Knowledge

Vine–Matthews–Morley hypothesis

Source 📝

183:. Consequently, the shape and amplitude of the magnetic anomaly is controlled predominately by the primary remanent vector in the crust. In addition, where the anomaly is measured on Earth affects its shape when measured with a magnetometer. This is because the field vector generated by the magnetized crust and the direction of the Earth's magnetic field vector are both measured by the magnetometers used in marine surveys. Because the Earth's field vector is much stronger than the anomaly field, a modern magnetometer measures the sum of the Earth's field and the component of the anomaly field in the direction of the Earth's field. 130: 196:
to allow computing of spreading rates over the last 700,000 years on many mid-ocean ridges by locating the closest reversed crust boundary to the crest of a mid-ocean ridge. Marine magnetic anomalies were found later to span the vast flanks of the ridges. Drillcores into the crust on these ridge flanks allowed dating of the early and of the older anomalies. This in turn allowed design of a predicted geomagnetic time scale. With time, investigations married land and marine data to produce an accurate geomagnetic reversal time scale for almost 200 million years.
1162: 2050: 2071: 20: 1151: 2060: 807: 187:
positive. At the equator the Earth's field vector is horizontal so that crust magnetized there will also align horizontal. Here, the orientation of the spreading ridge affects the anomaly shape and amplitude. The component of the vector that effects the anomaly is at a maximum when the ridge is aligned east-west and the magnetic profile crossing is north-south.
195:
The hypothesis links seafloor spreading and geomagnetic reversals in a powerful manner, with each expanding knowledge of the other. Early in the history of investigating the hypothesis only a short record of geomagnetic field reversals was available for studies of rocks on land. This was sufficient
153:. The old crust moves laterally and equally on either side of the ridge. Therefore, as geomagnetic reversals occur, the crust on either side of the ridge will contain a record of remanent normal (parallel) or reversed (antiparallel) magnetizations in comparison to the current geomagnetic field. A 186:
Sections of crust magnetized at high latitudes have magnetic vectors that dip steeply downward in a normal geomagnetic field. However, close to the magnetic south pole, magnetic vectors are inclined steeply upwards in a normal geomagnetic field. Therefore, in both these cases the anomalies are
88:
independently realized that if Hess's seafloor spreading theory was correct, then the rocks surrounding the mid-oceanic ridges should show symmetric patterns of magnetization reversals using newly collected magnetic surveys. Both of Morley's letters to
149:. Once fully cooled, these directions are locked into the crust and it becomes permanently magnetized. Lithospheric creation at the ridge is considered continuous and symmetrical as the new crust intrudes into the 105:, were first to publish the theory in September 1963. Some colleagues were skeptical of the hypothesis because of the numerous assumptions made—seafloor spreading, geomagnetic reversals, and 109:—all hypotheses that were still not widely accepted. The Vine–Matthews–Morley hypothesis describes the magnetic reversals of oceanic crust. Further evidence for this hypothesis came from 80:
in 1961. According to Hess, seafloor was created at mid-oceanic ridges by the convection of the Earth's mantle, pushing and spreading the older crust away from the ridge. Geophysicist
145:, ferromagnetism becomes possible and the magnetization direction of magnetic minerals in the newly formed crust orients parallel to the current background geomagnetic field 161:
when over crust magnetized in the normal or reversed direction. The ridge crest is analogous to “twin-headed tape recorder”, recording the Earth's magnetic history.
811: 118: 23:
The observed magnetic profile for the seafloor around a mid-oceanic ridge agrees closely with the profile predicted by the Vine–Matthews–Morley hypothesis.
172:. Magnetic anomalies over mid-ocean ridges are most apparent at high magnetic latitudes, over north-south trending ridges at all latitudes away from the 164:
Typically there are positive magnetic anomalies over normally magnetized crust and negative anomalies over reversed crust. Local anomalies with a short
1790: 1780: 839: 141:. At mid-ocean ridges, new crust is created by the injection, extrusion, and solidification of magma. After the magma has cooled through the 347: 2063: 1111: 879: 1343: 230: 832: 1233: 639:
Ogg, J. G. (2012). "Geomagnetic polarity time scale". In Gradstein, F. M.; Ogg, J. G.; Schmitz, Mark; Ogg, Gabi (eds.).
