Knowledge

Viral quasispecies

Source 📝

763:
to regain adaptive capability. This has led to the suggestion that high mutation rates evolved to allow such mutant spectrum recovery following bottlenecks. Other models attribute high mutation rates to adaptive optimization independent of bottlenecks, or to a mechanistic consequence of rapid replication. Whatever their ultimate origins, high mutation rates serve the purpose of adaptation in multiple circumstances, not only following bottlenecks. A founder virus can introduce a different phenotype for the ensuing evolution. Evolution of viruses in nature and as disease agents can be viewed as succession of mutant spectrum alterations, subjected to expansions and reductions of population size in a continuous interplay of positive and negative selection and random drift. While short-term (for example, intra-host) evolution is observable and measurable, viruses may appear to be relatively static in the long term for decades (as seen with antigenic variants of FMDV ) or longer. Intra-host evolution is generally more rapid than inter-host evolution, as documented with viruses and other biological systems. Apparent invariance may be the result of selection for long-term survival of populations that have previously frenziedly tested evolutionary outcomes in short-term processes.
546:
different mutations to the same genome molecule) can be established. Each of these procedures implies some limitations: biological cloning can bias the representation in favor of infectious genomes, while molecular cloning can introduce non-infectious (defective) genomes in the analysis. Whole genome quasispecies description is still technically challenging due to the artifactual introduction of mutations. Most current deep sequencing platforms yield sequences of short reads for a given amplicon (sequence under analysis); minority mutations in an amplicon cannot be reliably linked to mutations in a different amplicon of the same genome; at most, statistical inferences on linkage can be proposed. Despite these limitations, control experiments and improvements of bioinformatic procedures support that the majority of sequence heterogeneity analyzed in viral populations indeed reflects differences in the natural template populations. If mutation linkage can be solved on a routine basis, a new wave of molecular information relevant to epistatic interactions will enter the picture.
710:
of the population. Complementation was described between two truncated FMDV genomic forms. The genomes with internal deletions became detectable upon high multiplicity passage of a clonal population of standard FMDV, a virus with a monopartite single stranded RNA genome. Infectivity was generated by complementation of the two truncated forms, in absence of standard, full length FMDV genomes. For complementation to be effective, prior exploration of sequence space through point mutations was a requirement. The system underwent a remarkable evolutionary transition akin to genome segmentation. Drastic genetic lesions in viral genomes are difficult to observe unless a mechanism such as complementation comes into the rescue of the deviant genomes. Additional examples of complementation among RNA viruses have been reported. Complementation is a means to maintain defective genomes at detectable frequencies in viral populations.
550:
uncertainties or bona fide fluctuations of genome frequencies. It is not justified to accept a rough similarity because even a single mutation in a given sequence context may affect biological properties. In the words of John Holland and colleagues: "It is important to remember that every quasispecies genome swarm in an infected individual is unique and "new" in the sense that no identical population of genomes has ever existed before and none such will ever exist again". On top of the fleeting nature of any mutant distribution, the standard methods available for quasispecies characterization provide genomic sequences of a minority of the population (estimated in 10 to 10 for molecular cloning-Sanger sequencing, and in 10 to 10 for deep sequencing). We can only have an approximate representation of viral populations and their dynamics, as evidenced by many experimental studies.
928:
error threshold relationship. Both the error threshold and lethal mutagenesis are highly fitness landscape-dependent, but both can occur in complex fitness landscapes as those pertinent to viral populations. The term lethal mutagenesis was coined by Lawerence Loeb and colleagues, and it is now widely used to describe the antiviral activity of base and nucleoside analogues that increase the viral mutation rate. Although several models have been proposed to account for virus extinction by excess mutations, an extension of the violation of the error threshold stands as a likely mechanism. Interestingly, some antiviral agents licensed for human use, initially thought to act only as inhibitors of viral replication, may actually exert their antviral activity against some RNA viruses at least partially by lethal mutagenesis. This is the case of
601:(very strong selection for a trait), an individual (or a limited number of individuals) that encodes signatures prone to be selected, may approach dominance while becoming the founder of a mutant cloud (because formation of a cloud is inherent to replication). Conditions for dominance (in this case in response to selection) are that the genome senses the selective sweep and that its replication in the new selective environment is permitted. In other cases, a collection of mutants is selected. This was illustrated with a FMDV quasispecies that was reconstructed in the laboratory with multiple antigenic variants (each at low frequency) that belonged to two different categories, and shared resistance to the same 980: 746:, or fitness decrease by the irreversible incorporation of mutations in asexual organisms in absence of compensatory mechanisms. The serial bottleneck transfers unveiled the presence rare mutations, not seen in standard laboratory or natural viral populations. In absence of forced bottleneck events, such rare mutations would be lost by negative selection because of their fitness cost. The investigation of how FMDV clones debilitated by MĂŒller’s ratchet regained replicative fitness revealed several alternative molecular pathways for fitness recovery. The implications of this observation went largely unnoticed until recent results with 161: 1056: 951:, etc.) represent a natural counterpart of the principle utilized by lethal mutagenesis. Applicability to pathogenic cellular elements is a real possibility, and lethal mutagenesis to control tumor cells is an active field of investigation. Thus, the recognition of quasispecies dynamics has suggested some fundamental guidelines for disease prevention and control that are gradually permeating clinical practice. This is in line with the recognized need to apply Darwinian principles to the control of infectious disease. 444: 731: 234: 650:
in which an effective competition among variants is established, for example within replication complexes. This important concept was first derived theoretically, and then approached experimentally with several viruses. In an early study, Juan Carlos de la Torre and John Holland described suppression of high fitness VSV by mutant spectra of inferior fitness. Suppressive effects have since been documented with standard and mutagenized viral populations. Some examples are:
575:(IFN) or to respond to IFN, virulence or particle stability, among other phenotypic traits. Mutant spectra can also mediate cyclical adaptation to different cell types. A mutant spectrum defines a consensus but the consensus is an abstraction; it may not be represented in the population. Many events in viral pathogenesis and evolution are due to mutant spectrum modifications or interactions which cannot be properly interpreted solely on the basis of consensus sequences. 288:, among other studies with animal and plant viruses in the middle of the 20th century. When put in the context of present-day knowledge, we realize that these observations on phenotypic changes were the tip of the iceberg of an extremely complex reality of viral populations. High mutation rates and population heterogeneity characterize RNA viruses, with consequences for viral pathogenesis and the control of viral disease. Detailed studies on quasispecies dynamics 614:
dominant variants were surrounded by a cloud of mutants of the other antigenic variant category. Conversely, passages in the presence of the antibody led to selection of variants with altered receptor recognition, surrounded by a cloud of antigenic variants that maintained receptor recognition. The results underlined the role of mutant clouds in selective events, and unveiled a new mechanism of antigenic flexibility.
702:
capacity and pathogenic potential of RNA viruses. In the first mutant studied, amino acid substitution G46S in the PV polymerase resulted in about four-fold increase in template-copying fidelity. This modification reduced PV adaptability and infective potential in vivo. The mutant in isolation did not replicate efficiently in the brain of susceptible mice, but it did when its mutant spectrum was broadened by
755:
interesting to investigate whether focused adaptation of other viruses to a specific environment may also entail a broadening of diversity, with many phenotypic variants attaining similar fitness levels. If generalized, this broadening of phenotypic space would provide a new interpretation of the molecular basis of adaptation, and explain why adaptation to alternative environments may not lead to
529:
equated with the effective population size in general genetics), and harboring multiple mutations per genome. The scenarios suggested by current experimental data defy our imagination. The relative frequency of individual mutations fluctuates in an unceasing exploration of sequence space, with phenotypic changes (not only genotypic changes) being far more frequent than previously thought. The
320:. These objectives approximate quasispecies to the real case of RNA viruses, which are compelled to deal with dramatic variations in population size and environment. Research on quasispecies has proceeded through several theoretical and experimental avenues that include continuing studies on evolutionary optimization and the origin of life, 344:(a class of proteins with conformation-dependent pathogenic potential; in this case the quasispecies is defined by a distribution of conformations). New inputs into experimental quasispecies research have come from deep sequencing to probe viral and cellular populations, recognition of interactions within mutant spectra, models of viral 636:. Thus, memory is a history-dependent, collective property of the quasispecies that confers a selective advantage to respond to environmental changes previously experienced by the same evolutionary lineage. It can be manifested only if the mutant spectrum maintains its completeness, since memory is lost when the population undergoes a 739:
have an important participation in shaping evolutionary lineages for all kinds of organisms, and also for viruses. They occur frequently not only upon host-to host transmission but also inside infected hosts, and they can perturb positive and negative selection events in processes that are difficult to identify and characterize.
537:(FMDV) such a design led to a remarkable phenotypic diversification into subpopulations of colonizers and competitors, that modulated virulence of the mutant ensemble. In HCV such a design unveiled continuous mutation waves and a more accurate understanding of the types of fitness landscapes occupied by high fitness viruses. 316:. These conditions are common in initial theoretical formulations of complex phenomena because they confer mathematical tractability. Since then, several extensions of the theory to non-equilibrium conditions with stochastic components have been developed, with the aim of finding general solutions for multi-peak 559:
conveying the information recapitulated in a mutant spectrum, blurs and enfeebles biological interpretations. Experimental results have demonstrated that minority genomes from a mutant spectrum (that cannot be identified by examining the consensus sequence) can include mutations that confer resistance to
831:
of antiviral designs. The aim of vaccination is to evoke a protective response that either prevents virus replication or disease. The aim of an antiviral pharmacological intervention is to inhibit virus replication to provide the immune system with an opportunity to clear the virus. Expressed simply,
762:
Deprivation of an individual virus from possible suppression, complementation or cooperation, may represent a liberation to initiate a new evolutionary process, or a condemnation to extinction. If liberated from suppression, the isolated genome must replicate and be able to reconstruct a mutant cloud
962:
In theory, if the mutation rate was sufficiently high, the viral population would not be able to maintain the genotype with the highest fitness, and therefore the ability of the population to adapt to its environment would be compromised. A practical application of this dynamic is in antiviral drugs
927:
is the process of virus extinction at the error rate at which a virus can no longer maintain its genetic information. Application of lethal mutagenesis as an antiviral strategy deserves attention in the context of the present article because its origins lie in quasispecies theory, in the form of the
709:
Complementation (often occurring when a functional protein encoded by a set of genomes is used by another set of genomes whose encoded protein is not functional) may underlie some collective responses of quasispecies such as fitness of individuals isolated from a population being inferior to fitness
649:
Individual genomes surrounded by a cloud of related mutants can be either suppressed to be kept at low frequency, or helped to be maintained in the population. The two alternative fates are dependent on several factors, one being the surrounding mutant spectrum in those steps of the infectious cycle
549:
There are additional levels of indeterminacy in the sequential analysis of viral populations, in particular those replicating in vivo. Components of the mutant spectrum represented at a given time in the sample taken for sequencing may differ from those in the next time point, due either to sampling
545:
The nucleotide sequence of an individual genome from a population (no matter which the degree of population complexity might be), can be determined either following a biological or molecular cloning event or by deep sequencing of entire viral genomes, in a manner that mutation linkage (assignment of
507:
systems may be overwhelmed by the high infectious dose, but also because the mutant repertoire that engages in adaptive explorations is larger. Part of the variants of a mutant spectrum, either in isolation or in consortium with others, may perform better than other members of the same population in
390:
have established some general observations on the mechanisms of mutant generation, and implications of quasispecies dynamics. In RNA virus genetics when we speak of "a mutant" the entity we handle is a cloud of mutants in which the specific mutation to which we direct our attention is present in all
164:
The equations are the mathematical expression of the major concepts implied by quasispecies theory. The first equation describes the change of concentration of molecule i as a function of replication parameters, and its production from other molecules of the same ensemble. The second equation is the
738:
A means to interrupt the participation of individual genomes in interactions with their mutant spectrum is for the quasispecies swarm to undergo drastic reductions in population size that isolate one or few individual genomes from their surroundings. Such reductions are termed bottlenecks, and they
640:
event that excludes minorities. A relevant example of the consequences of memory occurs in antiviral pharmacology with the administration for a second time of the same or a related antiviral agent (capable of evoking shared resistance mutations) used in a previous treatment. The second intervention
631:
that mobilizes and expands minority components in response to stimuli previously faced by the system. In the experiments designed to identify memory in viral quasispecies, members of the mutant spectrum increased in frequency as a consequence of their replication during a selection event that drove
520:
cells, to withstand neutralizing antibodies, etc.). Adaptability of RNA viruses is linked to parameters that facilitate exploration of sequence space: genome size (1.8 to 33 Kb), population size (variable but that can attain an impressive 10 individual genomes in an infected host at a given time),
245:
populations whose replication had been initiated by a single virus particle. Individual genomes differed from the consensus sequence in an average of one to two mutations per individual genome. Fitness of biological clones was inferior to that of the parental, uncloned population, a difference also
970:
However, these models assume that only the mutations that occur in the fittest sequence are deleterious, and furthermore that they are non-lethal. It has been argued that, if we take into account the deleterious effect of mutations on the population of variants and the fact that many mutations are
818:
In all interactions conductive to disease, the host cells individually and as groups in tissues and organs play decisive roles. The consequences of a viral infection are always host-dependent. However, the virus itself poses a major challenge that a deeper understanding of quasispecies dynamics is
713:
A distinction has been made between complementation and cooperation, in which two different genomes give rise to a new phenotype through the interaction between two variant proteins. An example of cooperation was characterized during studies with measles virus on membrane fusion which is essential
701:
Collective behavior of viruses was documented with mutant RNA viruses resistant to nucleotide analogues. The study of this class of mutants has been instrumental for the understanding of the molecular basis of template copying fidelity, and the consequences of fidelity alterations in the adaptive
558:
The points summarized in previous sections fully justifies addressing analytical tools towards the mutant spectrum rather than ignoring it or considering its presence a side issue. Use of consensus sequences to describe the genome of a virus isolate, despite being warranted by the difficulties of
503:, each population is made of an array of variant genomes, with a total number which is commensurate with the virus population size. To infect a plant, animal or cell culture with 10 infectious units can have very different consequences than to infect with 10 infectious units, not only because the 382:
genomes, do not prevent the formation of mutant spectra, although their amplitude may be lower than for other RNA viruses, at least in populations close to a clonal (single genome) origin. Quasispecies dynamics will operate in any viral or cellular system in which due to high mutation rates (as a
271:
High mutation rates and quasispecies were verified for other RNA viruses based on dissection of viral populations by molecular or biological cloning, and sequence analysis of individual clones. John Holland and colleagues were the first to recognize that a rapidly evolving RNA world inserted in a
754:
conferred the capacity to infect several human cell lines in addition to the expected fitness increase for multiplication in BHK-21 cells. Thus, several lines of evidence suggest that fitness gain in a specific environment may paradoxically broaden the phenotypic potential of a virus. It will be
641:
may face inhibitor-resistant memory genomes from the earlier treatment, thus contributing to virus escape. This is an aspect that has not received adequate attention in the planning of antiviral interventions for patients who fail a first treatment and have to be subjected to a second treatment.
613:
recognition site); in the other category, the substitutions affected the antigenic determinant but not the receptor recognition site. Passages of the virus in absence of the monoclonal antibody resulted in dominance of antigenic variants that maintained the receptor recognition capacity, but the
693:
with members of the mutant spectrum. The position in a fitness landscape influences vulnerability to mutations, as popularized with the terms "advantage of the flattest" or "survival of the flattest", indicating that a variant located at the top of a sharp fitness peak has higher probability to
528:
from an infected host, adaptation to cell culture for studies on experimental evolution, or adaptation to alternative hosts in vivo. The reality is even more complex, given the large population sizes, with an indeterminate proportion of genomes actively replicating at any given time (sometimes
229:
The core quasispecies concepts are described by two fundamental equations: replication with production of error copies, and the error threshold relationship. They capture two major features of RNA viruses at the population level: the presence of a mutant spectrum, and the adverse effect of an
832:
the direct danger for vaccination and treatment is that the virus can escape through selection of mutants resistant to vaccine-triggered defense components or to the externally administered inhibitors. This has led to several proposals to confront viral disease, that can be summarized below.
813:
There is a connection between four parameters that characterize viruses during infection processes: replication rate (the rate at which viral RNA or DNA is synthesized intracellularly for viral progeny production), viral load (the total amount of virus quantified in an infected host or host
1046:(or breadth) of the quasispecies. The mutant viruses extracted from brain tissue were not themselves pathogenic, and the authors speculate that there may be complementation between variant members of the quasispecies that could enable viruses to colonize different host tissues and systems. 916:
recombination is available) or because the multiple mutations inflict a severe fitness cost. Vaccines exposing multiple epitopes and combination therapies follow the same strategy whose aim is to limit possible escape routes to viral quasispecies in the face of the suppressive constraint.
