF College Cranwell 299:Air-augmented rocket 50:improve this article 3085:Thermodynamic cycle 2996:Pistonless (Rotary) 2986:Photo-Carnot engine 1860:Warsitz, Lutz 2009 1635:adiabatic expansion 1598:{\displaystyle V\;} 1308:{\displaystyle V\;} 967:supersonic aircraft 923:Thrust augmentation 713:Rolls-Royce Welland 693:de Havilland Goblin 689:Rolls-Royce Derwent 685:Rolls-Royce Welland 666:commercial aviation 137:Aircraft propulsion 131:Part of a series on 3106:English inventions 2705:Propeller governor 2312:, p72-73, fig 3.11 2089:Robert V. Garvin, 1916:. Voyageur Press. 1848:The New York Times 1668:Exoskeletal engine 1641:Cycle improvements 1623: 1595: 1574: 1544: 1446: 1395: 1305: 1275: 1241: 1199: 1150: 1024: 857:Combustion chamber 794:thermal efficiency 772: 764: 755: 728: 691:, and by 1949 the 550: 524: 470:land speed records 426: 418: 410: 402: 316:Valveless pulsejet 3091: 3090: 2911: 2910: 2783:Annunciator panel 2769: 2768: 2684: 2683: 2575:Propelling nozzle 2254:"Turbojet Thrust" 2099:978-1-56347-289-3 1872:978-1-84415-818-8 1708:"Turbojet Engine" 1507: 1462: 1461: 1428: 1373: 1345: 1232: 1184: 1132: 1097: 1069: 906:Propelling nozzle 837:Turbojets supply 552:In 1928, British 442:propelling nozzle 391: 390: 233:Electric aircraft 126: 125: 118: 100: 3133: 3126:1930s in science 2938: 2931: 2924: 2915: 2914: 2898:Hydraulic system 2893:Bleed air system 2883:Air-start system 2746:Counter-rotating 2695: 2694: 2676:Windmill restart 2646:Specific impulse 2616:Compressor stall 2550:Axial compressor 2453: 2452: 2421: 2414: 2407: 2398: 2397: 2347: 2329: 2319: 2313: 2302: 2296: 2295: 2284: 2278: 2272: 2266: 2265: 2263: 2261: 2250: 2244: 2243: 2225: 2216: 2209: 2203: 2202: 2195: 2189: 2188: 2181: 2175: 2172: 2166: 2164: 2158: 2150: 2148: 2146: 2140: 2134:. Archived from 2133: 2125: 2119: 2118:, Appendix VIIIb 2108: 2102: 2087: 2081: 2080: 2078: 2076: 2061: 2055: 2052: 2046: 2045: 2038: 2032: 2025: 2019: 2018: 2002: 1996: 1990: 1984: 1973: 1967: 1964: 1958: 1957: 1950: 1944: 1934: 1928: 1927: 1923:978-1-61058434-0 1907: 1901: 1900: 1881: 1875: 1858: 1852: 1851: 1839: 1833: 1830: 1824: 1817: 1811: 1810: 1808: 1806: 1795: 1789: 1788: 1786: 1784: 1773: 1767: 1766: 1762:978-1-44564901-6 1746: 1740: 1738: 1737: 1733: 1726: 1720: 1719: 1717: 1715: 1704: 1663:Air-start system 1632: 1630: 1629: 1624: 1621: 1620: 1604: 1602: 1601: 1596: 1583: 1581: 1580: 1575: 1572: 1571: 1553: 1551: 1550: 1545: 1534: 1533: 1521: 1520: 1509: 1508: 1500: 1493: 1492: 1455: 1453: 1452: 1447: 1442: 1441: 1430: 1429: 1421: 1404: 1402: 1401: 1396: 1394: 1393: 1381: 1380: 1375: 1374: 1366: 1359: 1358: 1347: 1346: 1338: 1321:of the aircraft 1314: 1312: 1311: 1306: 1284: 1282: 1281: 1276: 1273: 1272: 1250: 1248: 1247: 1242: 1240: 1239: 1234: 1233: 1225: 1208: 1206: 1205: 1200: 1198: 1197: 1186: 1185: 1177: 1165: 1164: 1159: 1157: 1156: 1151: 1146: 1145: 1134: 1133: 1125: 1118: 1117: 1105: 1104: 1099: 1098: 1090: 1083: 1082: 1071: 1070: 1062: 1052: 