1938: 1365: 1253: 19: 2101: 1785: 1056: 648: 526: 250:
Hess, H. H. (November 1, 1962). "History of Ocean Basins". In A. E. J. Engel; Harold L. James; B. F. Leonard (eds.).
1243: 1203: 1973: 959: 97: 121:
offered further evidence with a remarkably symmetric magnetic anomaly profile from the Pacific-Antarctic Ridge.
2053: 1646: 825: 157:
towed above (near bottom, sea surface, or airborne) the seafloor will record positive (high) or negative (low)
106: 409:
Frankel, Henry (1982). "The development, reception, and acceptance of the Vine-Matthews-Morley hypothesis".
76:
hypothesis in 1960 (published in 1962); the term "spreading of the seafloor" was introduced by geophysicist
1101: 133:
Magnetic anomalies off west coast of North America. Dashed lines are spreading centers on mid-ocean ridges
137:
The Vine–Matthews-Morley hypothesis correlates the symmetric magnetic patterns seen on the seafloor with
1161: 1298: 755: 447:
Cox, Allan; Doell, Richard R.; Dalrymple, G. Brent (1964). "Reversals of the Earth's magnetic field".
2111: 1833: 1238: 1198: 542:
Pitman, W. C.; Heirtzler, J. R. (1966-12-02). "Magnetic anomalies over the Pacific-Antarctic ridge".
129: 52: 729: 2106: 1963: 1338: 1328: 1268: 904: 874: 64: 2000: 1983: 1820: 1313: 1178: 1116: 1106: 999: 102: 51:
to be computed. It states that the Earth's oceanic crust acts as a recorder of reversals in the
1995: 1933: 1360: 1046: 724: 329:
Morley, L.W. and Larochelle, A., 1964. Paleomagnetism as a means of dating geological events.
273:
Dietz, Robert S. (1961). "Continent and Ocean Basin Evolution by Spreading of the Sea Floor".
113:
and colleagues (1964) when they measured the remanent magnetization of lavas from land sites.
1828: 1810: 1318: 1213: 848: 114: 2015: 1848: 1551: 1408: 1273: 984: 770: 716: 680: 605: 551: 456: 383: 282: 215: 138: 8: 2096: 2010: 1895: 1890: 1616: 1288: 1248: 964: 665: 774: 720: 701: 684: 609: 555: 460: 387: 309: 286: 1953: 1666: 1656: 1621: 1521: 1506: 1403: 480: 426: 73: 69: 36: 2035: 2025: 1968: 1948: 1631: 1596: 1531: 1511: 1501: 1383: 1071: 929: 786: 742: 644: 621: 575: 567: 522: 488: 472: 255: 210: 142: 40: 101:(April 1963) were rejected, hence Vine and his PhD adviser at Cambridge University, 1990: 1958: 1928: 1737: 1722: 1591: 1526: 1418: 1333: 1263: 1188: 969: 939: 869: 864: 778: 734: 688: 613: 559: 464: 418: 391: 290: 173: 158: 91: 782: 617: 563: 468: 1795: 1691: 1641: 1606: 1566: 1458: 1428: 1278: 1228: 1138: 1096: 1029: 954: 914: 738: 150: 85: 77: 48: 44: 1905: 1900: 1805: 1800: 1636: 1576: 1571: 1303: 1193: 1014: 949: 924: 220: 205: 1150: 374:
Vine, F. J; Matthews, D. H. (1963). "Magnetic Anomalies Over Oceanic Ridges".
2090: 2075: 1923: 1843: 1732: 1651: 1626: 1561: 1491: 1398: 1293: 1170: 1091: 1051: 1024: 934: 884: 571: 476: 259: 180: 179:
The intensity of the remanent magnetization in the crust is greater than the
2030: 1978: 1918: 1869: 1747: 1742: 1717: 1701: 1676: 1393: 1283: 1223: 1009: 919: 894: 790: 746: 625: 579: 492: 154: 146: 110: 2020: 1752: 1681: 1546: 1486: 1453: 1443: 1438: 1323: 1258: 1218: 1208: 1183: 1066: 1039: 1019: 979: 944: 817: 430: 1838: 1686: 1661: 1556: 1536: 1463: 1448: 1433: 1423: 1388: 1308: 1128: 1123: 1086: 1081: 1076: 974: 484: 169: 165: 2070: 1910: 1772: 1757: 1671: 1516: 1355: 1350: 1133: 1061: 989: 909: 899: 856: 692: 422: 395: 294: 225: 81: 702:"Magnetic anomalies over a young oceanic ridge off Vancouver Island" 2005: 1727: 1586: 1478: 1468: 1413: 889: 348:"Frederick Vine and Drummond Matthews, pioneers of plate tectonics" 176:, and east-west trending spreading ridges at the magnetic equator. 47:. Its key impact was that it allowed the rates of plate motions at 1874: 1864: 1034: 1004: 596:
Vine, F.J. (1966). "Spreading of the ocean floor: new evidence".