915:
These strategies have as their main objective to avoid selection of treatment-escape mutants by multiple selective constraints that cannot be surmounted by the virus. Control is effective either because exploration of sequence space cannot reach the required multiple mutations (even when
254:
of a population ensemble need not coincide with that of its individual components. The finding that a viral population was essentially a pool of mutants came at a time when mutations in general genetics were considered rare events, and virologists associated a viral genome with a defined
508:
the event of an environmental change. Selective pressures favor replication of some components of a mutant spectrum over others, despite all of them being interconnected by mutation. Differential performance can be at the level of viral genomes (during replication, intracellular
632:
them towards dominance. When the selective constraint was withdrawn, memory genomes remained at levels that were 10- to 100-fold higher than the basal levels attributable solely to their generation by mutation, as documented with independent FMDV genetic markers, and with HIV-1
373:
domain present in replicative cellular DNA polymerases. Also, postreplicative-repair pathways, abundant to correct genetic lesions in replicating cellular DNA, appear as ineffective for double-stranded RNA or RNA-DNA hybrids. The presence of a proofreading-repair activity in
272:
DNA-based biosphere had multiple evolutionary and medical implications. Genome plasticity of RNA viruses had been suspected for many decades. Key early observations were variations in viral traits described by Findley in the 1930s, the studies of Granoff on transitions of
487:. All modes of molecular variation are compatible, only restricted by the scope of mechanisms accessible to the replicative machinery, and for the need for viral genomes to remain functional. David Evans and colleagues identified many recombination events associated with 173:(p = 1- q; q is the copying fidelity) for maintenance of genetic information. Terms are defined in the box on the right. Below, an evolving mutant spectrum (with mutations represented as symbols on the genomes), with an invariant consensus sequence. Adapted from. 714:
for virus entry into cells. For this virus fusion is mediated by two proteins termed H and F. A truncated H was deficient in cell fusion but the activity was regained when the truncated H was accompanied by two forms of F but not one of the forms individually.
852:. The broad response should minimize selection of escape mutants that may be present as minority components in mutant spectra, as repeatedly documented experimentally. With the current types of available vaccines, those that best comply with the multiple 583:
Mutant spectra are not mere aggregates of mutants acting independently. They are often engaged in collective responses. Two major types are those that depend on the presence of sets of variants, and those that rely on intra-mutant spectrum interactions.
721:
and suppression can emerge from interactions among components of mutant spectra that have their origin in random mutations. Selection acts on whatever sets of mutants can provide a useful trait, to turn random occurrences into biological meaning.
391:(or the great majority of) individual genomes. There is no such a thing as "a" wild type or "a" mutant virus. They are always clouds of mutants. Changes in the relative dominance of components of mutant spectra are particularly severe during 348:
related to disease progression and pathogen transmission, and new teachings from fidelity variants of viruses. Here we summarize the main aspects of quasispecies dynamics, and recent developments relevant to virus evolution and pathogenesis.
267:
of individual genomes to accept an undetermined proportion of the newly arising mutations, despite fitness costs. The error rate estimated for bacteriophage QÎČ has been confirmed, and is comparable to values calculated for other RNA viruses.
814:
compartment), genetic heterogeneity, and replicative fitness (the yield of infectious particles that can contribute to the next generation). They can influence disease progression, and any of them can be targeted for disease control.
402:
procedures have been developed to unveil the relationships among different but closely related genome types that may suggest some hierarchical order of mutation acquisition or identification of transmission clusters (examples are
66:
will outcompete a quasispecies located at a higher but narrower fitness peak in which the surrounding mutants are unfit. This phenomenon has been called 'the quasispecies effect' or, more recently, the 'survival of the flattest'.
2159:
Domingo E, MartĂ­nez-Salas E, Sobrino F, de la Torre JC, Portela A, OrtĂ­n J, et al. (January 1985). "The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance--a review".
495:. High mutation and recombination rates have led to the conceptual distinction between mechanistically unavoidable and evolutionarily relevant variation, in connection with the issue of clonal versus non-clonal nature of 626:
behavior of a viral quasispecies, suggested by the presence of core information (considered the one that defines viral identity) despite variation of constitutive elements (the mutant spectrum). A well-known example is
217:
relationship, which marks the maximum mutation rate at which the master (or dominant) sequence can stabilize the mutant ensemble. Violation of the error threshold results in loss of dominance of the master sequence and
117:, though the concepts can apply to other biological entities such as reverse transcribing DNA viruses like hepatitis B. In such scenarios, complex distributions of closely related variant genomes are subjected to 971:
lethal, then the error threshold disappears, i.e. the fittest sequence always maintains itself. Empirical data on the effect of mutations in viruses is rare, but appears to correspond with this scenario.
810:
The larger the actively replicating (effective) population size and the replication rate, the most effective is exploration of sequence space for phenotypic expansions that favor survival and persistence.
1011:
to preserve diversity in a population. At least in simulations, a slower replicator can be shown to be able to outcompete a faster one in cases where it is more robust and the mutation rate is high.
4925:
Perales C, Mateo R, Mateu MG, Domingo E (June 2007). "Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants".
201:
information, as an essential step in the origin of life. The theory portrayed early replicon populations as organized mutant spectra dominated by a master sequence, the one endowed with the highest
734:
Illustration of bottleneck of different severity, defined by the different circles inserted in the entire population (large rectangle) and the outer rectangles. Symbols represent mutant classes.
622:
Quasispecies memory is a type of molecular memory dependent on the recent history of the evolutionary lineage and the integrity of the mutant spectrum. The search for memory was prompted by the
6972: 2294:
Meyerhans A, Cheynier R, Albert J, Seth M, Kwok S, Sninsky J, et al. (September 1989). "Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations".
742:
Drastic bottleneck events have been reproduced with laboratory populations of viruses in the form of plaque-to-plaque transfers. This design served to verify experimentally the operation of
4296:
GarcĂ­a-Arriaza J, Ojosnegros S, DĂĄvila M, Domingo E, EscarmĂ­s C (July 2006). "Dynamics of mutation and recombination in a replicating population of complementing, defective viral genomes".
872:> single peptide antigen. The scarcity of effective synthetic vaccines for RNA viral pathogens despite huge scientific and economic efforts is a reflection of the underlying problems. 521:
replication rate, mutation rate, fecundity (yield of viral particles per cell), and number of mutations required for a phenotypic change (surprisingly low for several relevant traits).
4188:
Gallego I, Gregori J, Soria ME, GarcĂ­a-Crespo C, GarcĂ­a-Álvarez M, GĂłmez-GonzĂĄlez A, et al. (October 2018). "Resistance of high fitness hepatitis C virus to lethal mutagenesis".
669: 959:
This may be defined as "The inability of a genetic element to be maintained in a population as the fidelity of its replication machinery decreases beyond a certain threshold value".
6957: 3210:
Figlerowicz M, Alejska M, Kurzynska-Kokorniak A, Figlerowicz M (2003-09-23). "Genetic Variability: The Key Problem in the Prevention and Therapy of RNA-Based Virus Infections".
362: 129:. Therefore, the evolutionary trajectory of the viral infection cannot be predicted solely from the characteristics of the fittest sequence. High mutation rates also place an 1000:(with mutational neighbours substantially less fit). This has been called 'survival of the flattest' - referring to the fitness profiles of the two strategies respectively. 939:
Defense mechanisms based on genome modification of invading genetic parasites such as editing cellular activities that are recruited as part of the innate immune response (
524:
Mutant spectrum dynamics has been depicted in different ways, and we have chosen one that encompasses frequent events in natural populations and research designs, such as
2027:
Batschelet E, Domingo E, Weissmann C (January 1976). "The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate".
1790:
Fornés J, Tomås Låzaro J, Alarcón T, Elena SF, Sardanyés J (January 2019). "Viral replication modes in single-peak fitness landscapes: A dynamical systems analysis".
6013:
EscarmĂ­s C, DĂĄvila M, Domingo E (January 1999). "Multiple molecular pathways for fitness recovery of an RNA virus debilitated by operation of Muller's ratchet".
500: 6962: 2557:
Bernad A, Blanco L, LĂĄzaro JM, MartĂ­n G, Salas M (October 1989). "A conserved 3'----5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases".
471:. Accumulating laboratory and clinical evidence renders untenable that minority components of mutant spectra should be dismissed on the grounds of their being 321: 263:. The cloud nature of QÎČ was understood as a consequence of its high mutation rate, calculated in 10 mutations introduced per nucleotide copied, together with 6091:"Evolution of the capsid protein genes of foot-and-mouth disease virus: antigenic variation without accumulation of amino acid substitutions over six decades" 1018:
evolved or is intrinsic to genetic systems is unconfirmed, because the basic mechanism behind robustness would depend upon the peculiarities of each system.
891:
Splitting a treatment into two steps: first an induction regimen, and a second maintenance regimen. Drugs administered in the two steps should be different.
499:(microbial evolution in general). Only a minority of the nascent variation during replication can be successfully propagated. Within limits that are set by 789:
Virus attenuation and virulence is dependent on viral genetic traits. Variant forms of a given virus may display increased virulence or atypical disease.
5978:
EscarmĂ­s C, DĂĄvila M, Charpentier N, Bracho A, Moya A, Domingo E (November 1996). "Genetic lesions associated with Muller's ratchet in an RNA virus".
4606:
Farber DL, Netea MG, Radbruch A, Rajewsky K, Zinkernagel RM (February 2016). "Immunological memory: lessons from the past and a look to the future".
205:(replicative capacity) in the distribution. It introduced the notion of a mutant ensemble as a unit of selection, thus emphasizing the relevance of 5477:
Aaskov J, Buzacott K, Thu HM, Lowry K, Holmes EC (January 2006). "Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes".
3697:"Recombination in enteroviruses is a biphasic replicative process involving the generation of greater-than genome length 'imprecise' intermediates" 2935:"Deep-Sequence Identification and Role in Virus Replication of a JC Virus Quasispecies in Patients with Progressive Multifocal Leukoencephalopathy" 160: 6394:
Perales C, Gallego I, de Ávila AI, Soria ME, Gregori J, Quer J, Domingo E (July 2019). "The increasing impact of lethal mutagenesis of viruses".
324:
and replicator networks, the error threshold in variable fitness landscapes, consideration of chemical mutagenesis and proofreading mechanisms,
2519:
Steinhauer DA, Domingo E, Holland JJ (December 1992). "Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase".
884:(use of a single antiviral agent) is to be avoided. The following recommendations have been made and in some cases successfully implemented: 2984:"An unusually high substitution rate in transplant-associated BK polyomavirus in vivo is further concentrated in HLA-C-bound viral peptides" 779:) and antiviral inhibitors used in therapy. It is an open question if vaccination can promote long-term evolution of antigenic determinants. 771:
Soon after quasispecies was evidenced for viruses, some medical implications were made explicit. Several specific and general points below.
750:(HCV) have also suggested the accessibility of multiple pathways for fitness gain. Also, extensive passage of a biological clone of FMDV in 475:. They can participate in selective processes and cannot be excluded from interpretations of virus behavior. Variation universally involves 459:
The crux of the matter regarding quasispecies implications is that at any given time, the viral population includes a reservoir not only of
1042:
sequences. Pathogenicity could then be restored by mutagen application. This was interpreted to mean lower mutation rates had reduced the
447:
Upon isolation from an infected host (middle boxes), a virus sample may be adapted to cultured cells and subjected to large population or
533:
design that consists of passaging viral populations for long time periods (many sequential infections) is often extremely revealing. In
6967: 4336:"Correlation between amount of virus with altered nucleotide sequence and the monkey test for acceptability of oral poliovirus vaccine" 4077:"Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment" 3561:"In vivo evolution of viral virulence: switching of deformed wing virus between hosts results in virulence changes and sequence shifts" 2383:
Eigen M, Schuster P (November 1977). "The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle".
4960:
Crowder S, Kirkegaard K (July 2005). "Trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses".
775:
High mutation rates and population heterogeneity endow viruses with the potential to escape immune pressures (including those due to
4477:"Influence of the mutant spectrum in viral evolution: focused selection of antigenic variants in a reconstructed viral quasispecies" 101:
The quasispecies model is most applicable when the genome size is limited and the mutation rate is high, and so is most relevant to
4837:"Suppression of lymphocytic choriomeningitis virus--induced growth hormone deficiency syndrome by disease-negative virus variants" 491:
replication, and only a few recombinants made their way towards continued replication. Recombination can mediate adaptability and
685:
Opposite to suppression is maintenance of a mutant either by a favorable position in a fitness landscape or by interactions of
996:
to generate a broad quasispecies with members of approximately equal fitness than to have a sharply defined 'most fit' single
807:
processes in which some viral subpopulations are replaced by others to persist or to invade new cell types, tissues or organs.
6977: 4429:
Perales C (October 2018). "Quasispecies dynamics and clinical significance of hepatitis C virus (HCV) antiviral resistance".
3988: 2495: 1551:
Molecular characterization of full genome hepatitis b virus sequences from an urban hospital cohort in Pretoria, South Africa
936:(1-ÎČ-D-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) that are currently being intensively investigated as lethal mutagens. 59: 3038:"Differential Shape of Geminivirus Mutant Spectra Across Cultivated and Wild Hosts With Invariant Viral Consensus Sequences" 3036:
SĂĄnchez-Campos S, DomĂ­nguez-Huerta G, DĂ­az-MartĂ­nez L, TomĂĄs DM, Navas-Castillo J, Moriones E, Grande-PĂ©rez A (2018-07-02).
1067: 6294:
Perales C, Ortega-Prieto AM, Beach NM, Sheldon J, Menéndez-Arias L, Domingo E (2017). "Quasispecies and Drug Resistance".
4788:"Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection" 1899:
Domingo E, Sabo D, Taniguchi T, Weissmann C (April 1978). "Nucleotide sequence heterogeneity of an RNA phage population".
4698:
Arias A, Ruiz-Jarabo CM, EscarmĂ­s C, Domingo E (May 2004). "Fitness increase of memory genomes in a viral quasispecies".
897:
Use of innate immune response-stimulating drugs (for example, inhibitors of enzymes involved in pyrimidine biosynthesis).
293: 144:
The relevance of quasispecies in virology has been the subject of extended debate. However, standard clonal analyses and
148:
methodologies have confirmed the presence of myriads of mutant genomes in viral populations, and their participation in
6823:
Wagner GP, Krall P (November 1993). "What is the difference between models of error thresholds and Muller's ratchet?".
3608:
Baccam P, Thompson RJ, Fedrigo O, Carpenter S, Cornette JL (January 2001). "PAQ: Partition Analysis of Quasispecies".
308:
The first mathematical formulation of quasispecies was deterministic; it assumed steady state mutant distributions in
6987: 6311: 6212: 5658: 5335: 5176: 4750: 4405: 4253: 2858: 2443: 2221: 2011: 1868: 378:
increases their copying accuracy in about 15-fold. This and other repair activities, that may act on standard RNA or
5645:. Current Topics in Microbiology and Immunology. Vol. 392. Springer International Publishing. pp. 219–29. 5322:. Current Topics in Microbiology and Immunology. Vol. 392. Springer International Publishing. pp. 303–22. 5163:. Current Topics in Microbiology and Immunology. Vol. 392. Springer International Publishing. pp. 161–79. 2845:. Current Topics in Microbiology and Immunology. Vol. 392. Springer International Publishing. pp. 141–59. 2430:. Current Topics in Microbiology and Immunology. Vol. 392. Springer International Publishing. pp. 121–39. 1855:. Current Topics in Microbiology and Immunology. Vol. 392. Springer International Publishing. pp. 61–120. 383:
result of low fidelity nucleic acid polymerases or environmental alterations) mutant spectra are rapidly generated.
5159:
Tejero H, Montero F, Nuño JC (2016). "Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection".
3800:"Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa" 2116:
Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S (March 1982). "Rapid evolution of RNA genomes".
4651:"Memory in retroviral quasispecies: experimental evidence and theoretical model for human immunodeficiency virus" 800:
than most genomes in the same population, with implications for the emergence and re-emergence of viral disease.
5103:"The fittest versus the flattest: experimental confirmation of the quasispecies effect with subviral pathogens" 2267: 1755:
Swetina J, Schuster P (December 1982). "Self-replication with errors. A model for polynucleotide replication".