1051: 1033: 1031: 1030: 1025: 1022: 1021: 993:Gloster Meteor I 731:General Electric 647:Junkers Jumo 004 643:axial compressor 563:axial compressor 528:Maxime Guillaume 398:Junkers Jumo 004 383: 376: 369: 328:Aerospike engine 257:Reaction engines 128: 127: 121: 114: 110: 107: 101: 99: 58: 34: 26: 3141: 3140: 3136: 3135: 3134: 3132: 3131: 3130: 3096: 3095: 3092: 3087: 3078: 3065: 3047: 2947: 2942: 2912: 2907: 2871: 2854: 2845: 2841:Thrust reversal 2818:Engine controls 2812: 2775: 2765: 2741:Contra-rotating 2714: 2680: 2584: 2535:Accessory drive 2527: 2521: 2463:Air turborocket 2445: 2437: 2425: 2354: 2338: 2336:Further reading 2333: 2332: 2320: 2316: 2303: 2299: 2286: 2285: 2281: 2273: 2269: 2259: 2257: 2252: 2251: 2247: 2240: 2226: 2219: 2210: 2206: 2197: 2196: 2192: 2183: 2182: 2178: 2173: 2169: 2152: 2151: 2144: 2142: 2138: 2131: 2129:"Archived copy" 2127: 2126: 2122: 2109: 2105: 2088: 2084: 2074: 2072: 2063: 2062: 2058: 2053: 2049: 2040: 2039: 2035: 2026: 2022: 2011:Air & Space 2003: 1999: 1991: 1987: 1974: 1970: 1965: 1961: 1952: 1951: 1947: 1935: 1931: 1924: 1908: 1904: 1898: 1897:978-291859095-8 1882: 1878: 1859: 1855: 1840: 1836: 1831: 1827: 1819:Frank Whittle, 1818: 1814: 1804: 1802: 1797: 1796: 1792: 1782: 1780: 1775: 1774: 1770: 1763: 1747: 1743: 1735: 1729: 1727: 1723: 1713: 1711: 1706: 1705: 1701: 1696: 1659: 1643: 1616: 1612: 1610: 1607: 1606: 1589: 1586: 1585: 1567: 1563: 1561: 1558: 1557: 1529: 1525: 1510: 1499: 1498: 1497: 1488: 1484: 1482: 1479: 1478: 1431: 1420: 1419: 1418: 1416: 1413: 1412: 1389: 1385: 1376: 1365: 1364: 1363: 1348: 1337: 1336: 1335: 1330: 1327: 1326: 1299: 1296: 1295: 1268: 1264: 1262: 1259: 1258: 1235: 1224: 1223: 1222: 1220: 1217: 1216: 1187: 1176: 1175: 1174: 1172: 1169: 1168: 1135: 1124: 1123: 1122: 1113: 1109: 1100: 1089: 1088: 1087: 1072: 1061: 1060: 1059: 1047: 1043: 1041: 1038: 1037: 1017: 1013: 1011: 1008: 1007: 1001: 962: 956: 948:Gloster E.28/39 925: 916:de Laval nozzle 908: 902: 879: 859: 824: 777: 747: 709: 673:reverse salient 656:which used the 598:Gloster E.28/39 543:Gloster E.28/39 509: 485:cruise missiles 387: 294:Air turborocket 227:Electric motors 147: 122: 111: 105: 102: 59: 57: 47: 35: 24: 17: 12: 11: 5: 3139: 3129: 3128: 3123: 3118: 3113: 3108: 3089: 3088: 3083: 3080: 3079: 3077: 3076: 3070: 3067: 3066: 3064: 3063: 3058: 3052: 3049: 3048: 3046: 3045: 3040: 3038:Thermoacoustic 3035: 3030: 3029: 3028: 3018: 3013: 3008: 3003: 2998: 2993: 2988: 2983: 2978: 2973: 2968: 2963: 2958: 2952: 2949: 2948: 2941: 2940: 2933: 2926: 2918: 2909: 2908: 2906: 2905: 2900: 2895: 2890: 2885: 2879: 2877: 2873: 2872: 2870: 2869: 2864: 2858: 2856: 2847: 2846: 2844: 2843: 2838: 2833: 2828: 2822: 2820: 2814: 2813: 2811: 2810: 2805: 2800: 2795: 2790: 2785: 2779: 2777: 2771: 2770: 2767: 2766: 2764: 2763: 2761:Variable-pitch 2758: 2753: 2748: 2743: 2738: 2736:Constant-speed 2733: 2728: 2722: 2720: 2716: 2715: 2713: 2712: 2707: 2701: 2699: 2692: 2686: 2685: 2682: 2681: 2679: 2678: 