310:"Philosophical interpretations of the plate tectonics revolution" 254:. Boulder, CO: Geological Society of America. pp. 599–620. 1581: 994: 806: 517:
Kearey, Philip; Klepeis, Keith A.; Vine, Frederick J. (2009).
1943: 1762: 1541: 1496: 1375: 252:
Petrologic Studies: A volume in honor of A. F. Buddington
168:
also exist, but are considered to be correlated with
373: 55:field direction as seafloor spreading takes place. 1791:North West Shelf Operational Oceanographic System 664:Vine, F. J.; Matthews, D. H. (7 September 1963). 516: 446: 2088: 1781:Deep-ocean Assessment and Reporting of Tsunamis 541: 833: 700:Vine, F. J.; Wilson, J. Tuzo (October 1965). 521:(3rd ed.). Chichester: Wiley-Blackwell. 756:"Spreading of the ocean floor: new evidence" 663: 124: 643:(1st ed.). Elsevier. pp. 85–114. 411:Historical Studies in the Physical Sciences 35:, was the first key scientific test of the 840: 826: 699: 847: 728: 369: 367: 365: 666:"Magnetic anomalies over oceanic ridges" 512: 510: 508: 506: 504: 502: 128: 65:Plate tectonics § Magnetic striping 18: 408: 2089: 1112:one-dimensional Saint-Venant equations 641:The geologic time scale 2012. Volume 2 362: 821: 591: 589: 499: 272: 2059: 753: 595: 442: 440: 249: 638: 13: 1939:National Oceanographic Data Center 1366:World Ocean Circulation Experiment 1254:Global Ocean Data Analysis Project 586: 14: 2123: 1786:Global Sea Level Observing System 799: 437: 307: 2069: 2058: 2049: 2048: 1244:Geochemical Ocean Sections Study 1160: 1149: 805: 754:Vine, F. J. (16 December 1966). 417:(1). Baltimore, Maryland: 1–39. 231:Lamont–Doherty Earth Observatory 1974:Ocean thermal energy conversion 1697:Vine–Matthews–Morley hypothesis 812:Vine–Matthews–Morley hypothesis 632: 535: 98:Journal of Geophysical Research 33:Morley–Vine–Matthews hypothesis 29:Vine–Matthews–Morley hypothesis 402: 340: 323: 301: 266: 243: 1: 783:10.1126/science.154.3755.1405 618:10.1126/science.154.3755.1405 564:10.1126/science.154.3753.1164 469:10.1126/science.144.3626.1537 236: 1234:El Niño–Southern Oscillation 1204:Craik–Leibovich vortex force 960:Luke's variational principle 739:10.1126/science.150.3695.485 7: 199: 139:geomagnetic field reversals 84:and the Canadian geologist 10: 2128: 1299:Ocean dynamical thermostat 1147: 62: 58: 16:Concept in plate tectonics 2044: 1883: 1857: 1834:Ocean acoustic tomography 1819: 1771: 1710: 1647:Mohorovičić discontinuity 1605: 1477: 1374: 1239:General circulation model 1169: 875:Benjamin–Feir instability 855: 190: 125:Marine magnetic anomalies 2102:History of Earth science 1964:Ocean surface topography 1339:Thermohaline circulation 1329:Subsurface ocean current 1269:Hydrothermal circulation 1102:Wave–current interaction 880:Boussinesq approximation 350:. The Geological Society 151:diverging plate boundary 2001:Sea surface temperature 1984:Outline of oceanography 1179:Atmospheric circulation 1117:shallow water equations 1107:Waves and shallow water 1000:Significant wave height 331:Geochronology in Canada 103:Drummond Hoyle Matthews 1996:Sea surface microlayer 1361:Wind generated current 134: 24: 1829:Deep scattering layer 1811:World Geodetic System 1319:Princeton Ocean Model 1199:Coriolis–Stokes force 849:Physical oceanography 181:induced magnetization 132: 22: 1849:Underwater acoustics 1409:Perigean spring tide 1274:Langmuir circulation 985:Rossby-gravity waves 814:at Wikimedia Commons 337:, pp.39-51. page 50. 