993: 6050:"Expansion of host-cell tropism of foot-and-mouth disease virus despite replication in a constant environment" 4524: 237:
Flow of conceptual derivations of quasispecies theory for viral populations, and some biological consequences.
4238:. Current Topics in Microbiology and Immunology. Vol. 176. Berlin, Heidelberg: Springer. pp. 1–20. 948: 387: 2426:
Saakian DB, Hu CK (2016). "Mathematical Models of Quasi-Species Theory and Exact Results for the Dynamics".
5684:"Bottleneck-mediated quasispecies restriction during spread of an RNA virus from inoculation site to brain" 606: 534: 358: 206: 3094:"Cyclical adaptation of measles virus quasispecies to epithelial and lymphocytic cells: To V, or not to V" 698:. Survival of the flattest has been also proposed as an ingredient in some models of the error threshold. 856:
requirement are, in the order of expected efficacy to confer protection against highly variable viruses:
484: 325: 130: 3512:"Within-Host Variations of Human Papillomavirus Reveal APOBEC Signature Mutagenesis in the Viral Genome" 6256:
Williams PD (February 2010). "Darwinian interventions: taming pathogens through evolutionary ecology".
5263:"Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population" 979: 686: 247: 223: 1355:
Elena SF, Agudelo-Romero P, Carrasco P, Codoñer FM, Martín S, Torres-Barceló C, Sanjuån R (May 2008).
1003:
Over the long-term, a flatter fitness profile might better allow a quasispecies to exploit changes in
644: 5641:
Shirogane Y, Watanabe S, Yanagi Y (2016). "Cooperative Interaction Within RNA Virus Mutant Spectra".
2064:"Correlation between mutation rate and genome size in riboviruses: mutation rate of bacteriophage QÎČ" 1699:
Eigen M (October 1971). "Selforganization of matter and the evolution of biological macromolecules".
828: 6242: 4772: 1994:
Domingo E, Brun A, Nuñez JI, Cristina J, Briones C, Escarmís C (2006-05-10). "Genomics of Viruses".
2602:"High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants" 751: 6508:"Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution" 3404:
van Boheemen S, Tas A, Anvar SY, van Grootveld R, Albulescu IC, Bauer MP, et al. (May 2017).
911:
Lethal mutagenesis or virus extinction by excess of mutations introduced during viral replication.
6506:
Venkatesan S, Rosenthal R, Kanu N, McGranahan N, Bartek J, Quezada SA, et al. (March 2018).
4525:"Minority report: hidden memory genomes in HIV-1 quasispecies and possible clinical implications" 2751:"Coronaviruses as DNA wannabes: a new model for the regulation of RNA virus replication fidelity" 1298: 623: 333: 277: 2982:
Domingo-Calap P, Schubert B, Joly M, Solis M, Untrau M, Carapito R, et al. (October 2018).
2933:
Takahashi K, Sekizuka T, Fukumoto H, Nakamichi K, Suzuki T, Sato Y, et al. (January 2017).
2251: 2243: 743: 242: 6860:"The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus" 5589:"Cooperation between distinct viral variants promotes growth of H3N2 influenza in cell culture" 3749:
Xiao Y, Rouzine IM, Bianco S, Acevedo A, Goldstein EF, Farkov M, et al. (September 2017).
3643:
Skums P, Zelikovsky A, Singh R, Gussler W, Dimitrova Z, Knyazev S, et al. (January 2018).
3406:"Quasispecies composition and evolution of a typical Zika virus clinical isolate from Suriname" 782:
Attenuated RNA virus vaccines can revert to virulent forms. RNA viruses released in nature for
530: 366: 190: 6048:
Ruiz-Jarabo CM, Pariente N, Baranowski E, DĂĄvila M, GĂłmez-Mariano G, Domingo E (August 2004).
5205:"Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice" 2841:
Wagner N, Atsmon-Raz Y, Ashkenasy G (2016). "Theoretical Models of Generalized Quasispecies".
654:
Suppression of high fitness antigenic variants of FMDV by low fitness antibody-escape mutants.
1015: 1008: 637: 564: 480: 448: 6089:
MartĂ­nez MA, Dopazo J, HernĂĄndez J, Mateu MG, Sobrino F, Domingo E, Knowles NJ (June 1992).
5782:
Bull RA, Luciani F, McElroy K, Gaudieri S, Pham ST, Chopra A, et al. (September 2011).
2340:
Farci P (November 2011). "New insights into the HCV quasispecies and compartmentalization".
241:
The existence of a mutant spectrum was experimentally evidenced first by clonal analyses of
6871: 6777: 6718: 6460: 6343: 6151: 5897: 5842: 5743:"Virus population bottlenecks during within-host progression and host-to-host transmission" 5695: 5541: 5486: 5431: 5274: 4347: 4234:
Holland JJ, De La Torre JC, Steinhauer DA (1992). "RNA Virus Populations as Quasispecies".
4137: 4020: 3862: 3572: 3417: 2818: 2801: 2662: 2125: 1799: 1708: 1502: 1310: 1246: 1179: 1162: 628: 251: 210: 5318:
BorderĂ­a AV, Rozen-Gagnon K, Vignuzzi M (2016). "Fidelity Variants and RNA Quasispecies".
4075:
Moreno E, Gallego I, Gregori J, LucĂ­a-Sanz A, Soria ME, Castro V, et al. (May 2017).
4009:"Mutational and fitness landscapes of an RNA virus revealed through population sequencing" 3510:
Hirose Y, Onuki M, Tenjimbayashi Y, Mori S, Ishii Y, Takeuchi T, et al. (June 2018).
2250:. Current Topics in Microbiology and Immunology. Vol. 299. Springer-Verlag. pp.  1428: 8: 5784:"Sequential bottlenecks drive viral evolution in early acute hepatitis C virus infection" 1299:"Evolution of digital organisms at high mutation rates leads to survival of the flattest" 1071: 861: 718: 602: 345: 309: 256: 186: 75: 24: 6875: 6781: 6722: 6464: 6347: 6155: 5901: 5846: 5699: 5545: 5490: 5435: 5278: 4351: 4141: 4124:
Ojosnegros S, Beerenwinkel N, Antal T, Nowak MA, EscarmĂ­s C, Domingo E (February 2010).
4024: 3866: 3751:"RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence" 3576: 3421: 2666: 2129: 1945:
Duarte EA, Novella IS, Ledesma S, Clarke DK, Moya A, Elena SF, et al. (July 1994).
1803: 1712: 1506: 1314: 1250: 6840: 6800: 6765: 6682: 6657: 6630: 6605: 6581: 6556: 6532: 6507: 6429: 6230: 6177: 5866: 5810: 5783: 5718: 5683: 5615: 5588: 5564: 5529: 5510: 5454: 5419: 5418:
Moreno E, Ojosnegros S, GarcĂ­a-Arriaza J, EscarmĂ­s C, Domingo E, Perales C (May 2014).
5386: 5346: 5295: 5262: 5231: 5204: 5129: 5102: 5029: 5004: 4985: 4760: 4675: 4650: 4631: 4454: 4275: 4213: 4160: 4125: 4101: 4076: 4041: 4008: 3939: 3912: 3885: 3850: 3826: 3799: 3775: 3750: 3723: 3696: 3669: 3645:"QUENTIN: reconstruction of disease transmissions from viral quasispecies genomic data" 3644: 3536: 3511: 3487: 3462: 3438: 3405: 3381: 3354: 3327: 3302: 3283: 3178: 3153: 3120: 3093: 3064: 3037: 3010: 2983: 2959: 2934: 2910: 2883: 2777: 2750: 2626: 2601: 2582: 2501: 2408: 2365: 2319: 2088: 2063: 1924: 1833: 1732: 1676: 1651: 1603: 1433: 1383: 1356: 1334: 1236: 1114: 1077: 1004: 924: 857: 662: 365:(also termed reverse transcriptases, RTs). In addition, these enzymes are defective in 285: 264: 138: 95: 91: 55: 6894: 6859: 6483: 6448: 6115: 6090: 5920: 5885: 5395: 5371:"Evolutionary transition toward defective RNAs that are infectious by complementation" 5370: 5078: 5053: 4902: 4877: 4812: 4787: 4666: 4583: 4558: 4442: 1971: 1946: 672:(LCMV) (that cause growth hormone deficiency in mice) by non-pathogenic LCMV variants. 90:
when describing viruses, and a conceptual framework for a deeper understanding of the
6982: 6899: 6844: 6805: 6746: 6741: 6706: 6687: 6635: 6586: 6537: 6488: 6433: 6421: 6371: 6366: 6331: 6307: 6273: 6218: 6208: 6169: 6120: 6071: 6030: 5995: 5960: 5956: 5925: 5858: 5815: 5764: 5723: 5664: 5654: 5620: 5569: 5502: 5459: 5400: 5351: 5331: 5300: 5236: 5182: 5172: 5134: 5083: 5069: 5034: 4977: 4942: 4907: 4858: 4817: 4803: 4746: 4715: 4680: 4623: 4588: 4536: 4498: 4446: 4411: 4401: 4375: 4370: 4335: 4313: 4267: 4259: 4249: 4205: 4165: 4106: 4046: 3984: 3944: 3890: 3831: 3780: 3728: 3674: 3625: 3621: 3590: 3541: 3492: 3443: 3386: 3332: 3275: 3227: 3183: 3125: 3069: 3015: 2964: 2915: 2882:
Schmidt TT, Reyes G, Gries K, Ceylan CÜ, Sharma S, Meurer M, et al. (May 2017).
2864: 2854: 2823: 2782: 2731: 2726: 2709: 2690: 2685: 2650: 2631: 2574: 2570: 2536: 2532: 2491: 2449: 2439: 2400: 2369: 2357: 2311: 2307: 2273: 2263: 2217: 2177: 2173: 2141: 2093: 2044: 2040: 2007: 1976: 1916: 1912: 1874: 1864: 1825: 1772: 1768: 1724: 1681: 1595: 1555: 1530: 1525: 1490: 1468: 1464: 1388: 1326: 1274: 1269: 1224: 1202: 1194: 1119: 1101: 756: 747: 610: 568: 317: 297: 202: 134: 126: 122: 118: 63: 48: 44: 6572: 6181: 6106: 5514: 4989: 4893: 4574: 4458: 4279: 4217: 3981:
Virus as populations: composition, complexity, dynamics, and biological implications
3660: 3287: 2586: 2505: 2412: 2323: 2204:
Domingo E, Holland JJ, Ahlquist P (1988). Domingo E, Holland JJ, Ahlquist P (eds.).
1962: 1928: 1837: 1736: 1437: 1055: 357:
The molecular basis of high error rates is the limited template-copying fidelity of
6889: 6879: 6832: 6795: 6785: 6736: 6726: 6677: 6669: 6625: 6617: 6576: 6568: 6527: 6519: 6478: 6468: 6411: 6403: 6361: 6351: 6299: 6265: 6200: 6159: 6110: 6102: 6061: 6022: 5987: 5952: 5915: 5905: 5870: 5850: 5805: 5795: 5754: 5713: 5703: 5646: 5610: 5600: 5559: 5549: 5494: 5449: 5439: 5390: 5382: 5341: 5323: 5290: 5282: 5226: 5216: 5164: 5124: 5114: 5073: 5065: 5024: 5016: 4969: 4934: 4897: 4889: 4848: 4807: 4799: 4738: 4707: 4670: 4662: 4635: 4615: 4578: 4570: 4488: 4438: 4365: 4355: 4305: 4239: 4197: 4155: 4145: 4096: 4088: 4036: 4028: 3934: 3924: 3880: 3870: 3821: 3811: 3770: 3762: 3718: 3708: 3664: 3656: 3617: 3580: 3531: 3523: 3482: 3478: 3474: 3433: 3425: 3376: 3366: 3322: 3314: 3267: 3219: 3173: 3165: 3115: 3105: 3059: 3049: 3005: 2995: 2954: 2946: 2905: 2895: 2846: 2813: 2772: 2762: 2721: 2680: 2670: 2621: 2613: 2566: 2528: 2483: 2431: 2392: 2349: 2303: 2255: 2209: 2169: 2133: 2083: 2075: 2036: 1999: 1966: 1958: 1908: 1856: 1815: 1807: 1764: 1716: 1671: 1663: 1607: 1587: 1520: 1510: 1460: 1423: 1415: 1378: 1368: 1338: 1318: 1264: 1254: 1184: 1174: 1127: 1109: 1091: 645:
Intra-mutant spectrum interactions for interference, complementation or cooperation
472: 337: 114: 40: 992:
The long-term evolution of the virus may be influenced in that it may be a better
512:, interaction with host factors, etc.) or viral particles (for thermal stability, 5800: 5759: 5742: 5221: 5119: 5020: 3713: 3371: 3110: 3000: 2767: 1096: 849: 695: 694:
decrease fitness as a result of new mutations than the same variant located at a
598: 525: 509: 496: 395: 313: 281: 214: 145: 6673: 6303: 6204: 4876:
GonzĂĄlez-LĂłpez C, Arias A, Pariente N, GĂłmez-Mariano G, Domingo E (April 2004).
4244: 4201: 3209: 3035: 2802:"Thinking Outside the Triangle: Replication Fidelity of the Largest RNA Viruses" 2079: 6864:
Proceedings of the National Academy of Sciences of the United States of America
6711:
Proceedings of the National Academy of Sciences of the United States of America
6453:
Proceedings of the National Academy of Sciences of the United States of America
6336:
Proceedings of the National Academy of Sciences of the United States of America
6330:
Loeb LA, Essigmann JM, Kazazi F, Zhang J, Rose KD, Mullins JI (February 1999).
6140:"Time-dependent estimates of molecular evolutionary rates: evidence and causes" 5890:
Proceedings of the National Academy of Sciences of the United States of America
5688:
Proceedings of the National Academy of Sciences of the United States of America
5424:
Proceedings of the National Academy of Sciences of the United States of America
4340:
Proceedings of the National Academy of Sciences of the United States of America
4130:
Proceedings of the National Academy of Sciences of the United States of America
3855:
Proceedings of the National Academy of Sciences of the United States of America
3804:
Proceedings of the National Academy of Sciences of the United States of America
3766: 3429: 2888:
Proceedings of the National Academy of Sciences of the United States of America
2655:
Proceedings of the National Academy of Sciences of the United States of America
1811: 1495:
Proceedings of the National Academy of Sciences of the United States of America
1229:
Proceedings of the National Academy of Sciences of the United States of America
1062: 804: 703: 560: 517: 476: 399: 182: 83: 71: 6941: 6917: 6606:"Human cancers express mutator phenotypes: origin, consequences and targeting" 5833:
Chao L (November 1990). "Fitness of RNA virus decreased by Muller's ratchet".
5369:
GarcĂ­a-Arriaza J, Manrubia SC, Toja M, Domingo E, EscarmĂ­s C (November 2004).
4938: 4711: 4309: 3318: 3271: 2487: 869: 730: 605:. One category included mutants with an amino acid substitution that affected 455:(right box). Relevant adaptive mutations are highlighted with colored symbols. 443: 233: 6951: 6269: 5943:
Muller HJ (May 1964). "The relation of recombination to mutational advance".
5420:"Exploration of sequence space as the basis of viral RNA genome segmentation" 4742: 4415: 4334:
Chumakov KM, Powers LB, Noonan KE, Roninson IB, Levenbook IS (January 1991).
4263: 3231: 2259: 1599: 1559: 1515: 1198: 1105: 1082: 1035: 1034:– and hence reduce their mutation rate – showed these variants to have lower 901: 219: 178: 165:
error threshold relationship, indicating the maximum amount of information (ʋ
110: 36: 6884: 6523: 5910: 5886:"Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet" 5708: 5554: 5498: 5444: 4493: 4476: 4150: 3913:"Rethinking quasispecies theory: From fittest type to cooperative consortia" 3875: 3851:"Clonality and intracellular polyploidy in virus evolution and pathogenesis" 3816: 3585: 3560: 3054: 2900: 2137: 2003: 1259: 230:
increase of mutation rate on virus survival, each with several derivations.
133:
compatible with inheritable information. Crossing such a limit leads to RNA
78:
consisted of mutant distributions, as found experimentally with present-day
6903: 6809: 6790: 6750: 6731: 6691: 6639: 6590: 6541: 6492: 6473: 6425: 6356: 6277: 6173: 6075: 6026: 5991: 5964: 5819: 5768: 5727: 5668: 5624: 5573: 5506: 5463: 5404: 5355: 5304: 5240: 5186: 5138: 5087: 5038: 4981: 4946: 4911: 4853: 4836: 4719: 4684: 4627: 4592: 4557:
Ruiz-Jarabo CM, Arias A, Baranowski E, EscarmĂ­s C, Domingo E (April 2000).