2673: 2668: 2663: 2658: 2653: 2648: 2643: 2638: 2633: 2628: 2623: 2618: 2613: 2608: 2603: 2598: 2592: 2590: 2586: 2585: 2583: 2582: 2577: 2572: 2567: 2562: 2557: 2552: 2547: 2542: 2537: 2531: 2529: 2523: 2522: 2520: 2519: 2514: 2509: 2504: 2499: 2494: 2489: 2484: 2479: 2474: 2465: 2459: 2457: 2450: 2448:jet propulsion 2439: 2438: 2424: 2423: 2416: 2409: 2401: 2395: 2394: 2390: 2373: 2367: 2361: 2353: 2352:External links 2350: 2349: 2348: 2337: 2334: 2331: 2330: 2328: 2327: 2314: 2297: 2279: 2267: 2245: 2238: 2230:Jet Propulsion 2217: 2204: 2190: 2176: 2167: 2120: 2103: 2082: 2056: 2047: 2033: 2020: 2007:"Old Faithful" 1997: 1985: 1968: 1959: 1945: 1937:Listemann 2016 1929: 1922: 1902: 1896: 1876: 1853: 1834: 1825: 1812: 1790: 1768: 1761: 1741: 1721: 1698: 1697: 1695: 1692: 1691: 1690: 1685: 1680: 1675: 1670: 1665: 1658: 1655: 1642: 1639: 1619: 1615: 1593: 1570: 1566: 1543: 1540: 1537: 1532: 1528: 1524: 1519: 1516: 1513: 1506: 1503: 1496: 1491: 1487: 1466:sonic velocity 1460: 1459: 1456: 1445: 1440: 1437: 1434: 1427: 1424: 1409: 1408: 1405: 1392: 1388: 1384: 1379: 1372: 1369: 1362: 1357: 1354: 1351: 1344: 1341: 1334: 1323: 1322: 1315: 1303: 1292: 1291: 1289:sonic velocity 1285: 1271: 1267: 1255: 1254: 1251: 1238: 1231: 1228: 1213: 1212: 1209: 1196: 1193: 1190: 1183: 1180: 1149: 1144: 1141: 1138: 1131: 1128: 1121: 1116: 1112: 1108: 1103: 1096: 1093: 1086: 1081: 1078: 1075: 1068: 1065: 1058: 1055: 1050: 1046: 1020: 1016: 1000: 997: 958:Main article: 955: 952: 940:Power Jets W.1 924: 921: 904:Main article: 901: 898: 878: 875: 858: 855: 823: 820: 776: 773: 746: 743: 717:type-certified 708: 705: 609:Gloster Meteor 590:Heinkel He 178 583:Hans von Ohain 547:Gloster Meteor 516:Heinkel He 178 508: 505: 458:Hans von Ohain 454:United Kingdom 424:Hans von Ohain 389: 388: 386: 385: 378: 371: 363: 360: 359: 358: 357: 356: 355: 350: 340: 335: 330: 325: 324: 323: 318: 308: 303: 302: 301: 296: 289:Rocket-powered 286: 285: 284: 279: 274: 260: 259: 253: 252: 251: 250: 249: 248: 237: 236: 235: 224: 223: 222: 211: 210: 209: 208: 207: 202: 191: 186: 185: 184: 165: 164: 140: 139: 133: 132: 124: 123: 38: 36: 29: 15: 9: 6: 4: 3: 2: 3138: 3127: 3124: 3122: 3119: 3117: 3114: 3112: 3109: 3107: 3104: 3103: 3101: 3094: 3086: 3081: 3075: 3072: 3071: 3068: 3062: 3059: 3057: 3054: 3053: 3050: 3044: 3043:Manson engine 3041: 3039: 3036: 3034: 3031: 3027: 3024: 3023: 3022: 3021:Steam turbine 3019: 3017: 3014: 3012: 3009: 3007: 3004: 3002: 2999: 2997: 2994: 2992: 2989: 2987: 2984: 2982: 2979: 2977: 2974: 2972: 2969: 2967: 2964: 2962: 2959: 2957: 2956:Carnot engine 2954: 2953: 2950: 2946: 2939: 2934: 2932: 2927: 2925: 2920: 2919: 2916: 2904: 2901: 2899: 2896: 2894: 2891: 2889: 2886: 2884: 2881: 2880: 2878: 2876:Other systems 2874: 2868: 2865: 2863: 2860: 2859: 2857: 2853:and induction 2852: 2848: 2842: 2839: 2837: 2834: 2832: 2829: 2827: 2824: 2823: 2821: 2819: 2815: 2809: 2808:Glass cockpit 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2784: 