216:Walter C. Pitman III 95:(February 1963) and 31:, also known as the 2011:Science On a Sphere 1617:Convergent boundary 1289:Modular Ocean Model 1249:Geostrophic current 965:Mild-slope equation 775:1966Sci...154.1405V 769:(3755): 1405–1415. 721:1965Sci...150..485V 685:1963Natur.199..947V 610:1966Sci...154.1405V 604:(3755): 1405–1415. 556:1966Sci...154.1164P 550:(3753): 1164–1171. 461:1964Sci...144.1537C 455:(3626): 1537–1543. 388:1963Natur.199..947V 287:1961Natur.190..854D 82:Frederick John Vine 1667:Seafloor spreading 1657:Outer trench swell 1622:Divergent boundary 1522:Continental margin 1507:Carbonate platform 1404:Lunitidal interval 159:magnetic anomalies 135: 107:remanent magnetism 86:Lawrence W. Morley 74:seafloor spreading 37:seafloor spreading 25: 2084: 2083: 2076:Oceans portal 2036:World Ocean Atlas 2026:Underwater glider 1969:Ocean temperature 1632:Hydrothermal vent 1597:Submarine volcano 1532:Continental shelf 1512:Coastal geography 1502:Bathymetric chart 1384:Amphidromic point 1072:Wave nonlinearity 930:Infragravity wave 810:Media related to 679:(4897): 947–949. 382:(4897): 947–949. 281:(4779): 854–857. 211:Drummond Matthews 41:continental drift 2119: 2112:Geology theories 2074: 2073: 2062: 2061: 2052: 2051: 1991:Pelagic sediment 1929:Marine pollution 1723:Deep ocean water 1592:Submarine canyon 1527:Continental rise 1419:Rule of twelfths 1334:Sverdrup balance 1264:Humboldt Current 1189:Boundary current 1164: 1153: 970:Radiation stress 940:Iribarren number 915:Equatorial waves 870:Ballantine scale 865:Airy wave theory 842: 835: 828: 819: 818: 809: 794: 760: 750: 732: 706: 696: 693:10.1038/199947a0 670: 655: 654: 636: 630: 629: 593: 584: 583: 539: 533: 532: 519:Global tectonics 514: 497: 496: 444: 435: 434: 423:10.2307/27757504 406: 400: 399: 396:10.1038/199947a0 371: 360: 359: 357: 355: 344: 338: 327: 321: 320: 318: 316: 308:Iseda, Tetsuji. 305: 299: 298: 295:10.1038/190854a0 270: 264: 263: 247: 174:magnetic equator 115:Walter C. Pitman 49:mid-ocean ridges 2127: 2126: 2122: 2121: 2120: 2118: 2117: 2116: 2107:Plate tectonics 2087: 2086: 2085: 2080: 2068: 2040: 1879: 1853: 1815: 1796:Sea-level curve 1767: 1706: 1692:Transform fault 1642:Mid-ocean ridge 1608: 1601: 1567:Oceanic plateau 1473: 1459:Tidal resonance 1429:Theory of tides 1370: 1279:Longshore drift 1229:Ekman transport 1165: 1159: 1158: 1157: 1156: 1155: 1154: 1145: 1097:Wave turbulence 1030:Trochoidal wave 955:Longshore drift 851: 846: 802: 797: 758: 730:10.1.1.473.7395 715:(3695): 485–9. 