4540: 4502: 4450: 4317: 4209: 4169: 4110: 4050: 3948: 3894: 3835: 3784: 3732: 3678: 3629: 3594: 3545: 3496: 3447: 3390: 3336: 3279: 3223: 3187: 3129: 3073: 3019: 2968: 2919: 2868: 2827: 2786: 2735: 2675: 2635: 2453: 2361: 2353: 2277: 2097: 1878: 1829: 1685: 1534: 1472: 1392: 1373: 1330: 1278: 1206: 1123: 1043: 905: 888:
Inhibitors used in combination should target different viral gene products.
793: 783: 504: 468: 273: 6407: 6375: 6222: 6195:
Domingo E (1989). "RNA virus evolution and the control of viral disease".
6124: 6066: 6049: 6034: 5999: 5929: 5862: 4862: 4821: 4379: 4360: 4271: 3929: 3169: 2694: 2578: 2540: 2315: 2213: 2181: 2145: 2048: 1980: 1776: 1728: 1667: 1131: 963:
employing lethal mutagenesis. For example, increased doses of the mutagen
835: 4092: 3527: 2950: 2884:"GLN3 inactivation cause imbalanced dNTP pools and increased mutagenesis" 2617: 2404: 1920: 1241: 983:
This visualization of "survival of the flattest" in evolutionary biology.
929: 881: 776: 690: 587: 513: 488: 375: 370: 102: 6416: 5650: 5605: 5327: 5286: 5168: 4875: 4619: 4032: 2850: 2435: 1860: 1419: 1189: 94:
of RNA viruses than is offered by classical studies based on simplified
6836: 6707:"RNA virus error catastrophe: direct molecular test by using ribavirin" 2396: 2244:"Transitions in understanding of RNA viruses: a historical perspective" 2158: 1820: 1720: 1591: 1031: 1027: 797: 658: 572: 379: 312:
without perturbations derived from modifications of the environment or
149: 6164: 6139: 5417: 5261:
Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (January 2006).
189:(a term used to refer to any replicating entity), as an ingredient of 16:
Population structure of viruses with a large number of variant genomes
5854: 5528:
Ciota AT, Ehrbar DJ, Van Slyke GA, Willsey GG, Kramer LD (May 2012).
5052:
Quer J, Hershey CL, Domingo E, Holland JJ, Novella IS (August 2001).
4786:
Borrego B, Novella IS, Giralt E, Andreu D, Domingo E (October 1993).
4295: 3463:"Marine RNA Virus Quasispecies Are Distributed throughout the Oceans" 1549: 1322: 1163:"Historical Perspective on the Discovery of the Quasispecies Concept" 1039: 964: 933: 681:
Suppression of drug-resistant viral mutants during antiviral therapy.
492: 464: 329: 260: 198: 87: 79: 6621: 1406:
Eigen M, McCaskill J, Schuster P (1988). "Molecular Quasi-Species".
398:, with complex dynamics of intra-host heterogeneity and variations. 6047: 5587:
Xue KS, Hooper KA, Ollodart AR, Dingens AS, Bloom JD (March 2016).
4973: 997: 827:
There is an increasing perception that Darwinian principles should
460: 194: 106: 5005:"My Cousin, My Enemy: quasispecies suppression of drug resistance" 4556: 2932: 2062:
Bradwell K, Combe M, Domingo-Calap P, SanjuĂĄn R (September 2013).
1354: 6505: 5368: 3403: 2600:
Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR (November 2007).
2061: 1947:"Subclonal components of consensus fitness in an RNA virus clone" 853: 6942:
Video: Using fitness landscapes to visualize evolution in action
6293: 4187: 4123: 2482:. Current Topics in Microbiology and Immunology. Vol. 392. 894:
Targeting of cellular functions needed for the virus life cycle.
6557:"Lethal mutagenesis: targeting the mutator phenotype in cancer" 5977: 4697: 944: 865: 845: 841: 341: 137:, a transition that is the basis of an antiviral design termed 32: 6973:
Knowledge articles published in peer-reviewed literature (J2W)
5884:
Duarte E, Clarke D, Moya A, Domingo E, Holland J (July 1992).
5530:"Cooperative interactions in the West Nile virus mutant swarm" 4074: 3607: 3559:
Gisder S, Möckel N, Eisenhardt D, Genersch E (December 2018).
3558: 2981: 2115: 1789: 6332:"Lethal mutagenesis of HIV with mutagenic nucleoside analogs" 1898: 1222: 28: 6088: 5317: 4333: 4233: 3509: 1297:
Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C (July 2001).
706:
mutagenesis or when it was co-inoculated with wild type PV.
6766:"Quasispecies theory in the context of population genetics" 6393: 5527: 4605: 3642: 3258:
Domingo E, Perales C (May 2018). "Quasispecies and virus".
2293: 1161:
Domingo E, GarcĂ­a-Crespo C, Perales C (29 September 2021).
1160: 1060:
This article was adapted from the following source under a
940: 185:
to explain self-organization and adaptability of primitive
5781: 5260: 4785: 4648: 2026: 1944: 678:
Suppression of FMDV by capsid and polymerase FMDV mutants.
6919:
Using fitness landscapes to visualize evolution in action
5101:
Codoñer FM, Darós JA, Solé RV, Elena SF (December 2006).
5051: 5002: 3154:"Emergency Services of Viral RNAs: Repair and Remodeling" 2840: 1851:
Schuster P (2016). "Quasispecies on Fitness Landscapes".
1076:
Esteban Domingo Solans, Celia Perales (17 October 2019).
592: 6958:
Knowledge articles published in peer-reviewed literature
6329: 5740: 5586: 4924: 4878:"Preextinction viral RNA can interfere with infectivity" 3748: 2556: 2518: 1993: 1223:
van Nimwegen E, Crutchfield JP, Huynen M (August 1999).
792:
Components of a mutant spectrum can exhibit a different
5883: 5640: 4835:
Teng MN, Oldstone MB, de la Torre JC (September 1996).
4834: 2881: 875: 836:
Vaccine exposure of multiple B cell and T cell epitopes
467:
variants, conferring upon the population some adaptive
70:
The term quasispecies was adopted from a theory of the
6138:
Ho SY, DuchĂȘne S, Molak M, Shapiro B (December 2015).
5476: 5054:"Contingent neutrality in competing viral populations" 4291: 4289: 3091: 3031: 3029: 2203: 1405: 932:(T-705; 6-fluoro-3-hydroxy-2-pirazinecarboxamide) and 588:
Variants that drive responses to selective constraints
35:(related by mutations). Quasispecies result from high 6137: 6012: 5100: 5003:
Kirkegaard K, van Buuren NJ, Mateo R (October 2016).
3694: 3355:"Quasispecies theory and the behavior of RNA viruses" 1649: 974: 675:
Suppression of FMDV by a mutagenized FMDV population.
609:(since the antigenic determinant overlapped with the 4649:
Briones C, Domingo E, Molina-ParĂ­s C (August 2003).
4006: 3848: 3300: 3092:
Donohue RC, Pfaller CK, Cattaneo R (February 2019).
1296: 483:(in its replicative and non-replicative modes), and 39:
as mutants arise continually and change in relative
6704: 6199:. Vol. 33. BirkhĂ€user Basel. pp. 93–133. 5741:GutiĂ©rrez S, Michalakis Y, Blanc S (October 2012). 5362: 4869: 4552: 4550: 4286: 4126:"Competition-colonization dynamics in an RNA virus" 3205: 3203: 3201: 3199: 3197: 3026: 2599: 2248:
Quasispecies: Concept and Implications for Virology
62:and highly connected (that is, flat) region in the 6944:—contains an example of "survival of the flattest" 5681: 5202: 4400:. Berlin, Heidelberg: Springer Berlin Heidelberg. 3906: 3904: 3695:Lowry K, Woodman A, Cook J, Evans DJ (June 2014). 2799: 2648: 1554:. Pretoria, South Africa: University of Pretoria. 1451:Nowak MA (April 1992). "What is a quasispecies?". 553: 540: 177:Quasispecies theory was developed in the 1970s by 6041: 5643:Quasispecies: From Theory to Experimental Systems 5636: 5634: 5320:Quasispecies: From Theory to Experimental Systems 5161:Quasispecies: From Theory to Experimental Systems 5158: 4959: 4391: 4389: 3910: 2843:Quasispecies: From Theory to Experimental Systems 2800:Smith EC, Sexton NR, Denison MR (November 2014). 2651:"A novel 3'-end repair mechanism in an RNA virus" 2649:Nagy PD, Carpenter CD, Simon AE (February 1997). 2480:Quasispecies: From Theory to Experimental Systems 2428:Quasispecies: From Theory to Experimental Systems 2289: 2287: 1998:. Wiley-VCH Verlag GmbH & Co. KGaA: 367–388. 1853:Quasispecies: From Theory to Experimental Systems 6949: 6857: 6499: 6389: 6387: 6385: 6289: 6287: 5198: 5196: 4547: 4329: 4327: 3194: 2473: 2471: 2469: 2467: 2465: 2463: 1645: 1643: 1641: 1639: 1637: 6651: 6649: 5256: 5254: 5252: 5250: 4996: 4732: 4518: 4516: 4514: 4512: 4229: 4227: 4183: 4181: 4179: 4117: 4007:Acevedo A, Brodsky L, Andino R (January 2014). 4002: 4000: 3974: 3972: 3970: 3968: 3966: 3964: 3962: 3960: 3958: 3901: 3348: 3346: 3253: 3251: 3249: 3247: 3245: 3243: 3241: 3087: 3085: 3083: 2477: 2237: 2235: 2233: 2199: 2197: 2195: 2193: 2191: 2111: 2109: 2107: 2020: 1894: 1892: 1890: 1888: 1754: 1750: 1748: 1746: 1635: 1633: 1631: 1629: 1627: 1625: 1623: 1621: 1619: 1617: 1218: 1216: 280:, or the high frequency of conversions between 6249: 6082: 6006: 5734: 5631: 5154: 5152: 5150: 5148: 4522: 4470: 4468: 4386: 4070: 4068: 4066: 4064: 4062: 4060: 3797: 3791: 3460: 3257: 2552: 2550: 2284: 1940: 1938: 1578:Eigen M, Schuster P (1979). "The Hypercycle". 1484: 1482: 451:(left box), or be adapted to a different host 6963:Knowledge articles published in PLOS Genetics 6851: 6698: 6655: 6382: 6325: 6323: 6284: 6188: 5971: 5675: 5311: 5193: 4474: 4431:International Journal of Antimicrobial Agents 4324: 3690: 3688: 3352: 2707: 2460: 2382: 2335: 2333: 1844: 1650:Domingo E, Sheldon J, Perales C (June 2012). 1577: 1357:"Experimental evolution of plant RNA viruses" 6705:Crotty S, Cameron CE, Andino R (June 2001). 6646: 5247: 5094: 4953: 4918: 4779: 4735:Sequence Space and Quasispecies Distribution 4642: 4509: 4422: 4224: 4176: 3997: 3955: 3849:Perales C, Moreno E, Domingo E (July 2015). 3842: 3744: 3742: 3343: 3301:SanjuĂĄn R, Domingo-Calap P (December 2016). 3238: 3147: 3145: 3143: 3141: 3139: 3080: 2748: 2710:"Exonucleolytic proofreading by p53 protein" 2230: 2188: 2152: 2104: 1885: 1743: 1614: 1573: 1571: 1569: 1488: 1350: 1348: 1292: 1290: 1288: 1225:"Neutral evolution of mutational robustness" 1213: 1007:, analogous to the way sexual organisms use 259:, as still implied today in the contents of 6822: 6658:"Examining the theory of error catastrophe" 6440: 5936: 5877: 5470: 5411: 5145: 4599: 4465: 4057: 2547: 1935: 1479: 571:, or that can alter the capacity to induce 6757: 6597: 6449:"Error catastrophe and antiviral strategy" 6320: 5521: 5203:Pfeiffer JK, Kirkegaard K (October 2005). 4726: 4691: 3911:Villarreal LP, Witzany G (November 2013). 3685: 3158:Microbiology and Molecular Biology Reviews 2376: 2330: 1692: 1656:Microbiology and Molecular Biology Reviews 141:, and of relevance to antiviral medicine. 86:. The theory provided a new definition of 6893: 6883: 6858:SanjuĂĄn R, Moya A, Elena SF (June 2004). 6799: 6789: 6740: 6730: 6681: 6629: 6580: 6548: 6531: 6482: 6472: 6415: 6365: 6355: 6163: 6114: 6065: 5919: 5909: 5826: 5809: 5799: 5775: 5758: 5717: 5707: 5614: 5604: 5563: 5553: 5453: 5443: 5394: 5345: 5294: 5230: 5220: 5128: 5118: 5077: 5045: 5028: 4901: 4852: 4828: 4811: 4674: 4582: 4492: 4369: 4359: 4243: 4159: 4149: 4100: 4040: 3938: 3928: 3884: 3874: 3825: 3815: 3774: 3739: 3722: 3712: 3668: 3584: 3535: 3486: 3461:Vlok M, Lang AS, Suttle CA (April 2019). 3437: 3380: 3370: 3326: 3177: 3136: 3119: 3109: 3063: 3053: 3009: 2999: 2958: 2909: 2899: 2817: 2776: 2766: 2725: 2684: 2674: 2625: 2425: 2087: 1970: 1819: 1675: 1566: 1547: 1524: 1514: 1427: 1399: 1382: 1372: 1345: 1285: 1268: 1258: 1240: 1188: 1178: 1156: 1154: 1152: 1150: 1148: 1146: 1144: 1113: 1095: 717:Therefore, complementation, cooperation, 6255: 6131: 5682:Pfeiffer JK, Kirkegaard K (April 2006). 5580: 3151: 1850: 987: 978: 729: 442: 438: 352: 232: 159: 6554: 6298:. Springer New York. pp. 123–147. 6194: 4428: 4395: 3978: 3798:Tibayrenc M, Ayala FJ (November 2012). 2241: 967:reduces the infectivity of poliovirus. 840:Vaccines should include repertoires of 822: 6950: 5942: 2819:10.1146/annurev-virology-031413-085507 1489:Drake JW, Holland JJ (November 1999). 1180:10.1146/annurev-virology-091919-105900 1141: 786:purposes can mutate to new phenotypes. 