2781: 2780: 2778: 2772: 2762: 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2734: 2732: 2729: 2727: 2724: 2723: 2721: 2717: 2711: 2708: 2706: 2703: 2702: 2700: 2696: 2693: 2691: 2687: 2677: 2674: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2652: 2649: 2647: 2644: 2642: 2639: 2637: 2634: 2632: 2629: 2627: 2624: 2622: 2619: 2617: 2614: 2612: 2609: 2607: 2606:Brayton cycle 2604: 2602: 2599: 2597: 2594: 2593: 2591: 2587: 2581: 2580:Turbine blade 2578: 2576: 2573: 2571: 2568: 2566: 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2532: 2530: 2524: 2518: 2515: 2513: 2510: 2508: 2505: 2503: 2500: 2498: 2495: 2493: 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2473: 2469: 2466: 2464: 2461: 2460: 2458: 2454: 2451: 2449: 2444: 2440: 2436: 2433: 2429: 2422: 2417: 2415: 2410: 2408: 2403: 2402: 2399: 2393: 2391: 2389: 2385: 2381: 2377: 2374: 2371: 2368: 2365: 2362: 2359: 2356: 2355: 2345: 2340: 2339: 2324: 2323: 2318: 2311: 2310:0 582 44927 8 2307: 2301: 2293: 2289: 2283: 2277:, Section 6.3 2276: 2271: 2255: 2249: 2241: 2239:0-521-54144-1 2235: 2231: 2224: 2222: 2214: 2208: 2200: 2194: 2186: 2180: 2171: 2162: 2156: 2141:on 9 May 2016 2137: 2130: 2124: 2117: 2116:0 7509 1838 1 2113: 2107: 2100: 2096: 2092: 2086: 2070: 2066: 2060: 2051: 2043: 2037: 2030: 2024: 2016: 2012: 2008: 2001: 1994: 1989: 1982: 1981:0 9519824 8 6 1978: 1972: 1963: 1955: 1949: 1942: 1938: 1933: 1925: 1919: 1915: 1914: 1906: 1899: 1893: 1889: 1888: 1880: 1873: 1869: 1865: 1864: 1857: 1849: 1845: 1838: 1829: 1822: 1816: 1800: 1794: 1778: 1772: 1764: 1758: 1754: 1753: 1745: 1732: 1725: 1709: 1703: 1699: 1689: 1686: 1684: 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1660: 1654: 1650: 1648: 1647:Brayton cycle 1638: 1636: 1617: 1613: 1591: 1568: 1564: 1554: 1538: 1535: 1530: 1526: 1517: 1514: 1511: 1504: 1501: 1494: 1489: 1485: 1476: 1473: 1471: 1467: 1457: 1443: 1438: 1435: 1432: 1425: 1422: 1411: 1410: 1406: 1390: 1386: 1377: 1370: 1367: 1360: 1355: 1352: 1349: 1342: 1339: 1325: 1324: 1320: 1319:true airspeed 1316: 1301: 1294: 1293: 1290: 1286: 1269: 1265: 1257: 1256: 1252: 1236: 1229: 1226: 1215: 1214: 1210: 1194: 1191: 1188: 1181: 1178: 1167: 1166: 1163: 1160: 1147: 1142: 1139: 1136: 1129: 1126: 1119: 1114: 1110: 1101: 1094: 1091: 1084: 1079: 1076: 1073: 1066: 1063: 1053: 1048: 1044: 1035: 1018: 1014: 1006: 996: 994: 991:engines in a 990: 985: 983: 980: 976: 972: 968: 961: 951: 949: 945: 941: 936: 934: 930: 920: 917: 912: 907: 897: 895: 890: 888: 884: 874: 870: 868: 867:piston engine 864: 854: 850: 848: 844: 840: 835: 833: 829: 819: 817: 813: 809: 806: 802: 797: 795: 791: 785: 782: 768: 759: 751: 742: 738: 734: 732: 724: 720: 718: 714: 707:Early designs 704: 702: 698: 694: 690: 686: 682: 678: 677:creep failure 674: 669: 667: 662: 659: 655: 650: 648: 644: 640: 639:Heinkel HeS 3 636: 631: 629: 625: 621: 616: 614: 610: 607:and then the 606: 601: 599: 595: 594:Erich Warsitz 591: 586: 584: 579: 577: 576:Power