704: 668: 659: 658: 651: 637: 633: 594: 587: 540: 536: 529: 515: 500: 445: 438: 407: 403: 372: 363: 353: 351: 346: 345: 341: 328: 324: 314: 312: 306: 302: 271: 267: 248: 244: 239: 202: 193: 127: 119:J. R. Heirtzler 78:Robert S. Dietz 67: 61: 45:plate tectonics 17: 12: 11: 5: 2125: 2115: 2114: 2109: 2104: 2099: 2082: 2081: 2079: 2078: 2066: 2056: 2045: 2042: 2041: 2039: 2038: 2033: 2028: 2023: 2018: 2016:Stratification 2013: 2008: 2003: 1998: 1993: 1988: 1987: 1986: 1976: 1971: 1966: 1961: 1956: 1951: 1946: 1941: 1936: 1931: 1926: 1921: 1916: 1908: 1906:Color of water 1903: 1901:Benthic lander 1898: 1893: 1887: 1885: 1881: 1880: 1878: 1877: 1872: 1867: 1861: 1859: 1855: 1854: 1852: 1851: 1846: 1841: 1836: 1831: 1825: 1823: 1817: 1816: 1814: 1813: 1808: 1806:Sea level rise 1803: 1801:Sea level drop 1798: 1793: 1788: 1783: 1777: 1775: 1769: 1768: 1766: 1765: 1760: 1755: 1750: 1745: 1740: 1735: 1730: 1725: 1720: 1714: 1712: 1708: 1707: 1705: 1704: 1699: 1694: 1689: 1684: 1679: 1674: 1669: 1664: 1659: 1654: 1649: 1644: 1639: 1637:Marine geology 1634: 1629: 1624: 1619: 1613: 1611: 1603: 1602: 1600: 1599: 1594: 1589: 1584: 1579: 1577:Passive margin 1574: 1572:Oceanic trench 1569: 1564: 1559: 1554: 1549: 1544: 1539: 1534: 1529: 1524: 1519: 1514: 1509: 1504: 1499: 1494: 1489: 1483: 1481: 1475: 1474: 1472: 1471: 1466: 1461: 1456: 1451: 1446: 1441: 1436: 1431: 1426: 1421: 1416: 1411: 1406: 1401: 1396: 1391: 1386: 1380: 1378: 1372: 1371: 1369: 1368: 1363: 1358: 1353: 1348: 1347: 1346: 1336: 1331: 1326: 1321: 1316: 1311: 1306: 1304:Ocean dynamics 1301: 1296: 1291: 1286: 1281: 1276: 1271: 1266: 1261: 1256: 1251: 1246: 1241: 1236: 1231: 1226: 1221: 1216: 1211: 1206: 1201: 1196: 1194:Coriolis force 1191: 1186: 1181: 1175: 1173: 1167: 1166: 1148: 1146: 1144: 1143: 1142: 1141: 1131: 1126: 1121: 1120: 1119: 1114: 1104: 1099: 1094: 1089: 1084: 1079: 1074: 1069: 1064: 1059: 1054: 1049: 1044: 1043: 1042: 1032: 1027: 1022: 1017: 1015:Stokes problem 1012: 1007: 1002: 997: 992: 987: 982: 977: 972: 967: 962: 957: 952: 950:Kinematic wave 947: 942: 937: 932: 927: 922: 917: 912: 907: 902: 897: 892: 887: 882: 877: 872: 867: 861: 859: 853: 852: 845: 844: 837: 830: 822: 816: 815: 801: 800:External links 798: 796: 795: 751: 697: 660: 657: 656: 649: 631: 585: 534: 527: 498: 436: 401: 361: 339: 322: 300: 265: 241: 240: 238: 235: 234: 233: 228: 223: 221:Frederick Vine 218: 213: 208: 206:Edward Bullard 201: 198: 192: 189: 126: 123: 60: 57: 15: 9: 6: 4: 3: 2: 2124: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2094: 2092: 2077: 2072: 2067: 2065: 2057: 2055: 2047: 2046: 2043: 2037: 2034: 2032: 2029: 2027: 2024: 2022: 2019: 2017: 2014: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1985: 1982: 1981: 1980: 1977: 1975: 1972: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1945: 1942: 1940: 1937: 1935: 1932: 1930: 1927: 1925: 1924:Marine energy 1922: 1920: 1917: 1915: 1914: 1909: 1907: 1904: 1902: 1899: 1897: 1894: 1892: 1891:Acidification 1889: 1888: 1886: 1882: 1876: 1873: 1871: 1868: 1866: 1863: 1862: 1860: 1856: 1850: 1847: 1845: 1844:SOFAR channel 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1826: 1824: 1822: 1818: 1812: 1809: 1807: 1804: 1802: 1799: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1778: 1776: 1774: 1770: 1764: 1761: 1759: 1756: 1754: 1751: 1749: 1746: 1744: 1741: 1739: 1736: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1715: 1713: 1709: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1652:Oceanic crust 