617: 593:Behavior of reconstructed quasispecies 578: 169:) and the maximum average error rate p 6763: 6446: 3917:World Journal of Biological Chemistry 2339: 1698: 1450: 919: 864:> several expressed proteins > 6656:Summers J, Litwin S (January 2006). 6603: 6296:Handbook of Antimicrobial Resistance 5832: 3307:Cellular and Molecular Life Sciences 2478:Domingo E, Schuster P, eds. (2016). 876:Antiviral agents used in combination 803:Viral pathogenesis is influenced by 4475:MartĂ­n V, Domingo E (August 2008). 2749:Smith EC, Denison MR (2013-12-05). 870:multiple synthetic peptide antigens 294:human immunodeficiency virus type 1 13: 5387:10.1128/JVI.78.21.11678-11685.2004 3353:Lauring AS, Andino R (July 2010). 1491:"Mutation rates among RNA viruses" 975:Possible evolutionary consequences 954: 14: 6999: 6968:Externally peer reviewed articles 6935: 4443:10.1016/j.ijantimicag.2018.10.005 1453:Trends in Ecology & Evolution 54:The theory predicts that a viral 6910: 6816: 6555:Fox EJ, Loeb LA (October 2010). 5070:10.1128/jvi.75.16.7315-7320.2001 4804:10.1128/JVI.67.10.6071-6079.1993 4398:Genetic Diversity of RNA Viruses 4236:Genetic Diversity of RNA Viruses 2727:10.1046/j.1432-1327.2001.02075.x 2714:European Journal of Biochemistry 1054: 766: 670:lymphocytic choriomengitis virus 303: 213:. One of its corollaries is the 6825:Journal of Mathematical Biology 6573:10.1016/j.semcancer.2010.10.005 6107:10.1128/JVI.66.6.3557-3565.1992 6054:The Journal of General Virology 4894:10.1128/jvi.78.7.3319-3324.2004 4737:. CRC Press. pp. 211–245. 4733:Eigen M, Biebricher CK (1988). 4575:10.1128/jvi.74.8.3543-3547.2000 4481:Molecular Biology and Evolution 3636: 3601: 3552: 3503: 3454: 3397: 3294: 2975: 2926: 2875: 2834: 2793: 2742: 2701: 2642: 2593: 2512: 2419: 2055: 1987: 1963:10.1128/JVI.68.7.4295-4301.1994 1783: 1030:to give them a higher-fidelity 554:Non-consensus-based descriptors 541:Limitations and indeterminacies 113:(approx one error per round of 31:with a large number of variant 4559:"Memory in viral quasispecies" 3622:10.1093/bioinformatics/17.1.16 3479:10.1128/mspheredirect.00157-19 3303:"Mechanisms of viral mutation" 3152:Agol VI, Gmyl AP (June 2018). 2708:Bakhanashvili M (April 2001). 1792:Journal of Theoretical Biology 1652:"Viral quasispecies evolution" 1541: 1444: 1429:11858/00-001M-0000-002C-84A7-C 1021: 994:evolutionarily stable strategy 725: 209:to understand the response to 1: 4667:10.1016/s0022-2836(03)00661-2 4523:Briones C, Domingo E (2008). 3661:10.1093/bioinformatics/btx402 1408:Journal of Physical Chemistry 1049: 1026:Experimental manipulation of 369:because they lack a 3’ to 5’ 363:RNA-dependent DNA polymerases 359:RNA-dependent RNA polymerases 207:intra-population interactions 6978:Microbial population biology 6015:Journal of Molecular Biology 5980:Journal of Molecular Biology 5957:10.1016/0027-5107(64)90047-8 5801:10.1371/journal.ppat.1002243 5760:10.1016/j.coviro.2012.08.001 5222:10.1371/journal.ppat.0010011 5120:10.1371/journal.ppat.0020136 5021:10.1016/j.coviro.2016.09.011 4927:Journal of Molecular Biology 4700:Journal of Molecular Biology 4655:Journal of Molecular Biology 4298:Journal of Molecular Biology 3979:Domingo E (September 2015). 3714:10.1371/journal.ppat.1004191 3372:10.1371/journal.ppat.1001005 3111:10.1371/journal.ppat.1007605 3001:10.1371/journal.ppat.1007368 2768:10.1371/journal.ppat.1003760 2571:10.1016/0092-8674(89)90883-0 2533:10.1016/0378-1119(92)90216-c 2308:10.1016/0092-8674(89)90942-2 2174:10.1016/0378-1119(85)90017-4 2041:10.1016/0378-1119(76)90004-4 1913:10.1016/0092-8674(78)90223-4 1769:10.1016/0301-4622(82)87037-3 1465:10.1016/0169-5347(92)90145-2 1097:10.1371/JOURNAL.PGEN.1008271 661:(PV) by attenuated virus in 535:foot-and-mouth disease virus 7: 6674:10.1128/JVI.80.1.20-26.2006 6304:10.1007/978-1-4939-0694-9_1 6205:10.1007/978-3-0348-9146-2_5 5747:Current Opinion in Virology 5009:Current Opinion in Virology 4245:10.1007/978-3-642-77011-1_1 4202:10.1016/j.virol.2018.07.030 3260:European Biophysics Journal 2080:10.1534/genetics.113.154963 1548:Le Clercq LS (2014-06-18). 848:epitopes to evoke an ample 629:memory in the immune system 485:genome segment reassortment 328:, bacterial populations or 10: 7004: 6561:Seminars in Cancer Biology 6396:Future Medicinal Chemistry 4608:Nature Reviews. Immunology 3767:10.1016/j.chom.2017.08.006 3565:Environmental Microbiology 3430:10.1038/s41598-017-02652-w 3042:Frontiers in Plant Science 1812:10.1016/j.jtbi.2018.10.007 668:Suppression of pathogenic 338:conformation distributions 248:vesicular stomatitis virus 155: 6197:Progress in Drug Research 4939:10.1016/j.jmb.2007.03.074 4712:10.1016/j.jmb.2004.03.061 4310:10.1016/j.jmb.2006.05.027 3319:10.1007/s00018-016-2299-6 3272:10.1007/s00249-018-1282-6 2806:Annual Review of Virology 2488:10.1007/978-3-319-23898-2 2342:Seminars in Liver Disease 1167:Annual Review of Virology 292:have been performed with 109:) because they have high 6988:Infraspecific virus taxa 6770:BMC Evolutionary Biology 6764:Wilke CO (August 2005). 6447:Eigen M (October 2002). 6270:10.1016/j.pt.2009.11.009 5534:BMC Evolutionary Biology 4743:10.1201/9781351076449-12 2260:10.1007/3-540-26397-7_14 1516:10.1073/pnas.96.24.13910 657:Suppression of virulent 479:and it can also include 326:evolution of tumor cells 193:organizations that link 6885:10.1073/pnas.0400146101 5911:10.1073/pnas.89.13.6015 5709:10.1073/pnas.0600834103 5555:10.1186/1471-2148-12-58 5499:10.1126/science.1115030 5445:10.1073/pnas.1323136111 4151:10.1073/pnas.0909787107 3876:10.1073/pnas.1501715112 3817:10.1073/pnas.1212452109 3755:Cell Host & Microbe 3586:10.1111/1462-2920.14481 3055:10.3389/fpls.2018.00932 2901:10.1073/pnas.1618714114 2385:Die Naturwissenschaften 2138:10.1126/science.7041255 2004:10.1002/352760801x.ch17 1701:Die Naturwissenschaften 1260:10.1073/pnas.96.17.9716 862:inactivated whole virus 624:complex adaptive system 565:neutralizing antibodies 386:Studies with different 336:, drug resistance, and 334:chromosomal instability 278:Newcastle disease virus 6791:10.1186/1471-2148-5-44 6732:10.1073/pnas.111085598 6610:Nature Reviews. Cancer 6474:10.1073/pnas.212514799 6357:10.1073/pnas.96.4.1492 6258:Trends in Parasitology 6027:10.1006/jmbi.1998.2366 5992:10.1006/jmbi.1996.0639 4854:10.1006/viro.1996.0460 3224:10.1002/chin.200338243 2676:10.1073/pnas.94.4.1113 2354:10.1055/s-0031-1297925 1374:10.1038/sj.hdy.6801088 984: 829:assist in the planning 735: 531:experimental evolution 501:biological constraints 456: 238: 174: 60:evolutionarily neutral 6604:Loeb LA (June 2011). 6524:10.1093/annonc/mdy003 6408:10.4155/fmc-2018-0457 6067:10.1099/vir.0.80126-0 4494:10.1093/molbev/msn099 4361:10.1073/pnas.88.1.199 3930:10.4331/wjbc.v4.i4.79 3170:10.1128/mmbr.00067-17 2214:10.1201/9781351076432 1757:Biophysical Chemistry 1668:10.1128/MMBR.05023-11 1016:mutational robustness 988:Mutational robustness 982: 866:one expressed protein 819:helping to confront. 733: 446: 439:Phenotypic reservoirs 353:Dynamic heterogeneity 236: 222:of the population in 211:selective constraints 163: 105:(including important 4093:10.1128/jvi.02505-16 3528:10.1128/jvi.00017-18 2951:10.1128/jvi.01335-16 2618:10.1128/jvi.01296-07 1078:"Viral quasispecies" 823:Antiviral strategies 607:receptor recognition 561:antiviral inhibitors 449:bottleneck transfers 415:uasispecies, PAQ or 322:RNA-RNA interactions 252:replicative capacity 243:RNA bacteriophage QÎČ 25:population structure 6876:2004PNAS..101.8396S 6782:2005BMCEE...5...44W 6723:2001PNAS...98.6895C 6662:Journal of Virology 6465:2002PNAS...9913374E 6348:1999PNAS...96.1492L 6156:2015MolEc..24.6007H 6095:Journal of Virology 5902:1992PNAS...89.6015D 5847:1990Natur.348..454C 5700:2006PNAS..103.5520P 5651:10.1007/82_2015_461 5606:10.7554/elife.13974 5546:2012BMCEE..12...58C 5491:2006Sci...311..236A 5436:2014PNAS..111.6678M 5375:Journal of Virology 5328:10.1007/82_2015_483 5287:10.1038/nature04388 5279:2006Natur.439..344V 5169:10.1007/82_2015_463 5058:Journal of Virology 4882:Journal of Virology 4792:Journal of Virology 4620:10.1038/nri.2016.13 4563:Journal of Virology 4396:Holland JJ (1992). 4352:1991PNAS...88..199C 4142:2010PNAS..107.2108O 4081:Journal of Virology 4033:10.1038/nature12861 4025:2014Natur.505..686A 3867:2015PNAS..112.8887P 3577:2018EnvMi..20.4612G 3516:Journal of Virology 3422:2017NatSR...7.2368V 2939:Journal of Virology 2894:(22): E4442–E4451. 2851:10.1007/82_2015_456 2667:1997PNAS...94.1113N 2606:Journal of Virology 2436:10.1007/82_2015_471 2242:Holland JJ (2006). 2130:1982Sci...215.1577H 1951:Journal of Virology 1861:10.1007/82_2015_469 1804:2019JThBi.460..170F 1713:1971NW.....58..465E 1580:Naturwissenschaften 1507:1999PNAS...9613910D 1420:10.1021/j100335a010 1315:2001Natur.412..331W 1251:1999PNAS...96.9716V 663:poliovirus vaccines 618:Quasispecies memory 603:monoclonal antibody 579:Collective response 435:ference, QUENTIN). 346:population dynamics 310:genetic equilibrium 257:nucleotide sequence 125:, and may act as a 96:consensus sequences 74:in which primitive 6837:10.1007/BF00160372 6512:Annals of Oncology 3983:. Academic Press. 3410:Scientific Reports 2397:10.1007/bf00450633 1721:10.1007/bf00623322 1592:10.1007/bf00420631 1005:selection pressure 985: 925:Lethal mutagenesis 920:Lethal mutagenesis 736: 599:sweeping selection 457: 388:virus-host systems 318:fitness landscapes 286:Coxsackie A9 virus 284:and dependence in 239: 175: 150:adaptive processes 139:lethal mutagenesis 121:, competition and 92:adaptive potential 21:viral quasispecies 6402:(13): 1645–1657. 6165:10.1111/mec.13450 6144:Molecular Ecology 6060:(Pt 8): 2289–97. 5945:Mutation Research 3990:978-0-12-800837-9 3571:(12): 4612–4628. 3522:(12): e00017-18. 3313:(23): 4433–4448. 2497:978-3-319-23897-5 2124:(4540): 1577–85. 1414:(24): 6881–6891. 1014:However, whether 805:microevolutionary 748:hepatitis C virus 611:integrin receptor 597:In some cases of 569:cytotoxic T cells 298:hepatitis C virus 127:unit of selection 119:genetic variation 64:fitness landscape 45:viral replication 6995: 6929: 6928: 6927: 6926: 6914: 6908: 6907: 6897: 6887: 6870:(22): 8396–401. 6855: 6849: 6848: 6820: 6814: 6813: 6803: 6793: 6761: 6755: 6754: 6744: 6734: 6717:(12): 6895–900. 6702: 6696: 6695: 6685: 6653: 6644: 6643: 6633: 6601: 6595: 6594: 6584: 6552: 6546: 6545: 6535: 6503: 6497: 6496: 6486: 6476: 6444: 6438: 6437: 6419: 6391: 6380: 6379: 6369: 6359: 6327: 6318: 6317: 6291: 6282: 6281: 6253: 6247: 6246: 6240: 6236: 6234: 6226: 6192: 6186: 6185: 6167: 6135: 6129: 6128: 6118: 6086: 6080: 6079: 6069: 6045: 6039: 6038: 6010: 6004: 6003: 5975: 5969: 5968: 5940: 5934: 5933: 5923: 5913: 5881: 5875: 5874: 5855:10.1038/348454a0 5830: 5824: 5823: 5813: 5803: 5779: 5773: 5772: 5762: 5738: 5732: 5731: 5721: 5711: 5679: 5673: 5672: 5638: 5629: 5628: 5618: 5608: 5584: 5578: 5577: 5567: 5557: 5525: 5519: 5518: 5474: 5468: 5467: 5457: 5447: 5415: 5409: 5408: 5398: 5381:(21): 11678–85. 5366: 5360: 5359: 5349: 5315: 5309: 5308: 5298: 5258: 5245: 5244: 5234: 5224: 5200: 5191: 5190: 5156: 5143: 5142: 5132: 5122: 5098: 5092: 5091: 5081: 5049: 5043: 5042: 5032: 5000: 4994: 4993: 4957: 4951: 4950: 4922: 4916: 4915: 4905: 4873: 4867: 4866: 4856: 4832: 4826: 4825: 4815: 4783: 4777: 4776: 4770: 4766: 4764: 4756: 4730: 4724: 4723: 4695: 4689: 4688: 4678: 4646: 4640: 4639: 4603: 4597: 4596: 4586: 4554: 4545: 4544: 4520: 4507: 4506: 4496: 4472: 4463: 4462: 4426: 4420: 4419: 4393: 4384: 4383: 4373: 4363: 4331: 4322: 4321: 4293: 4284: 4283: 4247: 4231: 4222: 4221: 4185: 4174: 4173: 4163: 4153: 4121: 4115: 4114: 4104: 4072: 4055: 4054: 4044: 4019:(7485): 686–90. 