Jets WU 572: 571:A.A. Griffith 568: 564: 559: 558:Frank Whittle 555: 548: 544: 540: 535: 531: 529: 521: 517: 513: 504: 502: 498: 494: 490: 486: 482: 477: 475: 471: 465: 463: 459: 455: 451: 450:Frank Whittle 447: 443: 439: 435: 431: 422: 416:Frank Whittle 414: 406: 399: 395: 384: 379: 377: 372: 370: 365: 364: 362: 361: 354: 351: 349: 346: 345: 344: 341: 339: 336: 334: 331: 329: 326: 322: 319: 317: 314: 313: 312: 309: 307: 304: 300: 297: 295: 292: 291: 290: 287: 283: 280: 278: 275: 273: 270: 269: 267: 264: 263: 262: 261: 258: 255: 254: 247: 246:Human-powered 244: 243: 241: 238: 234: 231: 230: 228: 225: 221: 218: 217: 215: 212: 206: 203: 201: 198: 197: 195: 192: 190: 189:Wankel engine 187: 183: 182:Diesel engine 180: 179: 178: 177:Piston engine 175: 174: 172: 169: 168: 167: 166: 163: 159: 155: 151: 145: 144:Shaft engines 142: 141: 138: 135: 134: 130: 129: 120: 117: 109: 98: 95: 91: 88: 84: 81: 77: 74: 70: 67: –  66: 62: 61:Find sources: 55: 51: 45: 44: 39:This article 37: 33: 28: 27: 22: 3116:Gas turbines 3093: 3056:Beale number 3011:Split-single 2945:Heat engines 2862:Flame holder 2836:Thrust lever 2826:Autothrottle 2656:Thrust lapse 2611:Bypass ratio 2491: 2443:Gas turbines 2435:gas turbines 2343: 2317: 2300: 2291: 2282: 2270: 2258:. Retrieved 2248: 2229: 2213:Bill Gunston 2207: 2193: 2179: 2170: 2143:. Retrieved 2136:the original 2123: 2106: 2090: 2085: 2073:. Retrieved 2068: 2059: 2050: 2036: 2029:Bill Gunston 2023: 2014: 2010: 2000: 1988: 1971: 1962: 1948: 1932: 1912: 1905: 1886: 1879: 1862: 1856: 1847: 1837: 1828: 1815: 1803:. Retrieved 1793: 1781:. Retrieved 1771: 1755:. Amberley. 1751: 1744: 1724: 1712:. Retrieved 1702: 1651: 1644: 1555: 1477: 1474: 1463: 1161: 1036: 1002: 986: 984:spacecraft. 979:SpaceShipOne 963: 937: 933:afterburning 926: 913: 909: 894:pelton wheel 891: 880: 871: 860: 851: 836: 825: 798: 786: 778: 739: 735: 729: 710: 670: 663: 651: 632: 617: 613:World War II 602: 587: 581:In Germany, 580: 551: 525: 501:afterburners 491:such as the 478: 466: 429: 427: 271: 112: 103: 93: 86: 79: 72: 60: 48:Please help 43:verification 40: 3111:Jet engines 3061:West number 2981:Minto wheel 2966:Gas turbine 2776:instruments 2731:Blade pitch 2726:Autofeather 2428:Jet engines 2292:web.mit.edu 2075:14 December 960:Afterburner 954:Afterburner 697:type tested 658:Olympus 593 645:(as in the 637:(as in the 539:Whittle W.2 438:gas turbine 220:Steam power 158:ducted fans 3100:Categories 3001:Rijke tube 2719:Principles 2698:Components 2690:Propellers 2589:Principles 2540:Air intake 2528:components 2526:Mechanical 2502:Turboshaft 1939:, p.  1694:References 999:Net thrust 982:suborbital 847:anti-icing 822:Compressor 775:Air intake 745:Components 701:superalloy 474:turboshaft 205:Turboshaft 150:propellers 106:April 2008 76:newspapers 65:"Turbojet" 3026:Aeolipile 2751:Proprotor 2601:Bleed air 2560:Combustor 2497:Turboprop 2384:Whittle's 2326:Košice,)) 1874:, p. 125. 