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1627:Fracture zone 1625: 1623: 1620: 1618: 1615: 1614: 1612: 1610: 1604: 1598: 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1562:Oceanic basin 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1492:Abyssal plain 1490: 1488: 1485: 1484: 1482: 1480: 1476: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1430: 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1399:Internal tide 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1381: 1379: 1377: 1373: 1367: 1364: 1362: 1359: 1357: 1354: 1352: 1349: 1345: 1342: 1341: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1294:Ocean current 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1176: 1174: 1172: 1168: 1163: 1152: 1140: 1137: 1136: 1135: 1132: 1130: 1127: 1125: 1122: 1118: 1115: 1113: 1110: 1109: 1108: 1105: 1103: 1100: 1098: 1095: 1093: 1092:Wave shoaling 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1068: 1065: 1063: 1060: 1058: 1055: 1053: 1052:Ursell number 1050: 1048: 1045: 1041: 1038: 1037: 1036: 1033: 1031: 1028: 1026: 1023: 1021: 1018: 1016: 1013: 1011: 1008: 1006: 1003: 1001: 998: 996: 993: 991: 988: 986: 983: 981: 978: 976: 973: 971: 968: 966: 963: 961: 958: 956: 953: 951: 948: 946: 943: 941: 938: 936: 935:Internal wave 933: 931: 928: 926: 923: 921: 918: 916: 913: 911: 908: 906: 903: 901: 898: 896: 893: 891: 888: 886: 885:Breaking wave 883: 881: 878: 876: 873: 871: 868: 866: 863: 862: 860: 858: 854: 850: 843: 838: 836: 831: 829: 824: 823: 820: 813: 808: 804: 803: 792: 788: 784: 780: 776: 772: 768: 764: 757: 752: 748: 744: 740: 736: 731: 726: 722: 718: 714: 710: 703: 698: 694: 690: 686: 682: 678: 674: 667: 662: 661: 652: 650:9780444594259 646: 642: 635: 627: 623: 619: 615: 611: 607: 603: 599: 592: 590: 581: 577: 573: 569: 565: 561: 557: 553: 549: 545: 538: 530: 528:9781444303223 524: 520: 513: 511: 509: 507: 505: 503: 494: 490: 486: 482: 478: 474: 470: 466: 462: 458: 454: 450: 443: 441: 432: 428: 424: 420: 416: 412: 405: 397: 393: 389: 385: 381: 377: 370: 368: 366: 349: 343: 336: 332: 326: 311: 304: 296: 292: 288: 284: 280: 276: 269: 261: 257: 253: 246: 242: 232: 229: 227: 224: 222: 219: 217: 214: 212: 209: 207: 204: 203: 197: 188: 184: 182: 177: 175: 171: 167: 162: 160: 156: 152: 148: 144: 140: 131: 122: 120: 116: 112: 108: 104: 100: 99: 94: 93: 87: 83: 79: 75: 72:proposed the 71: 66: 56: 54: 50: 46: 42: 38: 34: 30: 21: 2031:Water column 1979:Oceanography 1954:Observations 1949:Explorations 1919:Marginal sea 1912: 1870:OSTM/Jason-2 1702:Volcanic arc 1696: 1677:Slab suction 1394:Head of tide 1284:Loop Current 1224:Ekman spiral 1010:Stokes drift 920:Gravity wave 895:Cnoidal wave 766: 762: 712: 708: 676: 672: 640: 634: 601: 597: 547: 543: 537: 518: 452: 448: 414: 410: 404: 379: 375: 352:. Retrieved 342: 334: 330: 325: 313:. Retrieved 303: 278: 274: 268: 251: 245: 194: 185: 178: 163: 155:magnetometer 136: 111:Allan V. Cox 96: 90: 68: 32: 28: 26: 2021:Thermocline 1738:Mesopelagic 1711:Ocean zones 1682:Slab window 1547:Hydrography 1487:Abyssal fan 1454:Tidal range 1444:Tidal power 1439:Tidal force 1324:Rip current 1259:Gulf Stream 1219:Ekman