4004: 3995: 3994: 3976: 3953: 3952: 3942: 3932: 3908: 3899: 3898: 3888: 3878: 3846: 3840: 3839: 3829: 3819: 3810:(48): E3305-13. 3795: 3789: 3788: 3778: 3746: 3737: 3736: 3726: 3716: 3692: 3683: 3682: 3672: 3640: 3634: 3633: 3605: 3599: 3598: 3588: 3556: 3550: 3549: 3539: 3507: 3501: 3500: 3490: 3473:(2): e00157-19. 3458: 3452: 3451: 3441: 3401: 3395: 3394: 3384: 3374: 3350: 3341: 3340: 3330: 3298: 3292: 3291: 3255: 3236: 3235: 3207: 3192: 3191: 3181: 3149: 3134: 3133: 3123: 3113: 3089: 3078: 3077: 3067: 3057: 3033: 3024: 3023: 3013: 3003: 2994:(10): e1007368. 2979: 2973: 2972: 2962: 2930: 2924: 2923: 2913: 2903: 2879: 2873: 2872: 2838: 2832: 2831: 2821: 2797: 2791: 2790: 2780: 2770: 2761:(12): e1003760. 2746: 2740: 2739: 2729: 2705: 2699: 2698: 2688: 2678: 2646: 2640: 2639: 2629: 2612:(22): 12135–44. 2597: 2591: 2590: 2554: 2545: 2544: 2516: 2510: 2509: 2475: 2458: 2457: 2423: 2417: 2416: 2380: 2374: 2373: 2337: 2328: 2327: 2291: 2282: 2281: 2239: 2228: 2227: 2201: 2186: 2185: 2156: 2150: 2149: 2113: 2102: 2101: 2091: 2059: 2053: 2052: 2024: 2018: 2017: 1991: 1985: 1984: 1974: 1942: 1933: 1932: 1896: 1883: 1882: 1848: 1842: 1841: 1823: 1787: 1781: 1780: 1752: 1741: 1740: 1696: 1690: 1689: 1679: 1647: 1612: 1611: 1575: 1564: 1563: 1545: 1539: 1538: 1528: 1518: 1486: 1477: 1476: 1448: 1442: 1441: 1431: 1403: 1397: 1396: 1386: 1376: 1352: 1343: 1342: 1323:10.1038/35085569 1294: 1283: 1282: 1272: 1262: 1244: 1242:adap-org/9903006 1220: 1211: 1210: 1192: 1182: 1158: 1136: 1135: 1117: 1099: 1090:(10): e1008271. 1072:reviewer reports 1065: 1058: 900:Combined use of 744:MĂŒller’s ratchet 135:virus extinction 7003: 7002: 6998: 6997: 6996: 6994: 6993: 6992: 6948: 6947: 6938: 6933: 6932: 6924: 6922: 6916: 6915: 6911: 6856: 6852: 6821: 6817: 6762: 6758: 6703: 6699: 6654: 6647: 6622:10.1038/nrc3063 6602: 6598: 6553: 6549: 6504: 6500: 6459:(21): 13374–6. 6445: 6441: 6392: 6383: 6328: 6321: 6314: 6292: 6285: 6254: 6250: 6238: 6237: 6228: 6227: 6215: 6193: 6189: 6150:(24): 6007–12. 6136: 6132: 6087: 6083: 6046: 6042: 6011: 6007: 5976: 5972: 5941: 5937: 5882: 5878: 5841:(6300): 454–5. 5831: 5827: 5794:(9): e1002243. 5780: 5776: 5739: 5735: 5680: 5676: 5661: 5639: 5632: 5585: 5581: 5526: 5522: 5485:(5758): 236–8. 5475: 5471: 5430:(18): 6678–83. 5416: 5412: 5367: 5363: 5338: 5316: 5312: 5273:(7074): 344–8. 5259: 5248: 5201: 5194: 5179: 5157: 5146: 5099: 5095: 5064:(16): 7315–20. 5050: 5046: 5001: 4997: 4962:Nature Genetics 4958: 4954: 4933:(4): 985–1000. 4923: 4919: 4874: 4870: 4833: 4829: 4784: 4780: 4768: 4767: 4758: 4757: 4753: 4731: 4727: 4696: 4692: 4647: 4643: 4604: 4600: 4555: 4548: 4521: 4510: 4473: 4466: 4427: 4423: 4408: 4394: 4387: 4332: 4325: 4294: 4287: 4256: 4232: 4225: 4186: 4177: 4122: 4118: 4073: 4058: 4005: 3998: 3991: 3977: 3956: 3909: 3902: 3861:(29): 8887–92. 3847: 3843: 3796: 3792: 3747: 3740: 3707:(6): e1004191. 3693: 3686: 3641: 3637: 3606: 3602: 3557: 3553: 3508: 3504: 3459: 3455: 3402: 3398: 3365:(7): e1001005. 3351: 3344: 3299: 3295: 3256: 3239: 3208: 3195: 3164:(2): e00067-1. 3150: 3137: 3104:(2): e1007605. 3090: 3081: 3034: 3027: 2980: 2976: 2931: 2927: 2880: 2876: 2861: 2839: 2835: 2798: 2794: 2747: 2743: 2706: 2702: 2647: 2643: 2598: 2594: 2555: 2548: 2517: 2513: 2498: 2476: 2461: 2446: 2424: 2420: 2381: 2377: 2338: 2331: 2292: 2285: 2270: 2240: 2231: 2224: 2202: 2189: 2157: 2153: 2114: 2105: 2060: 2056: 2025: 2021: 2014: 1992: 1988: 1957:(7): 4295–301. 1943: 1936: 1897: 1886: 1871: 1849: 1845: 1788: 1784: 1753: 1744: 1707:(10): 465–523. 1697: 1693: 1648: 1615: 1576: 1567: 1546: 1542: 1501:(24): 13910–3. 1487: 1480: 1449: 1445: 1404: 1400: 1353: 1346: 1309:(6844): 331–3. 1295: 1286: 1235:(17): 9716–20. 1221: 1214: 1159: 1142: 1075: 1061: 1059: 1052: 1024: 990: 977: 957: 955:Error threshold 922: 878: 850:immune response 838: 825: 769: 728: 696:fitness plateau 687:complementation 647: 620: 595: 590: 581: 556: 543: 526:virus isolation 510:gene expression 497:virus evolution 477:point mutations 441: 355: 314:population size 306: 282:drug resistance 246:documented for 215:error threshold 172: 168: 158: 146:deep sequencing 17: 12: 11: 5: 7001: 6991: 6990: 6985: 6980: 6975: 6970: 6965: 6960: 6946: 6945: 6937: 6936:External links 6934: 6931: 6930: 6909: 6850: 6815: 6756: 6697: 6645: 6596: 6547: 6518:(3): 563–572. 6498: 6439: 6381: 6319: 6312: 6283: 6248: 6239:|journal= 6213: 6187: 6130: 6101:(6): 3557–65. 6081: 6040: 6021:(2): 495–505. 6005: 5970: 5935: 5896:(13): 6015–9. 5876: 5825: 5788:PLOS Pathogens 5774: 5733: 5694:(14): 5520–5. 5674: 5659: 5630: 5579: 5520: 5469: 5410: 5361: 5336: 5310: 5246: 5209:PLOS Pathogens 5192: 5177: 5144: 5107:PLOS Pathogens 5093: 5044: 4995: 4974:10.1038/ng1583 4952: 4917: 4888:(7): 3319–24. 4868: 4827: 4798:(10): 6071–9. 4778: 4769:|journal= 4751: 4725: 4690: 4641: 4598: 4546: 4508: 4487:(8): 1544–54. 4464: 4421: 4406: 4385: 4346:(1): 199–203. 4323: 4285: 4254: 4223: 4175: 4136:(5): 2108–12. 4116: 4056: 3996: 3989: 3954: 3900: 3841: 3790: 3738: 3701:PLOS Pathogens 3684: 3655:(1): 163–170. 3649:Bioinformatics 3635: 3610:Bioinformatics 3600: 3551: 3502: 3453: 3396: 3359:PLOS Pathogens 3342: 3293: 3266:(4): 443–457. 3237: 3193: 3135: 3098:PLOS Pathogens 3079: 3025: 2988:PLOS Pathogens 2974: 2925: 2874: 2859: 2833: 2792: 2755:PLOS Pathogens 2741: 2720:(7): 2047–54. 2700: 2641: 2592: 2546: 2511: 2496: 2459: 2444: 2418: 2391:(11): 541–65. 2375: 2329: 2283: 2268: 2229: 2222: 2187: 2151: 2103: 2054: 2019: 2012: 1986: 1934: 1884: 1869: 1843: 1782: 1742: 1691: 1662:(2): 159–216. 1613: 1565: 1540: 1478: 1443: 1398: 1344: 1284: 1212: 1139: 1138: 1051: 1048: 1023: 1020: 989: 986: 976: 973: 956: 953: 921: 918: 913: 912: 909: 898: 895: 892: 889: 877: 874: 837: 834: 824: 821: 816: 815: 811: 808: 801: 790: 787: 780: 768: 765: 727: 724: 704:5-fluorouracil 683: 682: 679: 676: 673: 666: 655: 646: 643: 619: 616: 594: 591: 589: 586: 580: 577: 555: 552: 542: 539: 440: 437: 354: 351: 305: 302: 276:morphology of 224:sequence space 183:Peter Schuster 170: 166: 157: 154: 111:mutation rates 72:origin of life 37:mutation rates 15: 9: 6: 4: 3: 2: 7000: 6989: 6986: 6984: 6981: 6979: 6976: 6974: 6971: 6969: 6966: 6964: 6961: 6959: 6956: 6955: 6953: 6943: 6940: 6939: 6921: 6920: 6913: 6905: 6901: 6896: 6891: 6886: 6881: 6877: 6873: 6869: 6865: 6861: 6854: 6846: 6842: 6838: 6834: 6830: 6826: 6819: 6811: 6807: 6802: 6797: 6792: 6787: 6783: 6779: 6775: 6771: 6767: 6760: 6752: 6748: 6743: 6738: 6733: 6728: 6724: 6720: 6716: 6712: 6708: 6701: 6693: 6689: 6684: 6679: 6675: 6671: 6667: 6663: 6659: 6652: 6650: 6641: 6637: 6632: 6627: 6623: 6619: 6615: 6611: 6607: 6600: 6592: 6588: 6583: 6578: 6574: 6570: 6566: 6562: 6558: 6551: 6543: 6539: 6534: 6529: 6525: 6521: 6517: 6513: 6509: 6502: 6494: 6490: 6485: 6480: 6475: 6470: 6466: 6462: 6458: 6454: 6450: 6443: 6435: 6431: 6427: 6423: 6418: 6413: 6409: 6405: 6401: 6397: 6390: 6388: 6386: 6377: 6373: 6368: 6363: 6358: 6353: 6349: 6345: 6342:(4): 1492–7. 6341: 6337: 6333: 6326: 6324: 6315: 6313:9781493906932 6309: 6305: 6301: 6297: 6290: 6288: 6279: 6275: 6271: 6267: 6263: 6259: 6252: 6244: 6232: 6224: 6220: 6216: 6214:9783034899253 6210: 6206: 6202: 6198: 6191: 6183: 6179: 6175: 6171: 6166: 6161: 6157: 6153: 6149: 6145: 6141: 6134: 6126: 6122: 6117: 6112: 6108: 6104: 6100: 6096: 6092: 6085: 6077: 6073: 6068: 6063: 6059: 6055: 6051: 6044: 6036: 6032: 6028: 6024: 6020: 6016: 6009: 6001: 5997: 5993: 5989: 5986:(2): 255–67. 5985: 5981: 5974: 5966: 5962: 5958: 5954: 5950: 5946: 5939: 5931: 5927: 5922: 5917: 5912: 5907: 5903: 5899: 5895: 5891: 5887: 5880: 5872: 5868: 5864: 5860: 5856: 5852: 5848: 5844: 5840: 5836: 5829: 5821: 5817: 5812: 5807: 5802: 5797: 5793: 5789: 5785: 5778: 5770: 5766: 5761: 5756: 5753:(5): 546–55. 5752: 5748: 5744: 5737: 5729: 5725: 5720: 5715: 5710: 5705: 5701: 5697: 5693: 5689: 5685: 5678: 5670: 5666: 5662: 5660:9783319238975 5656: 5652: 5648: 5644: 5637: 5635: 5626: 5622: 5617: 5612: 5607: 5602: 5598: 5594: 5590: 5583: 5575: 5571: 5566: 5561: 5556: 5551: 5547: 5543: 5539: 5535: 5531: 5524: 5516: 5512: 5508: 5504: 5500: 5496: 5492: 5488: 5484: 5480: 5473: 5465: 5461: 5456: 5451: 5446: 5441: 5437: 5433: 5429: 5425: 5421: 5414: 5406: 5402: 5397: 5392: 5388: 5384: 5380: 5376: 5372: 5365: 5357: 5353: 5348: 5343: 5339: 5337:9783319238982 5333: 5329: 5325: 5321: 5314: 5306: 5302: 5297: 5292: 5288: 5284: 5280: 5276: 5272: 5268: 5264: 5257: 5255: 5253: 5251: 5242: 5238: 5233: 5228: 5223: 5218: 5214: 5210: 5206: 5199: 5197: 5188: 5184: 5180: 5178:9783319238975 5174: 5170: 5166: 5162: 5155: 5153: 5151: 5149: 5140: 5136: 5131: 5126: 5121: 5116: 5112: 5108: 5104: 5097: 5089: 5085: 5080: 5075: 5071: 5067: 5063: 5059: 5055: 5048: 5040: 5036: 5031: 5026: 5022: 5018: 5014: 5010: 5006: 4999: 4991: 4987: 4983: 4979: 4975: 4971: 4967: 4963: 4956: 4948: 4944: 4940: 4936: 4932: 4928: 4921: 4913: 4909: 4904: 4899: 4895: 4891: 4887: 4883: 4879: 4872: 4864: 4860: 4855: 4850: 4846: 4842: 4838: 4831: 4823: 4819: 4814: 4809: 4805: 4801: 4797: 4793: 4789: 4782: 4774: 4762: 4754: 4752:9781351076449 4748: 4744: 4740: 4736: 4729: 4721: 4717: 4713: 4709: 4706:(2): 405–12. 4705: 4701: 4694: 4686: 4682: 4677: 4672: 4668: 4664: 4661:(1): 213–29. 4660: 4656: 4652: 4645: 4637: 4633: 4629: 4625: 4621: 4617: 4613: 4609: 4602: 4594: 4590: 4585: 4580: 4576: 4572: 4569:(8): 3543–7. 4568: 4564: 4560: 4553: 4551: 4542: 4538: 4535:(2): 93–109. 4534: 4530: 4526: 4519: 4517: 4515: 4513: 4504: 4500: 4495: 4490: 4486: 4482: 4478: 4471: 4469: 4460: 4456: 4452: 4448: 4444: 4440: 4437:(1): 105562. 4436: 4432: 4425: 4417: 4413: 4409: 4407:9783642770111 4403: 4399: 4392: 4390: 4381: 4377: 4372: 4367: 4362: 4357: 4353: 4349: 4345: 4341: 4337: 4330: 4328: 4319: 4315: 4311: 4307: 4304:(3): 558–72. 4303: 4299: 4292: 4290: 4281: 4277: 4273: 4269: 4265: 4261: 4257: 4255:9783642770111 4251: 4246: 4241: 4237: 4230: 4228: 4219: 4215: 4211: 4207: 4203: 4199: 4195: 4191: 4184: 4182: 4180: 4171: 4167: 4162: 4157: 4152: 4147: 4143: 4139: 4135: 4131: 4127: 4120: 4112: 4108: 4103: 4098: 4094: 4090: 4086: 4082: 4078: 4071: 4069: 4067: 4065: 4063: 4061: 4052: 4048: 4043: 4038: 4034: 4030: 4026: 4022: 4018: 4014: 4010: 4003: 4001: 3992: 3986: 3982: 3975: 3973: 3971: 3969: 3967: 3965: 3963: 3961: 3959: 3950: 3946: 3941: 3936: 3931: 3926: 3922: 3918: 3914: 3907: 3905: 3896: 3892: 3887: 3882: 3877: 3872: 3868: 3864: 3860: 3856: 3852: 3845: 3837: 3833: 3828: 3823: 3818: 3813: 3809: 3805: 3801: 3794: 3786: 3782: 3777: 3772: 3768: 3764: 3760: 3756: 3752: 3745: 3743: 3734: 3730: 3725: 3720: 3715: 3710: 3706: 3702: 3698: 3691: 3689: 3680: 3676: 3671: 3666: 3662: 3658: 3654: 3650: 3646: 3639: 3631: 3627: 3623: 3619: 3615: 3611: 3604: 3596: 3592: 3587: 3582: 3578: 3574: 3570: 3566: 3562: 3555: 3547: 3543: 3538: 3533: 3529: 3525: 3521: 3517: 3513: 3506: 3498: 3494: 3489: 3484: 3480: 3476: 3472: 3468: 3464: 3457: 3449: 3445: 3440: 3435: 3431: 3427: 3423: 3419: 3415: 3411: 3407: 3400: 3392: 3388: 3383: 3378: 3373: 3368: 3364: 3360: 3356: 3349: 3347: 3338: 3334: 3329: 3324: 3320: 3316: 3312: 3308: 3304: 3297: 3289: 3285: 3281: 3277: 3273: 3269: 3265: 3261: 3254: 3252: 3250: 3248: 3246: 3244: 3242: 3233: 3229: 3225: 3221: 3217: 3213: 3206: 3204: 3202: 3200: 3198: 3189: 3185: 3180: 3175: 3171: 3167: 3163: 3159: 3155: 3148: 3146: 3144: 3142: 3140: 3131: 3127: 3122: 3117: 3112: 3107: 3103: 3099: 3095: 3088: 3086: 3084: 3075: 3071: 3066: 3061: 3056: 3051: 3047: 3043: 3039: 3032: 3030: 3021: 3017: 3012: 3007: 3002: 2997: 2993: 2989: 2985: 2978: 2970: 2966: 2961: 2956: 2952: 2948: 2944: 2940: 2936: 2929: 2921: 2917: 2912: 2907: 2902: 2897: 2893: 2889: 2885: 2878: 2870: 2866: 2862: 2860:9783319238975 2856: 2852: 2848: 2844: 2837: 2829: 2825: 2820: 2815: 2812:(1): 111–32. 