1731:FR 534801 1536:− 1505:˙ 1426:˙ 1371:˙ 1343:˙ 1230:˙ 1182:˙ 1130:˙ 1120:− 1095:˙ 1067:˙ 863:combustor 839:bleed air 832:GE90-115B 641:), or an 497:turbofans 353:Shcramjet 240:Clockwork 200:Turboprop 3033:Stirling 2961:Fluidyne 2867:Jet fuel 2756:Scimitar 2626:Flameout 2570:Impeller 2492:Turbojet 2487:Turbofan 2468:Pulsejet 2432:aircraft 2155:cite web 1805:26 March 1783:26 March 1657:See also 1003:The net 828:pressure 808:turbofan 781:smoothly 695:, being 654:Concorde 499:and use 489:fighters 430:turbojet 348:Scramjet 311:Pulsejet 306:Motorjet 277:Turbofan 272:Turbojet 266:Turbines 242:drives: 194:Turbines 162:propfans 148:driving 21:TurboJET 2971:Hot air 2855:systems 2482:Propfan 2017:(1): 80 1983:, p.120 1673:Jet car 1317:is the 1162:where: 989:W.2/700 944:ammonia 887:Nimonic 883:inconel 877:Turbine 762:thrust. 737:trail. 681:Nimonic 624:turbine 507:History 462:Germany 452:in the 446:turbine 440:with a 282:Propfan 90:scholar 3006:Rocket 2991:Piston 2774:Engine 2651:Thrust 2512:Rocket 2507:Ramjet 2308:  2236:  2165:Fig.26 2145:16 May 2114:  2097:  2069:Flight 1979:  1920:  1894:  1870:  1759:  1736:  1470:choked 1005:thrust 971:Tu-144 900:Nozzle 626:where 596:. The 556:cadet 522:engine 493:MiG-25 481:Tu-144 432:is an 343:Ramjet 154:rotors 92:  85:  78:  71:  63:  2456:Types 2260:6 May 2139:(PDF) 2132:(PDF) 2101:, p.5 1801:. BBC 1779:. PBS 1714:6 May 628:power 520:HeS 3 97:JSTOR 83:books 2851:Fuel 2446:and 2430:and 2306:ISBN 2262:2009 2234:ISBN 2161:link 2147:2016 2112:ISBN 2095:ISBN 2077:2013 1977:ISBN 1918:ISBN 1892:ISBN 1868:ISBN 1807:2010 1785:2010 1757:ISBN 1716:2009 885:and 792:and 687:and 620:Fuel 537:The 456:and 428:The 69:news 2976:Jet 931:or 460:in 160:or 152:, 52:by 3102:: 2290:. 2220:^ 2157:}} 2153:{{ 2093:, 2067:. 2015:25 2013:, 2009:, 1846:. 1649:. 1637:. 995:. 845:, 796:. 268:: 229:: 216:: 196:: 173:: 156:, 2937:e 2930:t 2923:v 2470:/ 2420:e 2413:t 2406:v 2294:. 2264:. 2242:. 2201:. 2187:. 2163:) 2149:. 2079:. 2044:. 1956:. 1943:. 1941:5 1926:. 1850:. 1809:. 1787:. 1765:. 1718:. 1618:j 1614:V 1592:V 1569:j 1565:V 1542:) 1539:V 1531:j 1527:V 1523:( 1518:r 1515:i 1512:a 1502:m 1495:= 1490:N 1486:F 1444:V 1439:r 1436:i 1433:a 1423:m 1391:j 1387:V 1383:) 1378:f 1368:m 1361:+ 1356:r 1353:i 1350:a 1340:m 1333:( 1302:V 1270:j 1266:V 1237:f 1227:m 1195:r 1192:i 1189:a 1179:m 1148:V 1143:r 1140:i 1137:a 1127:m 1115:j 1111:V 1107:) 1102:f 1092:m 1085:+ 1080:r 1077:i 1074:a 1064:m 1057:( 1054:= 1049:N 1045:F 1019:N 1015:F 382:e 375:t 368:v 146:: 119:) 113:( 108:) 104:( 94:· 87:· 80:· 73:· 46:. 23:.

Index

TurboJET

verification
improve this article
adding citations to reliable sources
"Turbojet"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Aircraft propulsion
Shaft engines
propellers
rotors
ducted fans
propfans
Internal thermal engines
Piston engine
Diesel engine
Wankel engine
Turbines
Turboprop
Turboshaft
External thermal engines
Steam power
Electric motors
Electric aircraft
Clockwork

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.