layer 1209:Downwelling 1184:Baroclinity 1171:Circulation 1067:Wave height 1057:Wave action 1040:megatsunami 1020:Stokes wave 980:Rossby wave 945:Kelvin wave 925:Green's law 315:27 February 143:Curie point 53:geomagnetic 2097:Geophysics 2091:Categories 1959:Reanalysis 1858:Satellites 1839:Sofar bomb 1687:Subduction 1662:Ridge push 1557:Ocean bank 1537:Contourite 1464:Tide gauge 1449:Tidal race 1434:Tidal bore 1424:Slack tide 1389:Earth tide 1309:Ocean gyre 1129:Wind setup 1124:Wind fetch 1087:Wave setup 1082:Wave radar 1077:Wave power 975:Rogue wave 905:Dispersion 237:References 170:bathymetry 166:wavelength 70:Harry Hess 63:See also: 39:theory of 1821:Acoustics 1773:Sea level 1672:Slab pull 1609:tectonics 1517:Cold seep 1479:Landforms 1356:Whirlpool 1351:Upwelling 1134:Wind wave 1062:Wave base 990:Sea state 910:Edge wave 900:Cross sea 725:CiteSeerX 572:0036-8075 477:0036-8075 260:499940734 226:Geodynamo 2054:Category 2006:Seawater 1733:Littoral 1728:Deep sea 1587:Seamount 1469:Tideline 1414:Rip tide 1344:shutdown 1314:Overflow 1047:Undertow 890:Clapotis 791:17821553 747:17842754 626:17821553 580:17780036 493:17741239 431:27757504 200:See also 2064:Commons 1934:Mooring 1884:Related 1875:Jason-3 1865:Jason-1 1748:Pelagic 1743:Oceanic 1718:Benthic 1035:Tsunami 1005:Soliton 771:Bibcode 763:Science 717:Bibcode 709:Science 681:Bibcode 606:Bibcode 598:Science 552:Bibcode 544:Science 485:1712777 457:Bibcode 449:Science 384:Bibcode 283:Bibcode 59:History 1753:Photic 1582:Seabed 995:Seiche 789:  745:  727:  673:Nature 647:  624:  578:  570:  525:  491:  483:  475:  429:  376:Nature 354:19 Mar 275:Nature 258:  191:Impact 147:vector 92:Nature 1944:Ocean 1913:Alvin 1763:Swash 1607:Plate 1552:Knoll 1542:Guyot 1497:Atoll 1376:Tides 1139:model 1025:Swell 857:Waves 759:(PDF) 705:(PDF) 669:(PDF) 481:JSTOR 427:JSTOR 1911:DSV 1896:Argo 1758:Surf 1214:Eddy 787:PMID 743:PMID 645:ISBN 622:PMID 576:PMID 568:ISSN 523:ISBN 489:PMID 473:ISSN 356:2014 317:2011 256:OCLC 117:and 43:and 27:The 779:doi 767:154 735:doi 713:150 689:doi 677:199 614:doi 602:154 560:doi 548:154 465:doi 453:144 419:doi 392:doi 380:199 291:doi 279:190 2093:: 785:. 777:. 765:. 761:. 741:. 733:. 723:. 711:. 707:. 687:. 675:. 671:. 620:. 612:. 600:. 588:^ 574:. 566:. 558:. 546:. 501:^ 487:. 479:. 471:. 463:. 451:. 439:^ 425:. 415:13 413:. 390:. 378:. 364:^ 333:, 289:. 277:. 841:e 834:t 827:v 793:. 781:: 773:: 749:. 737:: 719:: 695:. 691:: 683:: 653:. 628:. 616:: 608:: 582:. 562:: 554:: 531:. 495:. 467:: 459:: 433:. 421:: 398:. 394:: 386:: 358:. 335:8 319:. 297:. 293:: 285:: 262:.

Index


seafloor spreading
continental drift
plate tectonics
mid-ocean ridges
geomagnetic
Plate tectonics § Magnetic striping
Harry Hess
seafloor spreading
Robert S. Dietz
Frederick John Vine
Lawrence W. Morley
Nature
Journal of Geophysical Research
Drummond Hoyle Matthews
remanent magnetism
Allan V. Cox
Walter C. Pitman
J. R. Heirtzler

geomagnetic field reversals
Curie point
vector
diverging plate boundary
magnetometer
magnetic anomalies
wavelength
bathymetry
magnetic equator
induced magnetization

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.