2811: 2807: 2803: 2796: 2788: 2784: 2779: 2774: 2769: 2764: 2760: 2756: 2752: 2745: 2737: 2733: 2728: 2723: 2719: 2715: 2711: 2704: 2696: 2692: 2687: 2682: 2677: 2672: 2668: 2664: 2661:(4): 1113–8. 2660: 2656: 2652: 2645: 2637: 2633: 2628: 2623: 2619: 2615: 2611: 2607: 2603: 2596: 2588: 2584: 2580: 2576: 2572: 2568: 2565:(1): 219–28. 2564: 2560: 2553: 2551: 2542: 2538: 2534: 2530: 2526: 2522: 2515: 2507: 2503: 2499: 2493: 2489: 2485: 2481: 2474: 2472: 2470: 2468: 2466: 2464: 2455: 2451: 2447: 2445:9783319238975 2441: 2437: 2433: 2429: 2422: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2379: 2371: 2367: 2363: 2359: 2355: 2351: 2348:(4): 356–74. 2347: 2343: 2336: 2334: 2325: 2321: 2317: 2313: 2309: 2305: 2302:(5): 901–10. 2301: 2297: 2290: 2288: 2279: 2275: 2271: 2265: 2261: 2257: 2253: 2249: 2245: 2238: 2236: 2234: 2225: 2223:9781351076432 2219: 2215: 2211: 2207: 2200: 2198: 2196: 2194: 2192: 2183: 2179: 2175: 2171: 2167: 2163: 2155: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2112: 2110: 2108: 2099: 2095: 2090: 2085: 2081: 2077: 2074:(1): 243–51. 2073: 2069: 2065: 2058: 2050: 2046: 2042: 2038: 2034: 2030: 2023: 2015: 2013:9783527608010 2009: 2005: 2001: 1997: 1996:Pathogenomics 1990: 1982: 1978: 1973: 1968: 1964: 1960: 1956: 1952: 1948: 1941: 1939: 1930: 1926: 1922: 1918: 1914: 1910: 1907:(4): 735–44. 1906: 1902: 1895: 1893: 1891: 1889: 1880: 1876: 1872: 1870:9783319238975 1866: 1862: 1858: 1854: 1847: 1839: 1835: 1831: 1827: 1822: 1817: 1813: 1809: 1805: 1801: 1797: 1793: 1786: 1778: 1774: 1770: 1766: 1763:(4): 329–45. 1762: 1758: 1751: 1749: 1747: 1738: 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1695: 1687: 1683: 1678: 1673: 1669: 1665: 1661: 1657: 1653: 1646: 1644: 1642: 1640: 1638: 1636: 1634: 1632: 1630: 1628: 1626: 1624: 1622: 1620: 1618: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1581: 1574: 1572: 1570: 1561: 1557: 1553: 1552: 1544: 1536: 1532: 1527: 1522: 1517: 1512: 1508: 1504: 1500: 1496: 1492: 1485: 1483: 1474: 1470: 1466: 1462: 1459:(4): 118–21. 1458: 1454: 1447: 1439: 1435: 1430: 1425: 1421: 1417: 1413: 1409: 1402: 1394: 1390: 1385: 1380: 1375: 1370: 1367:(5): 478–83. 1366: 1362: 1358: 1351: 1349: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1293: 1291: 1289: 1280: 1276: 1271: 1266: 1261: 1256: 1252: 1248: 1243: 1238: 1234: 1230: 1226: 1219: 1217: 1208: 1204: 1200: 1196: 1191: 1186: 1181: 1176: 1172: 1168: 1164: 1157: 1155: 1153: 1151: 1149: 1147: 1145: 1140: 1137: 1133: 1129: 1125: 1121: 1116: 1111: 1107: 1103: 1098: 1093: 1089: 1085: 1084: 1083:PLOS Genetics 1079: 1073: 1069: 1064: 1057: 1047: 1045: 1041: 1037: 1036:pathogenicity 1033: 1029: 1019: 1017: 1012: 1010: 1009:recombination 1006: 1001: 999: 995: 981: 972: 968: 966: 960: 952: 950: 946: 942: 937: 935: 931: 926: 917: 910: 907: 903: 902:immunotherapy 899: 896: 893: 890: 887: 886: 885: 883: 873: 871: 867: 863: 859: 855: 851: 847: 843: 833: 830: 820: 812: 809: 806: 802: 799: 795: 791: 788: 785: 781: 778: 774: 773: 772: 767:Viral disease 764: 760: 758: 753: 749: 745: 740: 732: 723: 720: 715: 711: 707: 705: 699: 697: 692: 688: 680: 677: 674: 671: 667: 664: 660: 656: 653: 652: 651: 642: 639: 635: 630: 625: 615: 612: 608: 604: 600: 585: 576: 574: 570: 566: 562: 551: 547: 538: 536: 532: 527: 522: 519: 515: 511: 506: 502: 498: 494: 490: 486: 482: 481:recombination 478: 474: 470: 466: 462: 454: 450: 445: 436: 434: 430: 427:etwork-based 426: 422: 418: 414: 410: 406: 401: 400:Bioinformatic 397: 394: 389: 384: 381: 377: 376:coronaviruses 372: 368: 364: 360: 350: 347: 343: 339: 335: 331: 327: 323: 319: 315: 311: 304:Current scope 301: 299: 295: 291: 287: 283: 279: 275: 269: 266: 262: 258: 253: 249: 244: 235: 231: 227: 225: 221: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 179:Manfred Eigen 162: 153: 151: 147: 142: 140: 136: 132: 128: 124: 120: 116: 112: 108: 104: 99: 97: 93: 89: 85: 82:within their 81: 77: 73: 68: 65: 61: 58:at a low but 57: 52: 50: 46: 42: 38: 34: 30: 26: 22: 6923:, retrieved 6918: 6912: 6867: 6863: 6853: 6831:(1): 33–44. 6828: 6824: 6818: 6773: 6769: 6759: 6714: 6710: 6700: 6665: 6661: 6616:(6): 450–7. 6613: 6609: 6599: 6567:(5): 353–9. 6564: 6560: 6550: 6515: 6511: 6501: 6456: 6452: 6442: 6417:10261/216260 6399: 6395: 6339: 6335: 6295: 6264:(2): 83–92. 6261: 6257: 6251: 6196: 6190: 6147: 6143: 6133: 6098: 6094: 6084: 6057: 6053: 6043: 6018: 6014: 6008: 5983: 5979: 5973: 5948: 5944: 5938: 5893: 5889: 5879: 5838: 5834: 5828: 5791: 5787: 5777: 5750: 5746: 5736: 5691: 5687: 5677: 5642: 5596: 5592: 5582: 5537: 5533: 5523: 5482: 5478: 5472: 5427: 5423: 5413: 5378: 5374: 5364: 5319: 5313: 5270: 5266: 5212: 5208: 5160: 5113:(12): e136. 5110: 5106: 5096: 5061: 5057: 5047: 5012: 5008: 4998: 4968:(7): 701–9. 4965: 4961: 4955: 4930: 4926: 4920: 4885: 4881: 4871: 4847:(1): 113–9. 4844: 4840: 4830: 4795: 4791: 4781: 4734: 4728: 4703: 4699: 4693: 4658: 4654: 4644: 4614:(2): 124–8. 4611: 4607: 4601: 4566: 4562: 4532: 4529:AIDS Reviews 4528: 4484: 4480: 4434: 4430: 4424: 4397: 4343: 4339: 4301: 4297: 4235: 4193: 4189: 4133: 4129: 4119: 4084: 4080: 4016: 4012: 3980: 3923:(4): 79–90. 3920: 3916: 3858: 3854: 3844: 3807: 3803: 3793: 3758: 3754: 3704: 3700: 3652: 3648: 3638: 3616:(1): 16–22. 3613: 3609: 3603: 3568: 3564: 3554: 3519: 3515: 3505: 3470: 3466: 3456: 3413: 3409: 3399: 3362: 3358: 3310: 3306: 3296: 3263: 3259: 3215: 3211: 3161: 3157: 3101: 3097: 3045: 3041: 2991: 2987: 2977: 2942: 2938: 2928: 2891: 2887: 2877: 2842: 2836: 2809: 2805: 2795: 2758: 2754: 2744: 2717: 2713: 2703: 2658: 2654: 2644: 2609: 2605: 2595: 2562: 2558: 2527:(2): 281–8. 2524: 2520: 2514: 2479: 2427: 2421: 2388: 2384: 2378: 2345: 2341: 2299: 2295: 2247: 2206:RNA Genetics 2205: 2165: 2161: 2154: 2121: 2117: 2071: 2067: 2057: 2035:(1): 27–32. 2032: 2028: 2022: 1995: 1989: 1954: 1950: 1904: 1900: 1852: 1846: 1795: 1791: 1785: 1760: 1756: 1704: 1700: 1694: 1659: 1655: 1583: 1579: 1550: 1543: 1498: 1494: 1456: 1452: 1446: 1411: 1407: 1401: 1364: 1360: 1306: 1302: 1232: 1228: 1190:10261/265663 1173:(1): 51–72. 1170: 1166: 1087: 1081: 1053: 1044:adaptability 1025: 1013: 1002: 991: 969: 961: 958: 938: 923: 914: 906:chemotherapy 879: 839: 826: 817: 794:cell tropism 784:pest control 770: 761: 752:BHK-21 cells 741: 737: 719:interference 716: 712: 708: 700: 684: 648: 633: 621: 596: 582: 557: 548: 544: 523: 505:host defense 469:pluripotency 463:but also of 458: 452: 432: 431:ransmission 428: 424: 420: 416: 412: 408: 404: 392: 385: 367:proofreading 361:(RdRps) and 356: 307: 296:(HIV-1) and 289: 270: 240: 228: 176: 143: 115:replication) 100: 69: 56:quasispecies 53: 20: 18: 6668:(1): 20–6. 5015:: 106–111. 4196:: 100–109. 3416:(1): 2368. 1821:2072/378023 1798:: 170–183. 1586:(1): 7–41. 1022:Cooperation 930:favipiravir 882:monotherapy 777:vaccination 757:attenuation 726:Bottlenecks 691:cooperation 489:enterovirus 419:asispecies 411:nalysis of 371:exonuclease 250:(VSV). The 191:hypercyclic 131:upper limit 103:RNA viruses 80:RNA viruses 6952:Categories 6925:2019-10-22 5951:(1): 2–9. 5599:: e13974. 5215:(2): e11. 3761:(3): 420. 3212:ChemInform 2269:3540263950 2168:(1): 1–8. 1050:References 1032:polymerase 1028:poliovirus 880:Antiviral 858:attenuated 798:host range 659:poliovirus 638:bottleneck 573:interferon 514:entry into 465:phenotypic 423:volution, 396:infections 380:retroviral 330:stem cells 261:data banks 199:phenotypic 51:proceeds. 6845:122142345 6776:(1): 44. 6434:201673871 6241:ignored ( 6231:cite book 5540:(1): 58. 4771:ignored ( 4761:cite book 4416:851813241 4264:851813241 3232:0931-7597 2370:260313185 1600:0028-1042 1560:958495192 1199:2327-056X 1132:Q86320171 1106:1553-7390 1066:license ( 1063:CC BY 4.0 1040:wild-type 965:ribavirin 934:ribavirin 518:exit from 493:virulence 461:genotypic 407:artition 265:tolerance 195:genotypic 187:replicons 123:selection 107:pathogens 88:wild type 76:replicons 49:selection 41:frequency 6983:Virology 6904:15159545 6810:16107214 6751:11371613 6692:16352527 6640:21593786 6591:20934515 6542:29324969 6493:12370416 6426:31469331 6278:20036799 6182:14433111 6174:26769402 6076:15269370 5965:14195748 5820:21912520 5769:22921636 5728:16567621 5669:26162566 5625:26978794 5574:22541042 5515:21605827 5507:16410525 5464:24757055 5405:15479809 5356:26499340 5305:16327776 5241:16220146 5187:26210988 5139:17196038 5088:11462003 5039:27764731 4990:16501575 4982:15965477 4947:17481660 4912:15016853 4841:Virology 4720:15136042 4685:12875847 4628:26831526 4593:10729128 4541:18615120 4503:18436553 4459:52980171 4451:30315919 4318:16797586 4280:46530529 4218:52006443 4210:30107298 4190:Virology 4170:20080701 4111:28275194 4051:24284629 3949:24340131 3895:26195777 3836:22949662 3785:28910639 3733:24945141 3679:29304222 3630:11222259 3595:30452113 3546:29593040 3497:30944212 3448:28539654 3391:20661479 3337:27392606 3288:13239618 3280:29397419 3188:29540453 3130:30768648 3074:30013589 3020:30335851 2969:27795410 2920:28416670 2869:26373410 2828:26958717 2787:24348241 2736:11277927 2636:17804504 2587:23203156 2506:19514308 2454:26342705 2413:42131267 2362:22189976 2324:35903181 2278:16568907 2098:23852383 2068:Genetics 1929:19109157 1879:26597856 1838:52947045 1830:30300648 1737:38296619 1686:22688811 1535:10570172 1473:21235976 1438:96727272 1393:18253158 1361:Heredity 1331:11460163 1279:10449760 1207:34586874 1128:Wikidata 1124:31622336 998:genotype 6872:Bibcode 6801:1208876 6778:Bibcode 6719:Bibcode 6683:1317512 6631:4007007 6582:3256989 6533:5888943 6461:Bibcode 6376:9990051 6344:Bibcode 6223:2687948 6152:Bibcode 6125:1316467 6035:9878424 6000:8951375 5930:1321432 5898:Bibcode 5871:4235839 5863:2247152 5843:Bibcode 5811:3164670 5719:1414638 5696:Bibcode 5616:4805539 5565:3358237 5542:Bibcode 5487:Bibcode 5479:Science 5455:4020086 5432:Bibcode 5347:7121553 5296:1569948 5275:Bibcode 5232:1250929 5130:1757203 5030:5298929 4863:8806545 4822:7690417 4676:7173031 4636:8000538 4380:1846038 4348:Bibcode 4272:1600747 4161:2836666 4138:Bibcode 4102:5411618 4042:4111796 4021:Bibcode 3940:3856310 3886:4517279 3863:Bibcode 3827:3511763 3776:5807061 3724:4055744 3670:6355096 3573:Bibcode 3537:5974501 3488:6449609 3467:mSphere 3439:5443807 3418:Bibcode 3382:2908548 3328:5075021 3179:5968460 3121:6395005 3065:6036239 3048:: 932. 3011:6207329 2960:5165223 2911:5465912 2778:3857799 2695:9037015 2663:Bibcode 2627:2169014 2579:2790959 2541:1336756 2316:2550139 2252:371–401 2182:3912262 2146:7041255 2126:Bibcode 2118:Science 2089:3761305 2049:1052321 1981:8207804 1800:Bibcode 1777:7159681 1729:4942363 1709:Bibcode 1677:3372249 1608:1812273 1503:Bibcode 1384:7094686 1339:1482925 1311:Bibcode 1247:Bibcode 1115:6797082 854:epitope 634:in vivo 473:neutral 453:in vivo 393:in vivo 290:in vivo 203:fitness 156:History 33:genomes 29:viruses 6902:  6895:420405 6892:  6843:  6808:  6798:  6749:  6739:  6690:  6680:  6638:  6628:  6589:  6579:  6540:  6530:  6491:  6484:129678 6481:  6432:  6424:  6374:  6364:  6310:  6276:  6221:  6211:  6180:  6172:  6123:  6116:241137 6113:  6074:  6033:  5998:  5963:  5928:  5921:402129 5918:  5869:  5861:  5835:Nature 5818:  5808:  5767:  5726:  5716:  5667:  5657:  5623:  5613:  5572:  5562:  5513:  5505:  5462:  5452:  5403:  5396:523252 5393:  5354:  5344:  5334:  5303:  5293:  5267:Nature 5239:  5229:  5185:  5175:  5137:  5127:  5086:  5079:114966 5076:  5037:  5027:  4988:  4980:  4945:  4910:  4903:371084 4900:  4861:  4820:  4813:238028 4810:  4749:  4718:  4683:  4673:  4634:  4626:  4591:  4584:111862 4581:  4539:  4501:  4457:  4449:  4414:  4404:  4378:  4368:  4316:  4278:  4270:  4262:  4252:  4216:  4208:  4168:  4158:  4109:  4099:  4087:(10). 4049:  4039:  4013:Nature 3987:  3947:  3937:  3893:  3883:  3834:  3824:  3783:  3773:  3731:  3721:  3677:  3667:  3628:  3593:  3544:  3534:  3495:  3485:  3446:  3436:  3389:  3379:  3335:  3325:  3286:  3278:  3230:  3218:(38). 3186:  3176:  3128:  3118:  3072:  3062:  3018:  3008:  2967:  2957:  2918:  2908:  2867:  2857:  2826:  2785:  2775:  2734:  2693:  2683:  2634:  2624:  2585:  2577:  2539:  2504:  2494:  2452:  2442:  2411:  2405:593400 2403:  2368:  2360:  2322:  2314:  2276:  2266:  2220:  2180:  2144:  2096:  2086:  2047:  2010:  1979:  1972:236352 1969:  1927:  1921:657273 1919:  1877:  1867:  1836:  1828:  1775:  1735:  1727:  1684:  1674:  1606:  1598:  1558:  1533:  1523:  1471:  1436:  1391:  1381:  1337:  1329:  1303:Nature 1277:  1267:  1205:  1197:  1130:  1122:  1112:  1104:  945:APOBEC 846:T cell 842:B cell 342:prions 274:plaque 6841:S2CID 6742:34449 6430:S2CID 6367:15492 6178:S2CID 5867:S2CID 5593:eLife 5511:S2CID 4986:S2CID 4632:S2CID 4455:S2CID 4371:50777 4276:S2CID 4214:S2CID 3284:S2CID 2945:(1). 2686:19753 2583:S2CID 2502:S2CID 2409:S2CID 2366:S2CID 2320:S2CID 1925:S2CID 1834:S2CID 1733:S2CID 1604:S2CID 1526:24164 1434:S2CID 1335:S2CID 1270:22276 1237:arXiv 1038:than 868:> 860:> 220:drift 23:is a 6900:PMID 6806:PMID 6747:PMID 6688:PMID 6636:PMID 6587:PMID 6538:PMID 6489:PMID 6422:PMID 6372:PMID 6308:ISBN 6274:PMID 6243:help 6219:PMID 6209:ISBN 6170:PMID 6121:PMID 6072:PMID 6031:PMID 5996:PMID 5961:PMID 5926:PMID 5859:PMID 5816:PMID 5765:PMID 5724:PMID 5665:PMID 5655:ISBN 5621:PMID 5570:PMID 5503:PMID 5460:PMID 5401:PMID 5352:PMID 5332:ISBN 5301:PMID 5237:PMID 5183:PMID 5173:ISBN 5135:PMID 5084:PMID 5035:PMID 4978:PMID 4943:PMID 4908:PMID 4859:PMID 4818:PMID 4773:help 4747:ISBN 4716:PMID 4681:PMID 4624:PMID 4589:PMID 4537:PMID 4499:PMID 4447:PMID 4412:OCLC 4402:ISBN 4376:PMID 4314:PMID 4268:PMID 4260:OCLC 4250:ISBN 4206:PMID 4166:PMID 4107:PMID 4047:PMID 3985:ISBN 3945:PMID 3891:PMID 3832:PMID 3781:PMID 3729:PMID 3675:PMID 3626:PMID 3591:PMID 3542:PMID 3493:PMID 3444:PMID 3387:PMID 3333:PMID 3276:PMID 3228:ISSN 3184:PMID 3126:PMID 3070:PMID 3016:PMID 2965:PMID 2916:PMID 2865:PMID 2855:ISBN 2824:PMID 2783:PMID 2732:PMID 2691:PMID 2632:PMID 2575:PMID 2559:Cell 2537:PMID 2521:Gene 2492:ISBN 2450:PMID 2440:ISBN 2401:PMID 2358:PMID 2312:PMID 2296:Cell 2274:PMID 2264:ISBN 2218:ISBN 2178:PMID 2162:Gene 2142:PMID 2094:PMID 2045:PMID 2029:Gene 2008:ISBN 1977:PMID 1917:PMID 1901:Cell 1875:PMID 1865:ISBN 1826:PMID 1773:PMID 1725:PMID 1682:PMID 1596:ISSN 1556:OCLC 1531:PMID 1469:PMID 1389:PMID 1327:PMID 1275:PMID 1203:PMID 1195:ISSN 1120:PMID 1102:ISSN 1074:): 1068:2000 941:ADAR 904:and 844:and 197:and 181:and 84:host 47:and 6890:PMC 6880:doi 6868:101 6833:doi 6796:PMC 6786:doi 6737:PMC 6727:doi 6678:PMC 6670:doi 6626:PMC 6618:doi 6577:PMC 6569:doi 6528:PMC 6520:doi 6479:PMC 6469:doi 6412:hdl 6404:doi 6362:PMC 6352:doi 6300:doi 6266:doi 6201:doi 6160:doi 6111:PMC 6103:doi 6062:doi 6023:doi 6019:285 5988:doi 5984:264 5953:doi 5949:106 5916:PMC 5906:doi 5851:doi 5839:348 5806:PMC 5796:doi 5755:doi 5714:PMC 5704:doi 5692:103 5647:doi 5611:PMC 5601:doi 5560:PMC 5550:doi 5495:doi 5483:311 5450:PMC 5440:doi 5428:111 5391:PMC 5383:doi 5342:PMC 5324:doi 5291:PMC 5283:doi 5271:439 5227:PMC 5217:doi 5165:doi 5125:PMC 5115:doi 5074:PMC 5066:doi 5025:PMC 5017:doi 4970:doi 4935:doi 4931:369 4898:PMC 4890:doi 4849:doi 4845:223 4808:PMC 4800:doi 4739:doi 4708:doi 4704:339 4671:PMC 4663:doi 4659:331 4616:doi 4579:PMC 4571:doi 4489:doi 4439:doi 4366:PMC 4356:doi 4306:doi 4302:360 4240:doi 4198:doi 4194:523 4156:PMC 4146:doi 4134:107 4097:PMC 4089:doi 4037:PMC 4029:doi 4017:505 3935:PMC 3925:doi 3881:PMC 3871:doi 3859:112 3822:PMC 3812:doi 3808:109 3771:PMC 3763:doi 3719:PMC 3709:doi 3665:PMC 3657:doi 3618:doi 3581:doi 3532:PMC 3524:doi 3483:PMC 3475:doi 3434:PMC 3426:doi 3377:PMC 3367:doi 3323:PMC 3315:doi 3268:doi 3220:doi 3174:PMC 3166:doi 3116:PMC 3106:doi 3060:PMC 3050:doi 3006:PMC 2996:doi 2955:PMC 2947:doi 2906:PMC 2896:doi 2892:114 2847:doi 2814:doi 2773:PMC 2763:doi 2722:doi 2718:268 2681:PMC 2671:doi 2622:PMC 2614:doi 2567:doi 2529:doi 2525:122 2484:doi 2432:doi 2393:doi 2350:doi 2304:doi 2256:doi 2210:doi 2170:doi 2134:doi 2122:215 2084:PMC 2076:doi 2072:195 2037:doi 2000:doi 1967:PMC 1959:doi 1909:doi 1857:doi 1816:hdl 1808:doi 1796:460 1765:doi 1717:doi 1672:PMC 1664:doi 1588:doi 1521:PMC 1511:doi 1461:doi 1424:hdl 1416:doi 1379:PMC 1369:doi 1365:100 1319:doi 1307:412 1265:PMC 1255:doi 1185:hdl 1175:doi 1110:PMC 1092:doi 1070:) ( 949:RIP 796:or 689:or 567:or 516:or 340:in 171:max 167:max 43:as 27:of 6954:: 6898:. 6888:. 6878:. 6866:. 6862:. 6839:. 6829:32 6827:. 6804:. 6794:. 6784:. 6772:. 6768:. 6745:. 6735:. 6725:. 6715:98 6713:. 6709:. 6686:. 6676:. 6666:80 6664:. 6660:. 6648:^ 6634:. 6624:. 6614:11 6612:. 6608:. 6585:. 6575:. 6565:20 6563:. 6559:. 6536:. 6526:. 6516:29 6514:. 6510:. 6487:. 6477:. 6467:. 6457:99 6455:. 6451:. 6428:. 6420:. 6410:. 6400:11 6398:. 6384:^ 6370:. 6360:. 6350:. 6340:96 6338:. 6334:. 6322:^ 6306:. 6286:^ 6272:. 6262:26 6260:. 6235:: 6233:}} 6229:{{ 6217:. 6207:. 6176:. 6168:. 6158:. 6148:24 6146:. 6142:. 6119:. 6109:. 6099:66 6097:. 6093:. 6070:. 6058:85 6056:. 6052:. 6029:. 6017:. 5994:. 5982:. 5959:. 5947:. 5924:. 5914:. 5904:. 5894:89 5892:. 5888:. 5865:. 5857:. 5849:. 5837:. 5814:. 5804:. 5790:. 5786:. 5763:. 5749:. 5745:. 5722:. 5712:. 5702:. 5690:. 5686:. 5663:. 5653:. 5633:^ 5619:. 5609:. 5595:. 5591:. 5568:. 5558:. 5548:. 5538:12 5536:. 5532:. 5509:. 5501:. 5493:. 5481:. 5458:. 5448:. 5438:. 5426:. 5422:. 5399:. 5389:. 5379:78 5377:. 5373:. 5350:. 5340:. 5330:. 5299:. 5289:. 5281:. 5269:. 5265:. 5249:^ 5235:. 5225:. 5211:. 5207:. 5195:^ 5181:. 5171:. 5147:^ 5133:. 5123:. 5109:. 5105:. 5082:. 5072:. 5062:75 5060:. 5056:. 5033:. 5023:. 5013:20 5011:. 5007:. 4984:. 4976:. 4966:37 4964:. 4941:. 4929:. 4906:. 4896:. 4886:78 4884:. 4880:. 4857:. 4843:. 4839:. 4816:. 4806:. 4796:67 4794:. 4790:. 4765:: 4763:}} 4759:{{ 4745:. 4714:. 4702:. 4679:. 4669:. 4657:. 4653:. 4630:. 4622:. 4612:16 4610:. 4587:. 4577:. 4567:74 4565:. 4561:. 4549:^ 4533:10 4531:. 4527:. 4511:^ 4497:. 4485:25 4483:. 4479:. 4467:^ 4453:. 4445:. 4435:56 4433:. 4410:. 4388:^ 4374:. 4364:. 4354:. 4344:88 4342:. 4338:. 4326:^ 4312:. 4300:. 4288:^ 4274:. 4266:. 4258:. 4248:. 4226:^ 4212:. 4204:. 4192:. 4178:^ 4164:. 4154:. 4144:. 4132:. 4128:. 4105:. 4095:. 4085:91 4083:. 4079:. 4059:^ 4045:. 4035:. 4027:. 4015:. 4011:. 3999:^ 3957:^ 3943:. 3933:. 3919:. 3915:. 3903:^ 3889:. 3879:. 3869:. 3857:. 3853:. 3830:. 3820:. 3806:. 3802:. 3779:. 3769:. 3759:22 3757:. 3753:. 3741:^ 3727:. 3717:. 3705:10 3703:. 3699:. 3687:^ 3673:. 3663:. 3653:34 3651:. 3647:. 3624:. 3614:17 3612:. 3589:. 3579:. 3569:20 3567:. 3563:. 3540:. 3530:. 3520:92 3518:. 3514:. 3491:. 3481:. 3469:. 3465:. 3442:. 3432:. 3424:. 3412:. 3408:. 3385:. 3375:. 3361:. 3357:. 3345:^ 3331:. 3321:. 3311:73 3309:. 3305:. 3282:. 3274:. 3264:47 3262:. 3240:^ 3226:. 3216:34 3214:. 3196:^ 3182:. 3172:. 3162:82 3160:. 3156:. 3138:^ 3124:. 3114:. 3102:15 3100:. 3096:. 3082:^ 3068:. 3058:. 3044:. 3040:. 3028:^ 3014:. 3004:. 2992:14 2990:. 2986:. 2963:. 2953:. 2943:91 2941:. 2937:. 2914:. 2904:. 2890:. 2886:. 2863:. 2853:. 2822:. 2808:. 2804:. 2781:. 2771:. 2757:. 2753:. 2730:. 2716:. 2712:. 2689:. 2679:. 2669:. 2659:94 2657:. 2653:. 2630:. 2620:. 2610:81 2608:. 2604:. 2581:. 2573:. 2563:59 2561:. 2549:^ 2535:. 2523:. 2500:. 2490:. 2462:^ 2448:. 2438:. 2407:. 2399:. 2389:64 2387:. 2364:. 2356:. 2346:31 2344:. 2332:^ 2318:. 2310:. 2300:58 2298:. 2286:^ 2272:. 2262:. 2254:. 2246:. 2232:^ 2216:. 2208:. 2190:^ 2176:. 2166:40 2164:. 2140:. 2132:. 2120:. 2106:^ 2092:. 2082:. 2070:. 2066:. 2043:. 2031:. 2006:. 1975:. 1965:. 1955:68 1953:. 1949:. 1937:^ 1923:. 1915:. 1905:13 1903:. 1887:^ 1873:. 1863:. 1832:. 1824:. 1814:. 1806:. 1794:. 1771:. 1761:16 1759:. 1745:^ 1731:. 1723:. 1715:. 1705:58 1703:. 1680:. 1670:. 1660:76 1658:. 1654:. 1616:^ 1602:. 1594:. 1584:65 1582:. 1568:^ 1529:. 1519:. 1509:. 1499:96 1497:. 1493:. 1481:^ 1467:. 1455:. 1432:. 1422:. 1412:92 1410:. 1387:. 1377:. 1363:. 1359:. 1347:^ 1333:. 1325:. 1317:. 1305:. 1301:. 1287:^ 1273:. 1263:. 1253:. 1245:. 1233:96 1231:. 1227:. 1215:^ 1201:. 1193:. 1183:. 1169:. 1165:. 1143:^ 1126:. 1118:. 1108:. 1100:. 1088:15 1086:. 1080:. 947:, 943:, 759:. 563:, 433:In 417:QU 332:, 300:. 226:. 152:. 98:. 19:A 6906:. 6882:: 6874:: 6847:. 6835:: 6812:. 6788:: 6780:: 6774:5 6753:. 6729:: 6721:: 6694:. 6672:: 6642:. 6620:: 6593:. 6571:: 6544:. 6522:: 6495:. 6471:: 6463:: 6436:. 6414:: 6406:: 6378:. 6354:: 6346:: 6316:. 6302:: 6280:. 6268:: 6245:) 6225:. 6203:: 6184:. 6162:: 6154:: 6127:. 6105:: 6078:. 6064:: 6037:. 6025:: 6002:. 5990:: 5967:. 5955:: 5932:. 5908:: 5900:: 5873:. 5853:: 5845:: 5822:. 5798:: 5792:7 5771:. 5757:: 5751:2 5730:. 5706:: 5698:: 5671:. 5649:: 5627:. 5603:: 5597:5 5576:. 5552:: 5544:: 5517:. 5497:: 5489:: 5466:. 5442:: 5434:: 5407:. 5385:: 5358:. 5326:: 5307:. 5285:: 5277:: 5243:. 5219:: 5213:1 5189:. 5167:: 5141:. 5117:: 5111:2 5090:. 5068:: 5041:. 5019:: 4992:. 4972:: 4949:. 4937:: 4914:. 4892:: 4865:. 4851:: 4824:. 4802:: 4775:) 4755:. 4741:: 4722:. 4710:: 4687:. 4665:: 4638:. 4618:: 4595:. 4573:: 4543:. 4505:. 4491:: 4461:. 4441:: 4418:. 4382:. 4358:: 4350:: 4320:. 4308:: 4282:. 4242:: 4220:. 4200:: 4172:. 4148:: 4140:: 4113:. 4091:: 4053:. 4031:: 4023:: 3993:. 3951:. 3927:: 3921:4 3897:. 3873:: 3865:: 3838:. 3814:: 3787:. 3765:: 3735:. 3711:: 3681:. 3659:: 3632:. 3620:: 3597:. 3583:: 3575:: 3548:. 3526:: 3499:. 3477:: 3471:4 3450:. 3428:: 3420:: 3414:7 3393:. 3369:: 3363:6 3339:. 3317:: 3290:. 3270:: 3234:. 3222:: 3190:. 3168:: 3132:. 3108:: 3076:. 3052:: 3046:9 3022:. 2998:: 2971:. 2949:: 2922:. 2898:: 2871:. 2849:: 2830:. 2816:: 2810:1 2789:. 2765:: 2759:9 2738:. 2724:: 2697:. 2673:: 2665:: 2638:. 2616:: 2589:. 2569:: 2543:. 2531:: 2508:. 2486:: 2456:. 2434:: 2415:. 2395:: 2372:. 2352:: 2326:. 2306:: 2280:. 2258:: 2226:. 2212:: 2184:. 2172:: 2148:. 2136:: 2128:: 2100:. 2078:: 2051:. 2039:: 2033:1 2016:. 2002:: 1983:. 1961:: 1931:. 1911:: 1881:. 1859:: 1840:. 1818:: 1810:: 1802:: 1779:. 1767:: 1739:. 1719:: 1711:: 1688:. 1666:: 1610:. 1590:: 1562:. 1537:. 1513:: 1505:: 1475:. 1463:: 1457:7 1440:. 1426:: 1418:: 1395:. 1371:: 1341:. 1321:: 1313:: 1281:. 1257:: 1249:: 1239:: 1209:. 1187:: 1177:: 1171:8 1134:. 1094:: 908:. 665:. 429:T 425:N 421:E 413:Q 409:A 405:P

Index

population structure
viruses
genomes
mutation rates
frequency
viral replication
selection
quasispecies
evolutionarily neutral
fitness landscape
origin of life
replicons
RNA viruses
host
wild type
adaptive potential
consensus sequences
RNA viruses
pathogens
mutation rates
replication)
genetic variation
selection
unit of selection
upper limit
virus extinction
lethal mutagenesis
deep sequencing
adaptive processes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